
Cardiff University
School Of Computer Science & Informatics

INFORMATION EXTRACTION FROM

WEBPAGES TO INFER NEW KNOWLEDGE

USING ONTOLOGICAL MODELLING.

Author: Ashley Sean James

Project Supervisor: Dr. Andrew Jones

Academic Year: 2015-2016

Submitted in support of the degree of

Computer Science B.Sc.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 2 of 98 c1309705

Abstract

With the coming of the third generation of pervasive and ubiquitous computing, the amount

of information which is being stored on internet infrastructure is continuing to increase.

Information about almost any topic is available, yet web page providers are actively

controlling the content we require. As such, evaluating results from even reputable sources

can be both costly and time consuming.

The work carried out as part of this research project investigated the feasibility of
automatically extracting information from a range of websites to infer new knowledge,
allowing more informed decisions to be made more quickly. However, this knowledge
extraction and fusion task is difficult because information must be retrieved effectively and
modelled appropriately based on the nature of the extracted information. An intelligent
information model could allow a programmatic system to start to make automated
judgements based on the information obtained.

In summary, this study and its associated concept prototype have shown that “information

extraction” from website content to infer new information is indeed achievable.

Furthermore, the principles of the developed solution are generic across information domains

which are available for knowledge inference. An Artificial Intelligence agent of this calibre

can infer new knowledge and learn from the websites it visits through creating a model and

set of properties for a given subject matter.

Further work could lead to the design of a commercial solution which would be a major step

toward an era of smarter computing, based on reasoning, inference and assertion rather than

data analysis and “Big Data” based solutions.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 3 of 98 c1309705

Table of Contents

Executive Summary .. 4

Glossary of Terminology ... 5

Section 1 – Background & Introduction ... 7

Section 1.1 - Background .. 7

Section 1.2 - Introduction ... 8

Section 1.3 - Aims & Objectives .. 8

Section 1.4 - Anticipated Outcomes ... 9

Section 1.5 - Principles & Approach .. 10

Section 2 – Research Approach & Findings .. 11

Section 2.1 - Technologies & Techniques for Information Extraction .. 11

Section 2.2 - Building the Ontology to Infer New Knowledge .. 11

Section 2.3 - Additional Research: Building a Hierarchical Food Chain .. 12

Section 2.4 - Implementation Technologies Available .. 12

Section 2.5 – Anticipated Challenges .. 14

Section 3 – Development Method ... 16

Section 3.1 - Development Summary ... 16

Section 3.2 - Development Approach ... 17

Section 4 – Problem Specification & Design ... 20

Section 4.1 - Problem Specification .. 20

Section 4.2 - Design ... 23

Section 5 – System Implementation & Class Descriptions .. 27

Section 5.1 - System Implementation ... 27

Section 5.2 - Detailed Class Descriptions .. 36

Section 6 – Testing, Results and Findings ... 43

Section 6.1 - Testing .. 43

Section 6.2 - Results and Findings ... 43

Section 7 – Future Work And Personal Reflections .. 47

Section 7.1 - Future Work ... 47

Section 7.2 – Personal Reflections .. 48

Section 8 – Conclusions .. 50

Appendices .. 51

References ... 96

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 4 of 98 c1309705

Executive Summary

This research project proved that “Information Extraction to Infer New Knowledge Using

Ontological Modelling” is feasible. This was demonstrated through a concept prototype which

was developed using iterative software development techniques. This investigative prototype

used reasoning, inference and assertion over traditional data analysis and Big Data based

solutions. By extending the core principles further, a future collaboration between industry

and academia could lead to the design of a commercially applicable knowledge generation

solution. This could bring more organisations into an era of smarter computing.

To help validate the principles, the topic of “animal classification” was chosen to research into

and explore the prototype’s capabilities. Initial phases of prototype development focused on

extracting information from the web, based on the classification of given animals. “Jsoup”

was selected for “information extraction” tasks, because it offered much of the functionality

needed to retrieve HTML information from a given web-page. The initial challenge being to

extract the classification of a given animal (e.g. “Bird”, “Reptile”...).

Developing this approach, a “voting system” algorithm was designed so that results from

several web-sites could be combined to yield the most likely classification. Using JENA, an

animal properties ontology was then constructed. The determined classification made it easy

to visualise how a given animal should be classified with its corresponding properties.

Further development effort focused on “inference” using a reasoner, to assert what “animal

classification” a given animal belonged to. e.g. if an animal such as an “ostrich” “has” the

property of “wings” and an “animal classification” “Bird” is “equivalent” to animals with

“wings”, then an ostrich can be inferred to be a “Bird”. Other useful properties were captured

e.g. an animal’s scientific name; proving that adding extracted properties was achievable.

Additional implemented improvements included using the “Levenshtein distance” to

calculate the similarity of two strings. Specifically for this project, the similarity of the input

to a specified set of “acceptable” “animal classifications”. This meant that even if the system

was to extract a classification containing a “spelling-error” then the system could standardise

this incorrect input. e.g. {“Snake”, “eptile”} could be corrected to {“Snake”, “Reptile”}. Other

standardisations included cases of technical and biological terms (such as “Aves”=”Birds”).

Constructing a dictionary of these “other cases” meant that the value of an entry could easily

be standardised to its “key” and would result in a more appropriate classification.

Functionality for human intervention was included when an animal could not be classified.

Such modifications were easy to implement because of the extensibility of the solution.

Final development iterations focused on the novel concept of building a “Food Chain”

hierarchy of animals and their predators and prey. A recursive function was designed to

search through the possibility tree based on what an animal “eats” and is “eatenBy”. These

relationships could then be added to the model and inverse relationships could be inferred,

building up a more complete animal ontology. This feature could be used as a very powerful

classification tool by biologists e.g. using the recursive algorithm to retrieve the classification

and properties for each of the animals considered during the traversal process.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 5 of 98 c1309705

Glossary of Terminology

Technical Term Definition

Agile
Development

A process for developing software in an iterative and incremental
manner.

Animal
Classifications

Classifications which animals can be put into. (E.g. Mammals, Birds,
Reptiles, Fish, Amphibians).

Animal
Properties

Features of an animal which make them unique and belong to a
certain animal classification family. (e.g wings, scales, gills).

Big Data Huge quantities of often complex data which require significant
processing to analyse.

Eclipse IDE A Java software development programming environment supported by
the Eclipse Foundation using tools to handle “plug-in” dependencies.

GitHub A web based repository hosting service providing benefits such as
backed up and versioned code.

GUI Graphical User Interface

IDE An Integrated Development Environment is a software application
which provides programming specific facilities for software
development.

Information
Extraction

The process of extracting information from webpages

JENA A Java library used to build the ontology model, containing methods to
create and add properties, classes and reasoners to a model.

JENA Ontology
Objects

JENA (com.hp.hpl.jena) specific implementations for Classes,
Properties and different flavours of Model superclass. e.g. OntClass,
ObjectProperty, OntModel, InfModel.

Jsoup A Java library which contains functionality to perform information
extraction tasks, such as retrieving HTML and searching for patterns
within HTML.

Maven A dependency management tool which is implemented in Eclipse.

NLP Natural Language Processing – applying computational models to
textual formatted data.

Ontology Hierarchy of related concepts which are often linked by properties.

Ontology
Creation

The process of modelling an ontology of concepts programmatically
using a utility.

Org.apache.Log4j
logger

Logger for org.apache libraries.

OWL A web ontology language which is a set of markup languages which
are designed for machine processing of information.

Pellet A reasoner which can be used to perform complex reasoning tasks.

Protégé A graphical tool from Stanford University used to build up Ontology
Models.

RDF Resource Description Framework - a framework for describing
resources on the web.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 6 of 98 c1309705

RDF triple Consists of a predicate, subject and object. E.g A cat has claws.
Predicate: “Cat”, Subject: “has”, Object: “Claws”.

Reasoner A reasoner uses a set of rules to categorise different classes based on
their properties.

Regression
Testing

A code module is initially tested and future testing includes the
previous tests to check code changes have not affected program
correctness.

StringUtils A complex Java library for handling strings.

Turtle Terse RDF Triple Language - a way to express data in RDF triples in a
simple format.

URI Uniform Resource Identifier

URL Uniform Resource Locator

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 7 of 98 c1309705

Section 1 – Background & Introduction

Historically, “information extraction” has been an interesting research topic and continues to
be an area for profitable research. The initial prototype solution implemented for this project,
began as a set of ideas on how to manage “information extraction” processes more efficiently.
It later developed into a comprehensive “information extraction” and analysis engine.

Section 1.1 - Background

Information identification, extraction and analysis has always been an important area for
commercial and academic research. From analysing ancient hieroglyphics to extracting
information embedded within internet based web-pages, this is still the case. Businesses need
to be innovative and quickly react to changing market trends and influences. It is through
extracting high-quality intelligence of this type that the most profitable decisions can be
realised.

The nature of the internet is content based and is always developing and evolving. New
content is constantly being added and this makes the challenge of successful and accurate
“information extraction” ever more difficult. Our dependence on information was well
expressed by Geoffrey Moore at the Hadoop 2012 Summit: “Without big data you are blind
and deaf in the middle of the highway”. We are surrounded by data and it is integral to the
way businesses are being run. Discovering data trends and reacting to them, is similar to being
able to see and hear.

Companies are looking to analyse website content and research has focused on the
applications of “big data” technologies and approaches. The idea is to take lots of connected
(and disconnected) relevant data and bring it all together to allow information to be assessed
for decision making purposes e.g. looking for interesting trends and key pieces of information
which can help enhance a company's profitability and market appeal.

In 2010, Google’s CEO Eric Schmidt summed up the sheer volume of information being
generated: “Every two days now we create as much information as we did from the dawn of
civilization up until 2003.” If this huge amount of information is processed correctly and
turned into useful and applicable knowledge, then the advantages and benefits are clear.

Many different sources can provide useful information and combining these sources is a
challenging task. However, combination approaches can often lead to better information
quality and may even lead to the discovery of previously unknown facts. Checking that the
processed information is suitable either involves additional processing or the use of cross-
referencing capabilities.

Automating such "search and learn" processes would be very productive from a commercial
perspective. However, the problem lies with the computer’s ability to build and classify
objects in such business models. This is usually achieved using Natural Language Processing
(NLP) which is a technique for searching for nouns, verbs and adjectives and using these as
the basis to make up triple (subject, predicate and object) statements. 

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 8 of 98 c1309705

One of the key reasons why information extraction is so difficult is because “Information may
need to be combined across several sentences…” [and] “There are many ways of expressing
the same fact…” (GATE Information Extraction, The University of Sheffield). These problems
were challenging tasks to be overcome during this project.

Section 1.2 - Introduction

Techniques involving “big data” are commonplace in industry and the push to analyse and
collate the data we have on the internet to infer new information is an area which still
requires further investigation. Having considered the available techniques, it was decided to
explore how easily internet content could be extracted, structured and built up into an
ontological model to help infer further knowledge about a domain area.

Taking useful and applicable information out of a piece of text is a simple task for most
humans. However, for a computer based system, this is quite a complex task. Humans use
characteristics and know what sort of information is being looked for almost intuitively. Rule
based reasoning to infer new information in this way is a lot more difficult for a machine to
perform. Most of the time, a human would be able to make this generalisation without
thinking. The machine does not know that there are cases where rules need to be taken in a
more “fuzzy” or relaxed manner.

“Information extraction” as a process can be achieved through retrieving a website’s HTML
page structure and then looking for an associated pattern. This pattern can then in turn be
used to locate specified phrases from within the text of the HTML content. Through using an
extraction tool this HTML content can then be parsed and useful information determined.

“Animal classification” was the domain area chosen for the prototype system and it is an
interesting study topic for biologists, who aim to classify generations of animals based on their
biological attributes. To explore these possibilities, animals were classified based on their
properties determined from several web-sites to ensure accuracy. N.B. There are many
challenges which complicate the modelling task e.g. issues relating to the way natural
languages are formed or the suitability of the websites where information is extracted
from. Currently, no such automated system to perform biological inference exists and
biologists still classify animals based on their own knowledge.

The benefit of the developed prototype system is that it is extensible to any information
domain with suitable configuration and coding adjustments. The core algorithms are
appropriate for extracting information for a whole range of different considerations e.g.
through studying information about prehistoric animals, the algorithm might facilitate new
animal features and allow scientists to better reason why extinction occurred (e.g. due to a
lack of suitable biological attributes under certain environmental conditions).

Section 1.3 - Aims & Objectives

One of the project’s key aims was to achieve “information extraction” from webpages to infer
new knowledge, using ontological modelling techniques. The theme of “animal classification”
was an appropriate choice because animals are a readily available knowledge resource online
on “A-Z animal” websites.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 9 of 98 c1309705

Using an animal’s properties (e.g. “wings”, “scales” etc.) the associated “animal classification”
(e.g. “Reptile”, “Bird”) was determined.

An important aspect of this project was to determine whether ontological modelling was
feasible and could be successfully implemented and demonstrated using a prototype. A
further challenge considered was whether the system could adapt to more difficult
classification tasks, such as “a mammal” having “wings”? e.g. a bat.

Additionally, the idea of creating a food chain of animals based on the properties of “eats”
and “eatenBy” was investigated and implemented. Given one "starting" animal, it was found
to be possible to quickly build up such a food chain using recursive algorithmic techniques.
This proved to be a very interesting and novel part for inclusion in this dissertation.

Section 1.4 - Anticipated Outcomes

The following goals were established:

 Extracting information based on known patterns found on webpages.

 Searching webpages for specified phrases to aid in classification.

 Use information extraction techniques to model extracted data appropriately.
o Using modelled information, inference processes can determine what

classification an animal belongs to.

 Add suitable extracted information (which is in subject, predicate and object form) as
triple statements to the ontology.

o Additional information such as a domain can be added to the ontology.

 Investigate whether a food chain hierarchy of predators and prey can be constructed.
o “Infinite loops” may occur in the recursive solution if a termination condition

is not correctly specified.

 Look at techniques for achieving better quality extraction results.
o e.g. using a “voting” system which calculates the most likely result.

 Produce a robust solution, adaptable to many different webpages (whether
information is extracted or not).

 Standardise results because websites may have correct information but for a different
“animal name”.

o e.g. The Latin name “Panthera Leo” also means “Lion”.

o Fish is a high level animal class; many websites use more descriptive lower level
subclasses. E.g. Actinopterygiii – ray finned Fishes.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 10 of 98 c1309705

Section 1.5 - Principles & Approach

A summary is provided below of the key principles of the prototype system, as well as the

high-level approach taken. Section 3 is devoted to the development method and system scope

is discussed in further detail in Section 4.1.1.

The core principles were:

 An ontology will be used for modelling and reasoning purposes.

 Only animal websites will be considered for classification.

o e.g. “plant” related websites were not considered.

 The main classification groups considered are “Mammal”, “Birds”, “Reptiles”,

“Amphibians” and ”Fish”.

o “Animal classifications” such as “Invertebrates” were considered out of scope

and the diagram below shows what was included:

Figure 1: Hierarchy of Supported Animal Classes

 All animals within a given main classification group will have a specified defining

property which makes them belong to that “animal classification”.

o If an easily defined animal can be classified, then with a similar approach and

more precise investigation, it is possible to define more complex “edge-cases”.

o The system classifies animals with defining properties (e.g. Bird: “wings”).

 For difficult edge-cases (e.g. “Bat”) the system was meant to classify

these, although this was not crucial.

 When adding animals to the “Food Chain”, only animals which were included in the

given “A-Z” list of accepted animals would be added.

o This ensured results which included “plants” or “non-animals” were ignored.

 Focus on building the mechanisms to achieve “information extraction” and not the

interface for the solution.

 The approach taken was an iterative development method which implemented and

developed functionality across a number of iterations.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 11 of 98 c1309705

Section 2 – Research Approach & Findings

Research activities were partitioned into two important areas: (i) information extraction, and
(ii) ontology modelling, and were performed concurrently as an efficient learning style. This
required more insight but was worthwhile due to the potential for greater understanding it
afforded. When good progress had been made with the main development tasks, it was
possible to research into a “Food chain” of predators and prey, documented below.

Section 2.1 - Technologies & Techniques for Information Extraction

Looking into the primary research area allowed me to better understand some of the best

techniques and technologies available to extract information from web sources. As part of

this, the most useful web sites were explored for extracting information. Looking into web

page structures allowed decisions to be made about web-page suitability. It was found that

many research papers were not relevant to what was required. e.g. “building trees” and

“wrapper induction” techniques (Sigletos.G e.t al).

An early decision was that these more complex techniques were not required for this project.
The challenge was to take a simpler “information extraction” tool (which had already been
implemented and documented) and use the webpage information it obtained to infer new
knowledge. This simple approach to extracting core information could then be expanded in
future development iterations to use more sophisticated algorithms. The primary ambition
was to do something novel and not just follow previous approaches.

Libraries were looked for which could integrate with Java because they would combine well
with my knowledge of class based programming and the extraction functionality already
implemented. Jsoup was identified for this as it contained the required methods for
“information extraction”.

Section 2.2 - Building the Ontology to Infer New Knowledge

Primary investigations focused on building up the ontology (creating properties and
relationships) to reason with the different ontology classes to infer new information. Starting
from the very basics of understanding the ontology modelling goals through to implementing
small yet efficient test prototypes.

The Protégé ontology specific modelling tool was used to test the information models and
understand how to infer information. Protégé allowed relationships and properties to be
expressed in an OWL format. Protégé provided a very useful “sandbox" environment for
researching into the way the ontology modelling process worked.

Additionally, Protégé provided many benefits including being able to visualise what were the
properties and what needed to be added, to being able to see what the generated “turtle”
file OWL code should look like. Functions were designed to achieve this similar look and feel.

Much was discovered about how ontology properties can be added and different types
available e.g. “transitive” and “inverseOf” property relations.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 12 of 98 c1309705

All this acquired knowledge helped to build an understanding of what was required to build
such a comprehensive ontology. The goal was to emulate Protégé OWL code using Java.

To simplify the “ontology creation” process, a set of functions were designed to handle more
complex functionality. Further investigations and testing activities identified JENA as a
suitable choice and was perceived as a familiar technology. It featured all the functionality
required and was relatively easy to add to the project. Maven was used to handle JENA
dependancies and the Eclipse IDE supported this.

Section 2.3 - Additional Research: Building a Hierarchical Food Chain

This was an additional component which was designed and implemented once the core
prototype solution was implemented. This functionality was mainly designed from the
preceding research and through applying knowledge of recursive routines it was possible to
create an ontological model which could support a large hierarchy of predators and prey.

 “InformationExtraction.java” was used to extract the information for a given Predator or
Prey, using the method designed for pattern extraction. Likewise a new method was created
for “OntologyCreation.java” called “addTriple” which added a property to the model based
on two OntClass objects and a given ObjectProperty.

The challenge was getting the process to prevent infinite looping due to recursion. Choosing
a suitable termination condition to end the recursive process required an understanding of
the core algorithms underpinning the solution. Without such a condition, an infinite looping
situation could arise where one animal “eats” another animal, but that secondary animal also
“eats” the first.

Section 2.4 - Implementation Technologies Available

Ideally, a complete and packaged solution was needed to achieve modularity and extensibility

i.e. one did not want to perform “information extraction” with Python and “ontology

creation” with Java. A packaged solution would allow the development of a more deployable

solution. These key decisions were made based on whether the programming language was

modular and well documented, as was specified by Requirement D7 (further detail about all

the requirements can be found in Appendix A.

Taking into account programming language needs extracted from the requirements backlog,

it was concluded that either Java or Python could be a suitable choice. The industry standard

of GitHub was used to maintain a project repository to backup and version code.

The web-sites explored by the prototype were:

Web-Site URL Information Extracted

http://kids.sandiegozoo.org/animals/ Animal classification and properties.

http://a-z-animals.com/animals/ Animal classification, predators and prey,
scientific names and properties.

https://en.wikipedia.org/wiki/ Animal classification and properties.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 13 of 98 c1309705

Of the animal websites investigated for their suitability, the three listed above were deemed

the most useful for their content and testability aspects. Appendix F lists the criteria which

were used to select suitable websites and descriptions to detail why each site was selected.

An overview has been provided to specify the components which were required and how well

Java suited these needs.

Components For A Java Approach

Java was selected because it is modular, well-documented and allowed for future extensions.

Its class based approach suited the proposed solution. The solution packaged up better in

Java and dependancies could be resolved using Maven.

It was appreciated that the key functionalities required for “information extraction” and

building the ontology, would have been previously implemented in such a supported and

common language of choice. Overall the process of adding a “reasoner” was straight forward

in Java and would be a lot more extensible than Python.

Eclipse IDE

The Eclipse IDE was used to integrate the solution because it had the functionality to maintain

and resolve dependancies using Maven. It was also possible to add JAR files and additional,

more specific functionality as required. Such functionality was required for both Jsoup and

JENA, the main Java libraries chosen for this project. Eclipse also “auto-completes” imports

for the Jsoup and JENA code which has been entered.

As an IDE solution it offers code completion and error underlining notifications, as well as

simple, template method stubs. It is well documented online and supports “debugging” and

program execution.

Jsoup

Jsoup is a Java library which contains many useful methods for “InformationExtraction”

required for the solution. It has methods to get the HTML contained in a web-page and also

search through its contents using a regular expression like syntax for certain “patterns”.

Jsoup also implements “AND” and “OR” functionality for finding specific patterns, which is

very useful when looking for several different words. Jsoup is a well-supported and

documented library and is quick and easy to use due to its sensible naming conventions.

Overall, these features of Jsoup made it very suitable to be used to extract information.

The following primary Jsoup methods were used:

 Jsoup.connect(String URL).get() : returns Document

o Function to get the HTML code of a given URL and return the data in a

Document format.

 .select(String pattern) : returns Elements

o Looks for HTML which follows the “patterns” specific format, whether the

pattern contains HTML but also regex statements.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 14 of 98 c1309705

 This is useful because other functions such as “:contains() and

:matches() can be used to find more specific words inside of a select

statement, with the syntax of “: select(:matches(text))”.

 :contains(text) - Will return any HTML in the form of an Elements object

which contains the specified text.

 :matches(text)-Will return HTML which exactly matches the given text.

JENA

JENA is an excellent tool to build up an ontology; it allows a model to be built and properties

to be added to classes. The ontology model can then be queried using a reasoner. It also offers

functionality for printing a model.

Some of the JENA functions used:

 animalModel.createClass(ns + aclass) : returns OntClass

o OntClass created for a name space and aclass.

 animalModel.createProperty(ns + property) : returns ObjectProperty

o ObjectProperty created for a name space and aclass.

 animalModel.addSuperClass(aClass): void

o Adds a superclass relationship between two classes, sometimes using the

someValuesFromRestriction() method associated with a model.

 ModelFactory.createInfModel(Reasoner pellet, Model oldModel) : retuns InfModel

o InfModel created applying a reasoner to a specified oldModel.

Components For A Python Approach

Python offered the Beautiful Soup library as its “information extraction” tool, which was an

appealing choice because of its simplicity. Beautiful Soup is the Python library equivalent to

Jsoup and contains much of the functionality which the Java equivalent implements.

Python also offered the facility of “Seth-scripting” for OWL Ontology Building. Seth is a

Framework designed to integrate Python with the OWL technological approach. It has a very

simple syntax and is a good Python equivalent to JENA.

Python was rejected because it was lacking the more complex functionality required and even

though it contained some of what would be required for the project. Python is used less often

in industry.

Section 2.5 – Anticipated Challenges

After researching into these key areas for a Java implementation, the following challenges

were identified:

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 15 of 98 c1309705

 JENA is poorly documented with few code exemplars to study. Mitigation would

require research into each specific challenge to better understand what was required.

o Protégé was used to test that correct results were being obtained and then

JENA libraries were used to build up suitable classes. These classes were then

used to simulate OWL syntax properties, classes and assertions.

 Several additional functions were required to handle variant circumstances such as

mammals being specified as “mammalia” etc.

 Extracting information from unseen pages would be difficult.

o The approach is dependant on the content stored within the page; if this

contains a pattern that has not been coded previously then alternate pages

will need to be used to obtain classifications.

 Some web-pages may not feature the required information, which is why analysing a

set of web-pages is necessary.

o A function to count the number of times a given extracted word occurs in a list

would be needed.

 Error messages would need to be quite specific, if Jsoup cannot return the correct

result.

o Both of the following functions would require exception handling:

 Getting HTML from a page.

 Getting the properties for a given animal.

 The program would not work effectively for every single animal website, as it is very

difficult to perform “information extraction” for all pages.

o Strange or unexpected pattern layouts would be difficult to process.

 Problems such as spaces in words would need to be handled appropriately.

o When searching a given URL (a base URL and appending a given animal) care

would be needed with spaces e.g. adding a special character so that the URL is

correct. For example, “wild boar” -> “wild_boar”.

 Implementing the “food chain” capability would be a more difficult programming task

due to the recursive nature of the search algorithm.

 The tight project timescales would require good planning and efficient working.

o An iterative development approach would allow the most important functions

to be implemented first.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 16 of 98 c1309705

Section 3 – Development Method

The development method featured an agile methodology, making use of iterative prototypes

and feedback to facilitate prioritised change. This section summarises this approach, how it

was implemented and the development practices adopted.

Section 3.1 - Development Summary

An agile development approach builds up a system through multiple development iterations,

focusing on implementing requirements based on their priority. Requirements were

maintained on a prioritised product backlog with the most important requirements stacked

on top and applied to the next iteration (sprint).

Figure 2. Agile Development Overview

Through building up a deeper understanding of the requirements during each iteration, it was

possible to become more proficient when coding in later iterations and with less re-work. It

was decided to mitigate risk through focusing on researching and implementing the high-

value, lower risk functional elements of the system. This meant that some low risk

components were implemented in earlier iterations to provide a greater overall

understanding of how to combat the more difficult requirements.

This was a different approach to the traditional Linear Waterfall model initially considered

and was a decision taken to allow for complex and novel features to be researched further

and implemented incrementally. The complexity of the subject matter meant that it might

not be feasible to implement the entire system as part of a single development cycle. The

iterative approach therefore allowed for several complex features to be designed and

integrated separately but able to work together to produce the required interesting and novel

results.

A primary ambition was to produce a project which would provide further insight into an

interesting research area. The initial project proposal was focused on “information

extraction” to allow an investigation into how easily information could be extracted from

many different sources and forms of website content. This would require in depth research

into “information extraction” techniques.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 17 of 98 c1309705

A further objective was to construct an ontology for modelling and subsequent reasoning

purposes, although this was not a top priority for the first iteration. As the project developed,

it became clear that it was more beneficial to focus on how easily “information extraction”

could be used to infer new knowledge. This is a relatively new area of research and little prior

research effort has explored and documented the principles this dissertation has covered.

The basic project approach was to research a specific feature and its requirements. This

feature could then be designed and what was needed for that requirement could be visualised

using a Unified Modelling Language (UML) class diagram. The “StarUML” tool was used to

build the necessary design models and was used to document the system architecture

through both class and sequence diagrams. This technique was able to highlight where more

specific research was needed to improve the solution.

Once all required research information was obtained and understood, effort was focused on

implementing a simple prototype in a separate project structure to make testing and coding

more efficient. After some adjustments, testing that a feature was performing as expected,

under a number of different input conditions, the method was integrated into the evolving

prototype.

This latter step (involving further integration testing as the program became more

complicated) took longer to complete. Taking what had been learnt from the previous

iteration, it was possible to examine the requirements backlog and repeat this iterative

process for the next batch of the most important features. Occasionally, it was necessary to

introduce some extra features to complement the iteration requirements, which were then

updated along with associated designs and relevant algorithms.

In general, end of iteration prototype demonstration sessions allowed feedback to be

gathered on progress and reprioritisation of the requirements backlog.

Section 3.2 - Development Approach

The first step taken for this project was to look into existing research in the two key domain

areas of “information extraction” and “ontology creation”. Current ideas and practices for

“information extraction” were reviewed for their applicability. When looking at the “ontology

creation” domain, it was noticed that there was a lack of research into the use of ontologies

to model information extracted from the web. It was then decided that this would be a very

interesting research topic to investigate further.

When discussing my proposal and “ontology creation” ideas with my supervisor Dr. Andrew

Jones, it became apparent that the solution had several useful applications in the area of

Bioscience and overall in classifying biological phenomena. It was then agreed that “animal

classification” would be a good domain choice, because it is an easily accessible resource and

as a biological phenomenon, animals presented an interesting topic for further research.

With this more definitive proposal, research work continued but with a focus on how to model

the extracted information more effectively. “Protégé” was used to model different reasoning

scenarios initially and at a very basic level; modelling got more complicated, once greater

experience and understanding was obtained.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 18 of 98 c1309705

Protégé was an integral resource to examine the elements which made up a given scenario,

as well as providing insight into the way the “reasoner” was performing its inference. Protégé

also provided a way to look at the generated OWL Turtle code for a scenario. This allowed

one to then look into the different programming technologies which were available and which

could achieve similar ontology building and reasoning capabilities.

After this research into Protégé it was found that ontology properties (such as “inverseOf”

and “transitive”) were a powerful way to perform the hard work in a reasoner based model.

One of the programming scenarios was to construct a “Food chain” of predators and their

prey and investigations began into how this could be achieved in Protégé. It transpired that

the best way to achieve the main functionality of classifying animals was to use a reasoner to

perform inference.

An animal class would have a set of defining properties and a given animal would also have a

set of specific properties; based on these two property sets partly matching (e.g. an animal

would need to have all the defining properties which made it an animal of that class) that

would then allow an animal to be classified by the reasoner.

Prior research into the area of “information extraction” was reviewed. In particular,

identifying the best ways to extract information from HTML content, specifically looking for

words or phrases. Looking at the core ideas needed to support the solution, it was decided to

use a Java library which supported regular expressions which would be needed in later

iterations to match word patterns. A number of different “information extraction” tools were

investigated, but most were inadequate. This was because they were too complicated (e.g.

Stalker) or did not possess all of the required functionality.

In terms of “ontology creation”, the theory of ontologies, their properties and reasoning

techniques were investigated further using Protégé, as well as looking at the programming

libraries which were available to achieve this functionality and which Protégé used.

Further investigation and reading articles on the two key areas of “information extraction”

and ontologies, revealed that two of the best tools to use for this project were the Jsoup and

JENA Java libraries. This was because they could be seamlessly integrated with an Integrated

Development Environment (IDE) such as Eclipse. Most importantly, Jsoup and JENA contained

the key methods required for the research prototype solution.

Eclipse was a good base IDE because it offered error correction and other IDE specific

functionalities. Overall, this provided the basis of a solution which was entirely written in Java

and could be packaged up if Maven was used to resolve dependencies.

The functionality available allowed the merger of results from different webpages into a

dictionary structure which could be used to store an animal and its related properties as well

as an animal class and its associated properties. Given the generated dictionary, the program

could then convert the dictionary keys and values into an ontology of classes (keys) and their

properties (values). This allowed the reasoner component to produce the inferred

information using the input from the dictionary structure.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 19 of 98 c1309705

The implemented classes were tested individually and integrated to form the final solution.

The correct implementation of the iteration requirements was validated and that the code

was well written. The code also featured a small amount of configurable code to extend its

use for any domain. The final important activity at the end of the iteration was to reflect on

what had gone well and what had not. This allowed one to see what could be improved and

how best to improve the end result for similar projects of this form.

One particular example of this was the work done towards the end of the project on

implementing “food chains”. The development work in the previous iterations on

“information extraction” and “ontology creation” contributed to a much deeper

understanding of the overall problem domain. This made it much easier to implement

additional functionality using previously designed and documented code modules.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 20 of 98 c1309705

Section 4 – Problem Specification & Design

A project deliverable, which was compiled incrementally over a number of iterations, was the

requirements and acceptance criteria specification which is documented in Appendix A. This

was an essential step to visualising the problems and realising what could be done to achieve

the required functionality.

The implementation of the core requirements and the fact that the early iteration passed its

acceptance criteria meant that further investigations of other interesting concepts could take

place. Many of these had been envisioned when completing the early development iterations.

A number of Supplementary Requirements arose from this later research to explore the

problem domain further.

Section 4.1 - Problem Specification

The requirements for this prototype solution are detailed below, as well as the assumptions

made. Additionally, risks for the project were considered, documented and mitigated.

Section 4.1.1 - Assumptions

The following assumptions were made for the prototype solution:

 Development effort would be focused on implementing core functionality rather than

on beautification of the user interface.

 Top level Animal classes are one of “Bird, Reptile, Amphibian, Fish and Mammal”

o It was appreciated that an animal such as a fish could also be sub-classified as

“Actinopterygii” or “Chondrichthyes”. Such subclasses will be ignored.

o More elaborate edge cases are out of scope e.g. amoeba, protozoa etc.

 Dinosaurs will also be ignored but will become an area for investigation.

o Other classes which are being ignored are Insects and other more complex

animal cases such as “platypus”.

 The initial development iterations will consider animals which are

recognised to be of that class e.g. Lion:Mammal, Ostrich:Bird.

 All animals which have a certain set of defining properties will be classified as

belonging to a certain animal class.

o e.g. all animals with wings are inferred to be Birds.

 A subset of these animals may require further classification properties

for them to be correctly classified as that animal. As this is a concept

demonstrator, this was not deemed to be critical.

 Web-pages used for extraction contain correct and relevant animal data although it is

appreciated that some webpages may contain missing data.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 21 of 98 c1309705

 Animal properties will initially be extracted from a look-up table with the opportunity

for the system to extract these itself in later iterations.

o More complex animal properties such as “vertebrates” vs “Invertebrates”

could be examined in future iterations.

 The websites used during the prototyping process will still be available for future

enhancements.

Section 4.1.2 - Supplementary Requirements

These “Supplementary Requirements” were added to cover additional optional features

identified during problem specification.

Req.
ID

Requirement
Description

Risk Acceptance Criteria Acceptance
Method

Notes

S-20

The system
should generate
different lists of
animals.

Low Verify that a list of
animals can be
correctly generated.

Inspection Basically allows modifiable
input to the program.

S-21 The system
should get the
HTML for a given
page.

Low Verify that given an
input URL, the system
will correctly return
the HTML for a given
page in “Document”
format.

Inspection An essential feature
identified early on.

S-22

The system could
check the animal
classification
against expected
results.

High

Verify that an animal
has been classified
correctly and if not
standardise the result.

Inspection

This is to combat user
error and check that the
animal classification is
correct.

S-23 The system could
also look for the
scientific names
of Animals which
can be added to
the Ontology.

Low

Verify that scientific
names can be
correctly added to an
Ontological model.

Inspection

Proves that properties can
be easily added and
extensibility to other
domains is possible.

e.g. “Lion”
hasScientificName
“Panthera Leo”

S-24 The system could
ask for user input
for unclassified
results.

Medium

If the class cannot be
found verify there is a
facility to add
manually.

Inspection

Essential feature identified

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 22 of 98 c1309705

Section 4.1.3 - Risks & Mitigation Strategies

Eliminating or reducing risk is an important part of the iterative approach. The following table

details the risk, mitigation techniques and risk likelihood. Taking risk into account made it

easier to prioritise based on the most important requirements.

The greatest risks were from the “Short Timescale” and “New Implementation Technologies”

which were being used for the first time. There was a significant risk that these technologies

would be difficult to adopt. The timescale was relatively short considering the development

effort and documentation tasks.

Risk Description Mitigation Strategy Risk
Level

Development
Complexity - complex
& innovative project.

Agile development allows for complexity to be catered for
during each iteration. This ensures the system is built up over
time and allows for more innovative ideas to be implemented.

Medium

Short Timescale – the
project was time
limited.

Agile development allows for more flexibility as features are
incrementally implemented in each iteration. Smart planning
mitigates this and ensures time is spent efficiently.

High

New Implementation
Technologies -
development
technologies such as
Jsoup had never been
used.

Detailed study should provide the necessary understanding to
use them. Through smart prototyping and agile development
this risk is mitigated.

High

Similarity Comparison
Function- Required a
function to compare
string similarity.

Implemented solutions were assessed and a well-documented
solution was found.

Medium

Specific
Functionalities
Required –
functionality for a lot
of complex system
behaviours.

Mitigated through looking at currently implemented solutions
and looking for modules which achieve the required
functionality. Often the methods were not available but used as
a study resource.

High

Program Quality – the
system is required to
be robust and
maintainable.

Through frequent and iterative testing techniques such as
“regression testing”.

Medium

New Development
Methodology – the
iterative methodology
was unfamiliar

Research into what makes an iterative approach successful. The
author had experience of similar development tasks in the past
albeit in a less formal iterative manner.

Medium

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 23 of 98 c1309705

Section 4.2 - Design

The deliverable for the design stage was the class diagram documented in Appendix B. It

shows the class relationships and the methods they implement. Although the system

architecture has evolved, the same basic methods are implemented with additions

benefitting program quality.

A sequence diagram was also developed to show interactions (inputs/outputs) between

classes and is provided in Appendix B.

There was no need to design a complex GUI interface for the prototype as the focus was on

finding out whether the proposed ideas were feasible when applied to the domain of “animal

classification”.

Section 4.2.1 - Design Decisions and Rationale

The following tables detail the more important design decisions made during the 4

development iterations. They also provide the rationale and key ideas behind why a given

approach was adopted.

To provide visibility of the degree of completeness in implementing a certain requirement the

following codes appear in parentheses following the requirement ID number. This approach

allows requirements to be implemented incrementally as precise details are discovered.

Completion Code Definition

Initial When a requirement is partly implemented in an iteration

Intermediate In early iterations, when the implementation of a requirement is
being improved upon

Final When a requirement has been fully implemented

The most important decision decisions are outlined below (see Appendix B for more design

decisions and associated rationale)

Iteration 1

Requirement ID & Brief
Summary

Design Decision Rationale

F-1 (Initial),
S-21 (Initial) - Extract
webpage HTML data
for a given animal.

Extract HTML data using the
Jsoup method
:Jsoup.connect(URL).get();

Jsoup is a well-documented and suitable library
for “information extraction”.

F-2 (Initial)-
Extract the animal’s
classification.

Extracted by looking for the
text of “Class:” using Jsoup
“.select()”. Then looking
within the HTML to find the
element which conforms to
this criteria to find the text
associated with this element.

An initial test to learn how easily “information
extraction” could be achieved.

Later approaches focused on extracting
properties to infer an animal’s classification.
Extracted classification information is still useful
when properties cannot be found.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 24 of 98 c1309705

Iteration 2

Requirement ID & Brief
Summary

Design Decision Rationale

F-2 (Initial) - Extract
useful properties from
the HTML data.

Use of Jsoup’s “.select()”
method to find HTML which
matches word patterns on a
basic initial level.

Provided all the “information extraction”
capabilities required e.g. looking for strings
which contained certain words such as “wings”
and then adding these properties.

D-10 - (Final)
Model extracted
properties as an
ontology.

To use a set of developed
methods to create the
ontology and relationships.

Produced more modular code and concealed
solution complexity. It was implemented in
different functions rather than in a large block of
code (as it had been in the previous iteration).

F-13 (Final) – Create
key value pairs for a
given animal and their
classification.

More complex key value pairs
were constructed for both an
animal’s classification and its
properties.

A simple way to use the “split” function to
separate out different pieces of information.
Through splitting by comma for one of the values
of an entry, properties could be obtained.

Iteration 3

Requirement ID & Brief
Summary

Design Decision Rationale

F-2 (Final)-
Extract properties in a
more sophisticated
manner

To use a more specific set
of classification words to
search and define a
property as being present.

A simple way of demonstrating the concept. There
is a risk because there are edge cases with
properties, such as “feathers”, which are not
classified as Birds.

This requirement, was more to prove that a
refined choice of words could work.

F-3 (Final) -
Model these properties
in an ontology

To create functionality to
add “equivalent” or
“restricted” ontology
relationships for either an
animal classification or
animal respectively.

The same code was not being repeated and
delivered a more effective function.

F-9 (Final)-
Animal Counter object
voting system.

Functionality to find the
most likely classification
from results which include
identified classifications as
well as unclassified ones.

Important to consider cases where an animal
cannot be classified to make the system more
robust. N.B. The system will always default to
classified values when the voting process
completes.

S-22 (Initial)-
Checking the animal
has an accepted
classification.

Implement functionality to
check whether the result is
similar to an accepted set of
classifications.

The Levenshtein distance measure to compare
Strings was used.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 25 of 98 c1309705

Iteration 4

Requirement ID & Brief
Summary

Design Decision Rationale

F-2 (Final) -
Extract properties in a
more sophisticated
way.

To build upon the previous
work for this requirement
to allow for capitalisation to
be taken into consideration.

A more robust system as a result. When
comparisons were made, the lower-case function
of Java was used. A scenario of no properties being
extracted was factored in.

F-16 (Initial) -
Create food chain of
animals and the
animals they “eat” and
are “eatenBy.”

To extend the recursive
process and make “eats”
the inverse property of
“eatenBy”.

The system could infer that if a given animal (Lion)
is the predator of some animal (Antelope). Then an
Antelope is the prey of a Lion.

The tree creation process
considered all animals which
“eat” and are “eatenBy” in a
more advanced manner.

This even more recursive approach meant that
additional information about animals which was
stored on the webpage could also lead to further
knowledge inference.

S-23 (Final) -
Allow the scientific
names of animals to be
added.

If the “ScientificName:”
field does exist on a given
page, then extract this using
Jsoup‘s “.select()” method.

The previous extraction approach attempted was
a test to see how easily new properties could be
added. It was easy to extract properties if the
pattern was known.

S-24 (Final) -
Provide human help
when a given animal
cannot be classified.

If the system cannot retrieve
a valid animal classification
then the system will ask for
user input.

Involves the user but their actual processing
requirements are small. The case statement only
retrieves input if a user wants to provide
classification information.

Section 4.2.2 - Initial algorithms designed

Pattern Extraction (Early prototype version)

Def patternExtractor (Document extractedHTML):

pattern = "table[class = infobox biota] tr:contains(class:) a[title]"

interimClass = extractedHTML.select(pattern)

item = interimClass.attr("title");

return item

Initially designed to extract and return information from a HTML Document format by using

a pattern to search for “interimClass” text inside a given page. The “interimClass” is examined

and the “title” attribute determines the animal’s classification.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 26 of 98 c1309705

Merge Dictionary of Results (Early prototype version)

Def mergeResults(Dictionary animalDict):

 valueToBeAdded = “NONE”

For (entry : animalDict):
 values = entry.getValues().split(“,”)

 For (value: values):
 valueToAdd = value

 if (valuesDict.containsKey(valueToAdd):

valuesDict.put(valueToAdd,valuesDict.get(valueToAdd) + 1)

else:
 valuesDict.put(valueToAdd,1)

 largestCount = 0
largestKeyCount = “”

for(numberResult : valuesDict):

 if(numberResult.getValue() >= largestcount):

 if(!numberResult.getKey().equals(“NONE”)):

 largestKeyCount = numberResult.getKey()
 largestCount = numberResult.getValue()

 animalDict.put(entry.getKey(),largestKeyCount)

The key purpose of “mergeResults()” is to take a set of proposed “animal classifications” and

count the number of times each classification occurs. Based on the “valuesDict” the most

likely classification can be determined with results such as “NONE” being ignored for the

“voting process”.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 27 of 98 c1309705

Section 5 – System Implementation & Class Descriptions

Section 5.1 - System Implementation

The following section provides details of the core techniques which were used to construct

the main functions of the prototype system. Exemplar screenshots of the technologies and

implementation approach are provided in Appendix E.

The key modules include: “InformationExtraction.java”, “OntologyCreation.java” and “Food

Chain.java” and are detailed below together with their associated classes for clarity.

Section 5.1.1 - Key Functionality Details

Key Functionality Associated Java Classes Class Description

Information
Extraction -
extracting the
properties for each
animal found in the
list of test animals.

The animal list is
used as an input by
these Java classes
to perform the
process of
“information
extraction”.

InformationExtraction.java Functions to extract data from HTML content based
on the input of a list of animals

The list of test animals is also created by this class.

AnimalClassExtractor.java Extracts a given animal’s classification and properties
and a dictionary is formed from the results.

Results are extracted based on the pattern which is
present in one of the candidate animal URL pages.

The values for a given animal are then completed by
adding the animal’s properties which are extracted
from the PropertyExtractor.java class.

AnimalCounter.java “Data structure” object and class to take a number of
retrieved results from web sources and count the
results to determine the most likely classification.

This is performed by the “mergeResults” function of
this class. This class also offers methods to add to the
dictionary structure.

AnimalClassSimilarity.java This class takes the result of a given animal
classification and standardises it based on whether
the extracted word is similar to one of the accepted
words.

Achieved through the “Levenshtein distance”
measure.

PropertyExtractor.java Builds up a String of the properties which a given
animal possesses, which are then appended to the
dictionary structure in AnimalCounter at the
“mergeResults” phase.

If the extractedHTML does not contain the animal’s
name then “NOPROPERTIES” is returned instead.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 28 of 98 c1309705

Ontology Creation
-Creating an
ontology of
animals and their
animal
classification and
associated
properties.

This class is
designed to allow
the inference of
previously
unknown
information.

OntologyCreator.java

Convert properties which have been extracted at the
“information extraction” stage into an ontological
format. OntClasses are created for animals and
animal classifications.

Properties are added as ObjectProperties and each of
these classes and property relationships are then
added to an OntModel object which represents the
created model. All of these classes are JENA specific.

Methods provide model inference using “Pellet” as a
reasoning tool. The animal’s classification properties
or the animal’s properties are added to the
properties. This ensures that an animal with “wings”
can be inferred to be a “bird”.

Food Chain
Hierarchy Creation
- create a hierarchy
of which animal
“eats” and is
“eatenBy” another
animal.

FoodChain.java

This class was
implemented after
“InformationExtraction”
and “OntologyCreation”
classes were tested and
working as expected.

Combines both the classes and functionalities of
“information extraction” and “ontology creation” as
well as recursive techniques to produce a recursive
routine and a set of hierarchical relationships with
scope for future enhancements.

Takes as input a “startAnimal” and traverses
extracted results using the
“InformationExtraction.java” class to retrieve animals
which are a predator and a prey of that given animal.
Recurses through all the animals retrieved.

Animals with their associated “eats” and “eatenBy”
relationships can be built into the ontological model
using the “OntologyCreator.java” class.

Testing- methods
for testing the
solution.

Testing.java Provides functions for testing based on results which
are sent to be output to the console in the form of
standard output.

Section 5.1.2 - Information Extraction Approach

The “information extraction” capabilities took advantage of the basic input/output

capabilities of “Jsoup”.

The initial step was to create a list of animals to be tested for and this list was then passed to

the animalClassExtraction function. The purpose of this being to extract the class for a given

animal based on the classification data stored on a specific website. This data was returned

as an AnimalCounter object which implemented the “merges” method.

The system took this AnimalCounter object e.g {[Lion:Mammal,Mammal]} (which is a complex

dictionary) and “merged” the information to get the animal and its associated “expected

classification” e.g. {[Lion,Mammal]}.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 29 of 98 c1309705

The properties of a given animal are then appended to the values for a given “animalKey”:

made up of an animal name, a delimiter (“#”) to separate content and the “expected

classification”. Property extraction is based on whether a certain set of words are specified

on that animal’s web-page. This is a limited approach but once again the focus was based on

the inference capabilities of JENA over “information extraction”.

Figure 3: Screenshot For A Lion (Information Extraction Process)

Additional class entries were later added so that a given class depends on a certain property

“{[Ostrich#Bird: wings], [Bird: wings]}. This means that the OntologyCreation.java class can

make use of this important classification information.

Section 5.1.3 – Ontology Creation Approach

The capabilities for “ontology creation” came from JENA. The ontology creation class took

results which were obtained from the “information extraction” phase such as

{[Lion#Mammal,hairy]} and then added the properties (such as “hairy”) to a specified model.

Figure 4: Properties Added For A Lion (Ontology Creator Process)

The animal’s “expected classification” information (e.g. “Bird”) was ignored at this stage

because it is what the system was trying to infer. It was kept because in future iterations, it

could be useful to check that “animal classifications” were being correctly inferred or added

to the classification when properties could not be found.

This “ontology creation” process begins by creating an ontology from a baseURI and defining

the top level “ANIMAL” class. When a list of properties are passed across, the system adds

these to the ontology. It accesses these properties by “splitting” by “,”, which works because

each animal in the properties list is comma separated. For each property, the system looks at

whether the key for that entry is an “animal class” or an animal itself.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 30 of 98 c1309705

Depending on this, the system either adds an “equivalent class relationship” (animal class) or

a “restriction on some property” (animal). It does this by creating the relevant

ObjectProperties and also the OntClasses themselves.

Figure 5:“ANIMALCLASS” Properties Added For A Mammal (Ontology Creator Process)

Figure 7 represents the created model for a Lion and details the important classes used to

infer that the “animal classification” of a Lion is a “Mammal”.

<http://www.example.com/seanjames/ontologies/animals#Lion>
 a owl:Class ;
 rdfs:subClassOf <http://www.example.com/seanjames/ontologies/animals#Animal> ;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:onProperty <http://www.example.com/seanjames/ontologies/animals/hairy> ;
 owl:someValuesFrom <http://www.example.com/seanjames/ontologies/animals#Animal>] ;

 <http://www.example.com/seanjames/ontologies/animals/#hasScientificName>
 <http://www.example.com/seanjames/ontologies/animals#Panthera leo>
,<http://www.example.com/seanjames/ontologies/animals#hasScientificName> .

<http://www.example.com/seanjames/ontologies/animals#Mammal>
 a owl:Class ;
 rdfs:subClassOf <http://www.example.com/seanjames/ontologies/animals#Animal> ;
 owl:equivalentClass
 [a owl:Restriction ;
 owl:onProperty <http://www.example.com/seanjames/ontologies/animals/hairy> ;
 owl:someValuesFrom <http://www.example.com/seanjames/ontologies/animals#Animal>] .

Inferred model:

<http://www.example.com/seanjames/ontologies/animals#Lion>
 a <http://www.example.com/seanjames/ontologies/animals#Animal> ,
<http://www.w3.org/2002/07/owl#Class> ;
 <http://www.w3.org/2000/01/rdf-schema#subClassOf>
 <http://www.example.com/seanjames/ontologies/animals#Mammal> ;
 <http://www.example.com/seanjames/ontologies/animals/#hasScientificName>
<http://www.example.com/seanjames/ontologies/animals#Panthera leo>
, <http://www.example.com/seanjames/ontologies/animals#hasScientificName> ;
 <http://www.w3.org/2002/07/owl#equivalentClass>
 <http://www.example.com/seanjames/ontologies/animals#Lion> .

Figure 6: Inferring A Lion To Be A Mammal(Ontology Creator Process)

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 31 of 98 c1309705

Section 5.1.4 - Recursive Approach: Creating a Hierarchical Food Chain of Animals

Successfully completing the core functionality of the system in the initial development

iterations meant that work could begin implementing other desirable requirements such as

“Requirement 16”: “Create a hierarchy based on the ‘one animal’ ‘eats’ ‘another animal’

relationship to create a food chain of animals.”

This is a novel concept, unique to the domain of “animals” and their associated properties.

The idea is to programmatically build a food chain, where a given animal eats another animal.

This is powerful because if the system can retrieve a few animals which a given “startAnimal”

“eats”, then the system can get the animals they eat and the animals they eat and so forth.

Recursing through each of these possibilities builds up a large food-chain hierarchy.

 The “inverseOf” property was used when performing inference because if a given animal

“eats” another animal, then the other animal in turn is “eatenBy” that animal.

 Additionally, properties such as “transitive” relationships could be applied given that an

animal was known to be at the top of the food chain. This would mean that other

properties of “eats” could be inferred if an animal “eats” just a few animals. It is likely if a

Fox can eat a Mouse and a Lion “eats” a Fox, then a Lion can also “eat” a Mouse.

Figure 3 shows an example portion of the “Food Chain” hierarchy for a Lion:

]

Section 5.1.4 - Recursive Algorithm Design

Accordingly, a recursive algorithm (detailed below) was designed and implemented, to

retrieve the animals which are a predator and prey of another given animal. It recursively

applies this principle for each of these possibilities where a given option has not been

explored before.

Figure 7: Lion Food Chain Hierarchy Representation

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 32 of 98 c1309705

Java Algorithm: Adding an Underscore To Animal Names With Spaces

The algorithm checks whether the target animal has any spaces between its name and if it

does, the program adds an underscore so that when the recursion occurs for that animal the

URL which is passed is valid.

 if (Arrays.asList(animal.split(" ")).contains(animal) == false){
 animal = String.join("_", animal.split(" "));
}

The program retrieves the HTML for the chosen animal. Then the system extracts the

predators and prey of that animal, looking in the HTML code where a table row contains the

word “prey:” or “predator:” (errors are caught if no information is found).

preyHTML = InformationExtractor.patternExtractor(extractedHTML, "table[class =
article_facts] tr:contains(prey:) td");

Recursive Algorithm Description

A seeding animal (e.g. Lion) is first passed as an argument to the “animalRecurse()” function
to fulfil the criteria for both the “eats” and “eatenBy” recursive search processes.
The simplified pseudocode for the core algorithm is as follows:

 Function animalRecurse(animal):

While NOT all-predators-and-prey-found-for (animal):

 extractPredatorsAndPrey(animal)

IF not all-prey-processed (animal):

 identify-next-animal-prey (animal, prey)

 add-prey-information-to-model (animal, prey)

 animalRecurse(prey)

IF not all-predators-processed (animal):

 identify-next-animal-predator (animal, predator)

 add-predator-information-to-model (animal, predator)

 animalRecurse (predator)

In the case of animals identified during the “eats” search process (e.g. Antelope, Warthog and
Zebra) that the seed animal consumes, each of these is then subjected to its own “eats” and
“eatenBy” search processes recursively. In turn, the animals that are discovered through

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 33 of 98 c1309705

these search processes are themselves subject to the “eats” and “eaten by” recursive search
processes, which continue until there are no more animals to be considered.

A similar search process happens for animals which the animal is “eatenBy” e.g. a warthog is
“eatenBy” a cheetah. The cheetah is then passed as an argument to the recursive search
function which identifies both what it “eats” and in turn what it is “eatenBy”, which are
themselves parameters passed into the recursive search function in the same way, until there
are no more animals to be considered.

Once these checks have been performed, it is important to check whether the predator/prey
which has been extracted is an acceptable “animal”. This check is required because some
animals eat fruit or vegetables. These are considerations which have not been added to the
solution because they are not animals. End conditions are added to the recursive routine to
prevent it from looping infinitely.

Finally, the properties can be added through a function which interacts with the
“OntologyCreator.java” class to create the properties “eats” and “eatenBy” respectively. It
also creates animal classes and its predator or prey relationship. This process is then repeated
for the rest of the search processes.

Section 5.1.5 - Important Algorithm Descriptions

This section details the most important algorithms which are used by this program to perform

“information extraction” and the “ontology building” processes. Some algorithms have been

included alongside the more advanced prototyped methods. Appendix C details more

detailed algorithms for these key modules.

The more sophisticated algorithms have evolved over time due to further insight into the

problem area, as well as understanding how similar problems could be solved more

effectively in the future. This was done either to facilitate efficient testing of many different

outcomes or to build up better “information extraction” and “ontology building” methods.

Creating a basic animal list test set

This was a simple algorithm to populate an input list of animals for the program to get

classification information and properties.

 Function animalListCreator():

 animalList = “Lion,Ostrich,Frog,Eagle,Crocodile” (Add animals)

 animalList.add(“Monkey”) (add more test animals)

 return animalList

Modified algorithm (to create a more sophisticated test set)

The algorithm was modified to get a different spread of animals; this was a useful evolution

for future versions of this prototype solution. Use was made of an A-Z list of animals and the

Jsoup “.select()” function to select the specific table which contained the required animal. A

test animal was added to the list using a for-loop which added a sample of animals.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 34 of 98 c1309705

 Function animalListCreator():

i = 20

animalDocList = getHTML(http://a-z-animals.com/animals/”)

 elements = animalDocList.select(“table[class=article_az] ul li a”)

 for(element : elements):

 if(i % 250 == 0):

animalList.add(element.attr(“title”).toLower ().replaceAll("\\s",""))

 i = i + 1

return animalList

This approach selected the animals from an A-Z list on a website stored in the table class of

“article_az”, although this same “.select() method” could be adapted for any given page.

These animals were then sampled through the use of a loop which selected any animals which

had an “i” value which was a multiple of 250 using a “mod” operation. The counter increments

after each animal and this is how they are iterated through. This method could in theory be

set to produce an animalsList for a specific test set of many different forms. Using “i % 2 ==

0” as the “if condition” would allow even-numbered animals for instance.

The advantage of this latter approach is that the names of animals are taken directly from the

website. If the “information extraction” process is occurring partly on that website and their

animal pages, you are more likely to get some results returned. i.e. the website should have

an animal page for a given “A-Z animal”. There is no guarantee that other sites will however.

Similarity Comparison Tool: The Levenshtein Distance

When investigating how to compare the similarity of two strings, the Levenshtein Distance

algorithm was selected. More specifically, the “StringUtils” Java library and associated

“StringUtils.getLevenshteinDistance()” function. This returns an integer between 1 and 0

based on String similarity.

Given information about dissimilarity, one could work out similarity and turn this into a

percentage value. This is what the “checkClassification” method accomplishes and this can

be extended to perform any String comparison.

Checking how similar two Strings are

 Function checkClassification(String1,String2):

int overallLength = AVERAGE(animal1.length + animal2.length);

int distance = StringUtilis.getLevenshteinDistance(String1,String2);

double percentage = (double) distance / overallLength * 100;

 return 100 – percentage;

http://a-z-animals.com/animals/

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 35 of 98 c1309705

This feature was useful for clarifying whether one animal class was close enough to another

accepted animal class (“Reptile, “Mammal” etc.) to be classified as that class of animal. This

could be extended to compare if the class which has been classified is an accepted class.

Section 5.1.6 - Implementation Challenges

 The system would find it difficult to handle a situation where several similar

acceptable classifications were appropriate.

o A classification such as “Bord”; then “Bord and “Bird” are similar enough to

cause problems.

 The “FoodChain.java” class currently runs based on the “a-zanimals site” in which a

finite number of animals are represented. If more animals are represented, then close

attention would need to be paid to stop the recursion from running excessively long.

 The way that languages are formed makes extracting information from text difficult.

o E.g. Some mammals have fins such as Whales

 An incorrect system would decide that all mammals have fins.

o It is far easier to use clarifying words to determine a word’s context.

 “class:Mammal”, “property:fins” for a Whale is clearer and easier to

understand.

 The results are dependant on the validity of the website sources chosen for

“information extraction”.

o When a class or property cannot be extracted, the system becomes less

helpful. However, through taking several results the risk is reduced.

 In the future: where the class cannot be obtained, properties can lead

to the inference of the class and vice versa.

 Websites may use different URL syntaxes.

 The availability of a wild-card function would be useful but time-consuming to

implement. e.g. “Snapping*turtle” rather than “Snapping turtle”, “Snapping_turtle”,

“Snapping-turtle”.

 Erroneous edge cases are difficult to classify due to conflicting properties e.g. “Flying-

fox” which is a flying mammal with wings and not a bird.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 36 of 98 c1309705

Section 5.2 - Detailed Class Descriptions

Section 5.2.1 - InformationExtractor.java

Purpose was to run the other functions which retrieve, extract and structure the webpage

HTML information. It also creates test lists of “animals” as inputs for the system. This is a

useful class for testing purposes because certain system features can be disabled.

InformationExtraction.java consists of the following key public methods:

 main(String[] args): void throws IOException –this is the first method to run during

program execution and is where all other functionality is invoked from.

o Handles enabling the org.apache.Log4j logger, which is required for Jsoup to

provide logging messages. The key method of “animalListCreator” can be used

to set up different “animal lists” to test the program further.

 animalListCreator(): returns List<String> – creates a list of test animals, specifically as

Strings, representing real animals to test the system. This function returns the result

as a “List<String>” object. Further animals can be added through “animals.add()”

which is a list-specific method chosen to reduce any array position problems.

 animalListFinder(String URL) : returns List<String> – extracts all the animals which are

on the “A-Z” page of the webpage “a-zanimals.com”

Figure 8: Appendix B - UML Class Diagram (Provided To Show Class Relationships)

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 37 of 98 c1309705

o By modifying the pattern other “A-Z” animal lists can be built.

 getHTML(String URL): returns Document – Extracts the entire HTML content for a

specific URL and returns as a Document.

o Traps if the URL cannot be accessed by stating that there is a “Jsoup URL

ERROR: Page could not be accessed:” and then prints the URL for debugging

purposes.

 patternExtractor(Document extractedHTML,String pattern): returns Elements –

based on the input of a piece of HTML and a String pattern which is being looked for,

this function returns the Elements which conform to these parameters.

o Follows the syntax of “return extractedHTML.select(pattern)”

Section 5.2.2 - PropertyExtractor.java

Designed specifically for extracting the animal properties present in several webpages. The

relevant properties are retrieved and built up into a String to be returned to the program. This

class also adds the animal’s “scientificName” if one can be retrieved.

PropertyExtractor.java consists of the following method:

 propertyFind(String animal): returns String - achieves property extraction for a

given String animal by looking for a specified set of words, which uniquely define a

different sort of animal classification.

o If no properties are found then “NOPROPERTIESFOUND” is returned.

Section 5.2.3 - AnimalClassExtractor.java

Class which contains the functionality to get the HTML code for a given URL specifically

relating to an animal’s classification.

AnimalClassExtractor.java consists of the following key public methods:

 beginExtraction(String URL): returns String- begins extraction and returns the

animal’s extracted class.

 pageAnimalClassExtractor(Document extractedHTML): returns String - extracts the

classification of an animal based on extractedHTML specific to that animal.

 animalClassExtractor(List<String> animals) : returns AnimalCounter throws

IOException- given a list of animals, it builds up string classifications for that animal

and returns these as an “AnimalCounter” object ready to be “merged()”.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 38 of 98 c1309705

o E.g {Lion, [Mammal, Mammal, Reptile]}, can be processed to infer than a Lion

is most likely to be a Mammal.

Section 5.2.4 - AnimalCounter.java

Maintains a counter of the number of animals which are stored in the TreeMap structure. It

is a data structure object to handle the way the animal dictionary functions.

AnimalCounter.java consists of the following key methods and attributes:

 Globally declared attributes

o animalDict : Dictionary - Dictionary used to store an animal and the likely

classifications it may have. e.g {Lion,[Mammal,Mammal,Reptile}

 addAnimalRecord(String animal,String property) : void - adds an animal and a

property of some form to the animalDict object declared globally.

o If the key is already stored then the updated value will be equal to the previous

value concatenated with a comma and the new specified property.

o Otherwise, the animal and property are placed into the dictionary as normal.

 printDictResults() : void – prints each entry and associated key value pair stored.

o Mainly used for testing purposes.

 mergeResults() : returns Map<String,String> – takes an AnimalCounter object and

calculates which animal classification is most likely (Bird,Reptile.. etc). The properties

for the animal are then added to the “values” for that entry.

o Important because sites may offer different classifications; it is through this

map-reduce approach that classification can be made more accurate.

o This reduction process is conducted for all the entries stored in the dictionary.

 The dictionary entry will be updated with the associated classification

and then combined with the important extracted properties.

o Given an input of {Lion,[Mammal,Mammal,Reptile]}, the function will calculate

that Mammal came up twice and reptile once so {Lion,Mammal} will be added

to the dictionary once all animals are classified successfully.

o This function will throw an IOException if the animal cannot be found in the

requested URL.

 addAdditionalPropertiesToDict(Map<String,String>animalDict):returns

Map<String,String> - allows additional classification properties to be added to the

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 39 of 98 c1309705

animalDict. This is useful for testing purposes where test data can be added to check

that the program is performing correctly.

o [ANIMAL]#ANIMALCLASS signifies that the [ANIMAL] should be an animal class

and so the relationship of “equivalent to” should be added to the ontology.

 e.g {Reptile#ANIMALCLASS,scales} : this means that any animal which

has scales is “equivalent to” a Reptile. e.g. a Snake.

o The “{Unclassified#ANIMALCLASS,NOPROPERTIES}” entry was added to

represent animals with no extraction property results.

Section 5.2.5 - AnimalClassSimilarity.java

Contains the functionality for checking whether the extracted class can be renamed so it
follows English spelling semantics or standardised to resemble a well-known name
equivalent.

The following key public methods are supported by this class:

 animalClassify(String): returns String- compares the given string to a “valid” set
of animal classifications.

o If the given string matches one of the accepted classifications by greater
than 50% then that classification will be returned. This is case insensitive.

o “Reptilia” will map to “Reptile” because only 2 changes are required out

of the average number of total letters.
 e.g. [Snake, Reptilia] will seamlessly map to [Snake, Reptile] and

also [Snake, eptil] will map to [Snake, Reptile].

 checkClassification(String, String): returns Double- takes as input two strings
and compares them for similarity using the “Levenshtein distance”.

o The number of changes which are required to change one String to the
other is the “Levenshtein distance”.

 This “distance” is then divided by the total number of characters
in both words and multiplied by 100 to get a percentage.

o Taking away 100 gives a percentage similarity rather than a difference.

 checkSpecialCases(String): returns String - used if the “Levenshtein distance” and
resulting percentage similarity is less than 50% i.e the Strings are quite different.

o An entry in the dictionary such as [Ostrich#Aves] will be mapped to

[Ostrich#Bird] and Bird will be returned as the animal classification.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 40 of 98 c1309705

Section 5.2.6 - OntologyCreator.java

This class consists of the functionality to build the ontology based on an animal and its

associated properties. It features a number of useful functions to achieve ontology related

actions such as adding properties and creating OntClass objects.

OntologyCreator.java consists of the following key private attributes and public methods:

 Globally privately declared

o animalModel : Ontmodel

 Ontology model based on a Pellet reasoner.

o baseURI : String

o ns : String

o ontology: Ontology

 getModel() : returns OntModel

o Get globally declared animalModel.

 addProperties(Map<String,String> animalRelations): returns InfModel

o Add obtained properties and animal classification results to ontology

 createOntClass(String aclass): returns OntClass

o Create an OntClass based on a string passed to the function.

 createAdvancedRelationship(OntClass animal, String type, String v1, ObjectProperty

p, OntClass someThing) : void

o Create an advanced relationship based on the String type: either as an

“equivalent” class or “someValuesFromRestriction” subclass

relationship.

 createProperty(String propertyName,OntClass domain,OntClass range): returns

ObjectProperty

o Creates an object property with a certain “propertyName” and

additionally sets a domain and range to be returned.

 createBasicProperty(String propertyName): returns ObjectProperty

o Creates an object property and returns the result.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 41 of 98 c1309705

 printModel(Model animalModel): void

o Prints the model in its more complex form with all the relationships

shown. Afterwards it gets the simplified model as the set of inferred

relations.

 addTriple(OntClas predClass,ObjectProperty property,OntClass PreyClass): void

o Adds a triple relation based on a subject predicate and object supplied

as parameters.

Section 5.2.7 - FoodChain.java

Prototype function to test the inference abilities of JENA. In particular, can transitive and

inverseOf relationships provide the ability to infer further information and create a food

chain.

Foodchain.java consists of the following key public methods:

 animalRecurse(String,List<String>,ObjectProperty,ObjectProperty,OntologyCreator

,LinkedList<String>, LinkedList<String>,int,int): void - Complex function to recursively

create a “food chain” of predators and prey and add to the OntologyCreator object

and an associated model.

o Uses a recursive search process to find animals which “eat” or are “eatenBy” a

given animal and subsequent animals which “eat” or are “eatenBy” the animal.

 createFoodChain(String,OntologyCreator): returns OntModel

o Initialises variables which the “animalRecurse” method uses for its execution

and provides exception handling.

 infiniteLoopCheck(LinkedList<String> eatsArray,LinkedList<String>

eatenByArray,String proposedAnimalRelation) : returns Boolean

o Checks whether an animal has already been traversed with respect to either

the “eats” or “eatenBy” relationship. If an animal has been traversed then this

will return “true” which prevents it from looping infinitely.

Section 5.2.8 - Testing.java

Provides functionality for optionally debugging and printing required tests.

It implements the following private attributes, Constructors and key public methods:

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 42 of 98 c1309705

 Globally declared attribute

o Debug : Boolean

 Testing(): constructor

o By default Debug is set to true with this function.

 Testing(Boolean): constructor

o Set debug to the value which is specified as a Boolean.

 printTest(String, Boolean): void

o If the value of debug is set to true then output the String parameter.

 simpleTest(String, Boolean): void

o Simply print out the parameter input if the Boolean value is true.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 43 of 98 c1309705

Section 6 – Testing, Results and Findings

Section 6.1 - Testing

The system was designed to test different principles of “information extraction” and it was

decided that the system should work for the most important cases. Difficult cases could later

be examined and investigated if time was available. Difficult edge cases (such as “flying_fox”)

were looked at in detail, however they were not formally tested.

The approach for testing, was therefore focused on regular re-testing and checking the output

from the console and was performed whenever a code modification was made. From the test

results, it can be seen that was a good approach and efficient.

The test plan, unit testing, functional testing, system testing and overall testing approaches

are covered in Appendix D and followed an iterative testing paradigm. Unit testing involved

taking modules one at a time and performing sets of tests on them. Once this was achieved,

modules were integrated and testing was repeated to ensure that code changes did not break

the system. Once all unit and integration testing had been completed, system testing was

performed.

The results of unit, integration and system testing were generally as anticipated and correct.

The system adapted well to difficult and unexpected cases e.g. Dinosaurs or Insects.

Section 6.2 - Results and Findings

All the objectives outlined in Section 1.4 have been satisfied by the developed prototype

including the more complex food chain hierarchy goal.

The project has proven that “Information extraction to infer new knowledge” is an entirely

plausible concept. “Information extraction” was investigated in the first instance and during

research many tools were identified.

The scope was greater than simple information extraction however, and there was the more

elaborate need to model extracted information in a machine readable format and to allow

reasoning processes to occur.

The “information extraction” tool of Jsoup was used for the concept prototype and provided

the core capabilities required. This was the plan all along, providing more time to investigate

features which had not been studied before. Other more advanced technologies which could

learn from extracted patterns and web-pages visited would have complemented the solution.

Taking the results from several webpages provided a more appropriate classification method.

The approach was focused on using dictionaries of key value pairs to describe an animal’s

classification and properties. Taking these key value pairs allowed a merge function to be

applied, which could take multiple suitable results and apply a “voting system” to determine

which result was appropriate.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 44 of 98 c1309705

JENA was chosen for ontology modelling, because it featured substantial functionality to

achieve this end. Extracting webpage information to be ontologically modelled was an

approach that worked well and the process executed quickly. “Pellet” was a successful way

to infer a given animal’s classification based on an animal’s set of determining properties.

The results of ontology modelling were almost always correct for non-edge case animals. This

is because the way a rule based reasoner works does not affect the results. If a fox has a

property “hairy” and a mammal is an animal which is “hairy”, it is seamless for a reasoner to

decide that a Fox should be inferred to be a mammal.

Using a Java class to achieve animal class standardisation was appropriate. Even though a top

level known class might be “Fish”, subclasses did exist such as “Actinopterygii and

“Chrondrithyes”, which could easily be standardised to “Fish”. This confirmed another idea,

namely that a Latin name could easily be standardised to a more “well-known” English name.

Additionally, the “Levenshtein distance” was implemented to check how similar the input was

for a specified set of animal classes. This ensured that even if a website featured a spelling

mistake the system could adapt. This also showed that with further development, the system

could be made robust to such types of mistakes in other related modules e.g. for checking

manual input and standardising it amongst other more advanced features.

Later investigations into whether properties could be added, such as a “scientificName” were

very fruitful and proved that it would be possible to extract a large amount of information

and to add this to a model. Through the use of delimiters, the extracted properties could be

“.split()”and added as a triple relationship to a given model.

An interesting outcome of this research and development work is the “food chain” creation

module. This module uses one “startanimal” and retrieves all the animals which this animal

eats, as well as the animals those animals themselves eat. As a result, it builds up a hierarchy

of relationships and then adds these to a specified model.

This is very powerful because in the future, the classification properties and food chain

information of each recursively analysed animal could be captured and further modelled.

With development, the system could extract animal information and build a food chain from

every relevant animal website proving how extensible this initial designed solution is.

Section 6.2.1 – Knowledge Inference Result Exemplars

Animal Expected
Classification

Inferred
Classification

Extracted
Properties

Some of the program extracted Food
Chain information.

Extracted
Scientific

Name Eats(Prey) Eaten-
By(Predators)

Food
Chain
Size

Lion Mammal Mammal hairy Antelope,
Warthog,

Zebra,Human

Human 111 Panthera Leo

Octopus Fish Fish gills,
vetebrate

Crab,Fish Dolphin 156 Sphyraena

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 45 of 98 c1309705

Zebra Mammal Mammal hairy <Fruit> Hyena
Lion,Leopard

111 Equus zebra,
Equus

quagga,
Equus grevyi

chinstrap
_Penguin

Bird Bird wings Killer Whale,
Leopard Seal

Shrimp,Fish 167 Pygoscelis
Antarcticus

Crocodil
e

Reptile Reptile scaled Hyena,
Warthog,

Wilderbeest,
Fish

Human 111 Crocodylus

Albatross Bird Bird wings Crab,Fish,Squ
id

Tiger_shark,
human

161 Diomedeidae

Edge Cases Begin
(Assumption: If extracted words are not found in the “A-Z animal” list then these results are invalid.

Snake Reptile Reptile scaled - - - Serpentes

Ostrich Bird Bird,Mammal wings
hairy

<Fruit> Hyena, Lion,
Cheetah

114 Struthio
Camelus

Angelfish Fish Reptile scaled Fish Fish,Bird 114 Pomacanthid
ae

Bat Mammal Mammal hairy Frog Snake,Eagle 122 Chiroptera

Frog Amphibian None - Fly Fox Rana
Temporaria

bearded
_Dragon

Reptile Reptile scaled Insects Crocodile,
Snake,Bird

115 Pogona
Vitticeps

T-Rex Dinosaur Dinosaur - - - - -

Butterfly Insect Mammal,
Bird

wings
hairy

Frog,Bat - 124 Papilionoidea

Dragon None Reptile scaled - - - Pogona
Vitticeps

Section 6.2.2 – Critical Considerations

Learning. This research and development project has facilitated a tremendous amount of

skill-set evolution, in particular, learning and understanding about the problem areas of

“information extraction” and “ontology creation”.

Jsoup. Using a basic “information extraction” capability was essential to allow research into

more sophisticated ideas and approaches. Not only has this allowed the creation of a better

overall result, but has allowed a useful study into how to implement a “food chain hierarchy”

in a recursive manner. Jsoup was useful as an “information extraction” tool and is

recommended for similar extraction tasks. It was well documented which made adopting its

extraction approaches easier

Information Extraction. Jsoup is a great tool for extracting information, the problem is

whether this information should be trusted with greater authoritativeness compared to other

extracted information. Experts classify animals in a more precise manner down to the

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 46 of 98 c1309705

“subclass” level, these results can either be standardised, or they can be added to a more

precise ontological model.

Food Chain Creation. The algorithm which performs Food Chain recursion does not add

results if they are not part of the “A-Z list” of accepted animals. In general, the largest chain

is produced from an animal which is eatenBy a lot more animals at a higher level.

JENA Ontology Creation. JENA was a very useful library resource. However, it was difficult to

write code to emulate the “Protégé” Java code that needed to be recreated due to its inferior

documentation and exemplars. Much JENA programming involved trial and error and using

Eclipse’s built in IDE functionality to find the appropriate method for a given object. The

biggest problem was adding “advanced relationships” (such as equivalent class for an animal’s

classification). The JENA methods provided an extensible solution appropriate for modelling

different extraction domains.

Maven. The use of Maven to handle package dependencies was valuable. This was a key

concern for this project and this approach provided a good way to satisfy the dependencies

for both Jsoup and JENA.

GitHub. Making use of the industry standard GitHub to maintain code was also valuable as it

provided a means to backup, track updates and version control the developed code. An end

goal was always to provide a set of well documented modules to take current ideas of

information extraction further.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 47 of 98 c1309705

Section 7 – Future Work And Personal Reflections

Section 7.1 - Future Work

The following enhancements provide opportunities for improving the prototype system:

 Use of commercial search engines. Choosing suitable webpages automatically from a

search engine (such as Google) using their querying facility.

o For this project, web-pages were selected by inspecting the HTML code behind

the page. A smart artificial intelligence agent could perform this task by looking

for the required domain classification properties to ensure that relevant

extraction results are being returned.

 Web-site prioritisation. Developing a method for finding and prioritising suitable

websites to scan the most relevant pages.

o With billions of available websites, the system needs to both find them and

filter out inappropriate ones.

 Context sensitivity. Extending “Information extraction” algorithms to analyse the

specific context of a word given the verbiage it is surrounded by.

o Currently, if the word is contained in a page and that same word is present

and cross references other pages, then the word is deemed to be suitable.

 Sentence parsing. Enhancing the food chain creation process by extracting

information from sentences that identify predators and prey.

 DNA fingerprinting. Using genome data to map each animal with the specific DNA

that animal has and then look for further patterns.

 Graphical analysis. Extending current capabilities to parse useful graphical

information as well as text from HTML.

 Other languages. Extend to include foreign language websites.

 Manual assistance. Allow the system to get help from a human assistant.

 Mind-mapping techniques. System to produce mind-maps of captured information.

 Food Chain Improvements. Add further sophistication to extract whether results

should be regarded as authoritative or not.

o Cross reference extracted results

o Uncertainty scoring system could be added to evaluate how reliable a site is.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 48 of 98 c1309705

Section 7.2 – Personal Reflections

When considering a dissertation proposal topic, I wanted to take on a project which would be

challenging but achievable in the timeframe. I was also looking for a useful research theme to

provide additional insight into interesting and current problem areas.

When I came across Dr. Andrew Jones’ “information extraction” proposal I was immediately

interested and wanted to find out more. I realised that there was some positive benefit to be

gained from researching into this topic.

Making use of what was learned in lectures for “Large Scale Databases”, meant key

techniques were already appreciated. Specifically, ontological principles such as classes and

adding properties.

After investigating what had already been achieved, it was decided that the proposal would

need to be modified slightly. This made it more aligned with what I wanted to achieve and

beneficial to investigate. The result was that the title and emphasis of the project changed to

“Information extraction to infer new knowledge”. Once these modifications were made to

the proposal, this motivated me further and kept me focused and interested because of the

novel and useful nature of the work.

Finding the necessary technologies was not too difficult, because I had used JENA before in

Large Scale Databases. Some of the base knowledge of technology was already there to build

upon and apply to this project, making it more realistic and applicable to industry.

The research work was reasonably straightforward and investigating research papers was

worthwhile. It was difficult to understand some papers as most of the “information

extraction” techniques were aimed at Masters and Ph.D. students.

It took extra time to understand the more complicated research articles and as a result, time

passed quickly. In future similar projects, more time should be given to research activities. As

a task research effort cannot be underestimated and took more time than anticipated.

Use of the agile methodology allowed me to build up very simple prototypes to test different

research features. Coding forums provided some intelligence for understanding different

extraction and “ontology creation” techniques. This was an effective strategy and achieved

innovative results under difficult time constraints.

The requirements period was too short and I only had a few days to capture what the system

needed to achieve. The preceding research provided clues as to what the solution would be

comprised of.

Designing the software was a very important activity. Having visualised what was required

using UML modelling, I proceeded to iterate design and coding tasks. It was a case of taking

ideas and simple sketches and using them to build up the formal structures such as the class

diagram and sequence diagrams. Once these models were constructed, I felt comfortable

with my system architecture and used these important documents to improve the naming

conventions, execution order and detail of methods which each function encapsulated.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 49 of 98 c1309705

Implementation work was rewarding and taking an idea such as “using the Levenshtein

distance to compare similarity of animal classifications” and then applying this to a given

module successfully, encouraged me further. This allowed my creativity to flow and while the

solution was more investigative in nature than a standard software development model, an

iterative approach was a very good choice for this project.

Testing the system was a long task, which was also performed throughout the project’s

iterations. When testing, it was important to be meticulous to ensure robustness and as a

result I found many system improvements. Only through testing the more difficult examples

did the scope of my system’s functionality become clear. In general, the developed system is

very adaptable to simple animals which only have one or two properties which was an

acceptable limitation.

I was delighted with progress made throughout the duration of the project. The recursive

solution designed for the food-chain hierarchy being a favourite area because of its recursive

abilities and programming power to build a large model quickly.

Section 7.2.1 – Project Experience: Positives and Negatives

The following table provides my thoughts on the positive and negative aspects of the project.

Positive Experiences Negative Experiences

Learning opportunities Pressure from short timescales

Programming recursive routines Understanding Ph.D. level material

Reusing code modules effectively Time taken to document and review the
dissertation

Research into modelling Frustration with finding defects

Iterative development Poor JENA documentation

Productive meetings with Supervisor Dissertation formatting

A working system which proved the
hypothesis

Updating existing documentation

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 50 of 98 c1309705

Section 8 – Conclusions

“Everything that civilisation has to offer is a product of human intelligence; we cannot predict
what we might achieve when this intelligence is magnified by the tools that AI may provide…”,
(Stephen Hawking, 1st May, 2014).

This research project proved that “Information Extraction to Infer New Knowledge Using

Ontological Modelling” was feasible. It showed that building a food-chain was a valuable

addition to the concept demonstrator.

Different techniques were explored to help achieve better information extraction and
ontology creation and were combined into the solution. The developed prototype uses
reasoning, inference and assertion over traditional data analysis and Big Data solutions.

The developed prototype is functional, well-documented and in a suitable state for further
research that an M.Sc. or Ph.D. programme could provide. By extending the core principles
further, a collaboration between industry and academia could lead to the design of a
commercial knowledge generation solution, which could take industry into an era of
significantly smarter computing.

Applying pattern matching algorithms to relevant webpages provided a good way to extract

information. However, patterns need to be apparent from the outset. Finding a way to deal

with websites which have a different pattern set was a difficult area for investigation but

Natural Language Processing techniques could provide a way to achieve this.

The work explored whether “several words could be searched for in a given piece of extracted

text” and utilising Jsoup, it was found that this was possible. However, the context of the word

made the challenge difficult.

The webpages used to extract information are key to how useful the analysis will be. The

difficult question to answer is how trusted extracted results should be trusted. Some sites

often have domain specific knowledge and such “Expert” knowledge could be modelled

appropriately with the techniques mentioned.

The modelling of extracted information is relatively straightforward, with much of the

functionality coming from JENA. It was a good decision to initially model the ontology in

Protégé, to help better visualise it. This ensured that the created ontological model in JENA

correctly represented a given scenario (with the correct properties and features being added).

This project has been highly educational and revealed what is available in terms of

“information extraction” technologies. JENA’s documentation for ontology building was

relatively poor making development more challenging.

The prototype solution was designed to work for the “animal classification” domain but with

suitable modifications and development, it could be made applicable to many other domain

areas. e.g. (1) inferring flight information from and to certain airports,(2) smartphone

classification coupled with data mining capabilities, (3) Dinosaurs and Insects to extend the

current system. The extensibility of the program is one of the most useful project outcomes.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 51 of 98 c1309705

Appendices

Appendix A – Problem Specification Deliverables .. 52

Table A-1: Requirements Specification & Acceptance Criteria ... 52

Table A-1 (Continued): Supplementary Requirements ... 55

Appendix B – Design Phase Deliverables. ... 56

Figure B-1: Prototype Class Diagram .. 56

Figure B-2: Prototype Sequence Diagram ... 57

Figure B-3: Hierarchy of Supported Animal Classes .. 58

Table B-4: Design Decisions and Rationale Tables .. 59

Appendix C – Implementation Algorithms. ... 64

C: 1 - Information Extraction Pseudocode algorithm ... 64

C: 2 – OntologyCreation Pseudocode Algorithm .. 65

Appendix D – Detailed Testing Method & Approach .. 67

D-1: Test Plan .. 67

Table D-2: Modular/Unit Testing .. 68

Table D-3: Functional Testing.. 80

Table D-4: System Testing ... 84

D-5: System Testing Code Output for “Butterfly” and “t-rex”. .. 85

Appendix E –Screenshots .. 90

Screenshot E-1: Eclipse IDE ... 90

Screenshot E-2: Eclipse Console and system output .. 90

Screenshot E-3: Adding dependancies using Maven .. 91

Screenshot E-4: Corresponding Maven POM.XML file ... 91

Screenshot E-5: Protégé .. 92

Appendix F – Animal Website Selection Criteria .. 93

Appendix A – Problem Specification Deliverables

Table A-1: Requirements Specification & Acceptance Criteria

Table Legend: Requirement Codes: F- Functional, D-Design, S-Supplementary

Risk Levels: Nil, Low, Medium, High, Very High

 Priority: “Will”= Mandatory, “Should”= Desirable, “Could” = Possible

Requirement
ID

Requirement Description Risk Acceptance Criteria Acceptance
Method

Notes

F-1 The system will extract
HTML data from several
different webpages.

Low Verify that the system has correctly extracted HTML
data from 2-3 pages.

Demonstration Consider adding more
webpages for future
iterations.

F-2 The system will get useful
properties from the
extracted HTML data.

Medium Having analysed the HTML for an animal, the system
will return its correct set of properties.
e.g. [Lion: hairy, vertebrate… etc.]

Inspection

F-3 The system will model the
extracted properties and
animal related data in an
ontological form.

Medium Check that the system has correctly modelled the
properties and animals as ObjectProperties and
OntClasses respectively.

Inspection Use “ostrich”, “frog” and “t-
rex” for testing.

F-4 The system should be able
to generate the ontology
itself.

Low Verify that the system has correctly generated the
ontological model by examining system outputs.

Demonstration

F-5 The system will display
suitable error messages
for most commonly
occurring problems.

Low Verify that the system outputs are appropriate and
indicate where the problem occurred.

Demonstration e.g. whether URLs are
correct or not.

F-6 The system should be able
to infer what class most
animals belong to.

High Check that the system can correctly infer what class
identified animals belong to.

Inspection Some animals are difficult to
classify and should be
accepted as edge-cases.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 53 of 98 c1309705

D-7 The system will be
programmed in a well-
documented and modular
way, using a suitable
language.

Low Check that code has been commented and
developed in a modular manner.

Inspection Java was used.

F-8 The system will return the
output of the program to
the command line.

Low Verify that correctly formed ontology information is
output.

Demonstration

F-9 The system should be able
to validate itself,
comparing extraction
results from several
webpages and using a
“voting system” to
determine the likely
result.

Medium Verify that the system has correctly compared the
results of extraction and used the “voting system” to
determine an appropriate result.

Inspection Functionality was
implemented to standardise
the values which were given
to the “voting system”.

D-10 The system will have a set
of methods dedicated to
building the ontological
model of animal
classifications.

Medium Verify that the system correctly implements a set of
methods to build the ontological model.

Inspection

D-11 There will functions for
testing, with the possibility
to extend these further.

Low Verify that these set of Test functions correctly
validate intended behaviour.

Inspection

F-13 The system will create key
value pairs for each animal
based on their animal
classification.

Medium Verify that key value pairs have been correctly
created for animals and their classifications.

Inspection

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 54 of 98 c1309705

F-14 The system will get the
HTML data for one or
more different animals to
build an overall model.

Low Verify that the system correctly extracts the HTML
data for one or more different animals to build up a
model of: Birds, Reptiles, Amphibians, Mammals and
Fish.

Inspection

F-15 The system’s ontological
model should allow the
inference of additional
information about animal
classifications and
associated properties.

Very
High

Verify that the system’s ontological model allows for
additional information inference about animal
classifications e.g. “Reptiles always live in a desert”.

Inspection. This requirement was only
tagged as “desirable”.

F-16 The system should create
a hierarchy based on the
“one animal” “eats”
“another animal”
relationship to create an
animal food chain.

Very
High

Check that a hierarchy is correctly constructed based
on animal predators and prey.

Inspection

F-17 The system should extend
the ontology to include
dinosaur classifications
and relationships.

Very
High

Check whether a correct Ontology of Dinosaur
classification and Dinosaurs has been built.

Inspection

F-18 The system should extend
the ontology to include
Insect classifications and
relationships.

Medium Verify that insect classifications, properties and
associated relationships have been correctly added.

Inspection

F-19

The system should extend
the ontology to include
vertebrates and
invertebrates.

Low

Verify whether a correct ontology of vertebrate and
invertebrate properties has been added.

Inspection

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 55 of 98 c1309705

Table A-1 (Continued): Supplementary Requirements

Req. ID Requirement Description Risk Acceptance Criteria Acceptance
Method

Notes

S-20 The system should
generate different lists of
animals.

Low Verify that a list of animals can be correctly
generated by the system.

Inspection Basically allows modifiable
input to the program.

S-21 The system should get the
HTML for a given page.

Low Verify that given an input URL, the system will
correctly return the HTML for a given page in a
“Document” format.

Inspection

S-22 The system could check
the animal classification
against expected results

High Verify that facilities have been provided to check
whether an animal has been classified correctly and
if not standardise the result.

Inspection This is to combat user error
and is important to check
that the animal
classification is correct.

S-23 The system could also look
for scientific names
(usually in Latin) for
Animals which can be
added to the Ontology.

Low Verify that scientific names can be correctly added
to an Ontological model.

Inspection

S-24 The system could ask for
user input for unclassified
results.

Medium If the class cannot be found verify there is a facility
to add manually.

Inspection

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 56 of 98 c1309705

Appendix B – Design Phase Deliverables.

Figure B-1: Prototype Class Diagram

Figure 1: Class Diagram for the developed system.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 57 of 98 c1309705

Figure B-2: Prototype Sequence Diagram

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 58 of 98 c1309705

Figure B-3: Hierarchy of Supported Animal Classes

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 59 of 98 c1309705

Table B-4: Design Decisions and Rationale Tables

Iteration 1

Requirement ID & Brief
Summary

Design Decision Rationale

F-1 (Initial),
S-21 (Initial) - Extract
webpage HTML data for a
given animal.

Extract HTML data using the Jsoup method
:Jsoup.connect(URL).get();

Jsoup is a well-documented and suitable library for “information extraction”.

F-2 (Initial)-
Extract the animal’s
classification from website
sources.

Extract the animal classification by looking
for the text of “Class:” using the “.select()”
method of Jsoup , looking within the HTML to
find the element which conforms to the
criteria and find the text associated with it.

An initial test to learn how easily “information extraction” could be achieved.

Later approaches were more focused on extracting properties to infer an
animal’s classification.

F-3 (Initial), F-4(Final) -
Generate extracted
properties in an appropriate
modelled ontology form.

Use of a large method and set of functions to
“add” properties to the model and then also
print the classification.

This large method was later improved but was added to ensure that
appropriate functionality was available.

F-5 (Initial) -Display suitable
error messages

A debug condition was created to indicate
whether debug output was required.

The plan was to improve upon messaging and error information in each of the
subsequent iterations.

D-7 (Initial) -Programmed in
a modular, well-
documented manner

Java was selected as the programming
language.

Java is class based and modular; its libraries are well documented, supported
and extensible.

F-8 (Final) - output is
returned to the command
line.

The output was returned to the command
line using the Java print method.

This is a research prototype and does not require a complex GUI.

D-11 (Initial) - Functions for
testing

Create initial Java functions to perform
different types of output.

These Testing functions would be used at each phase of development to check
program correctness.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 60 of 98 c1309705

F-13 (Initial) -Create key
value pairs for a given
animal and the associated
classification.

Created a dictionary object to hold this
information.

A dictionary was used because it offered the required functionality to create
such pairs.

S-20 (Initial) - Create a list
of animals for testing
purposes.

Have a String array of arguments which are
ready to be passed and then converted to a
List<String> object.

This is a simple and pragmatic technique for inputting the same test animals
efficiently and easily.

Iteration 2

Requirement ID & Brief
Summary

Design Decision Rationale

F-1 (Final) -Extract webpage
HTML data for a given set of
animals.

To extract the HTML data using the same
Jsoup method as previously but for several
web-pages passed by appending a test URL
with an animals String name.

This allowed several animals and their associated HTML to be extracted in one
action using a double for-loop, to loop through each test URL link.

F-2 (Initial) - Extract useful
properties from the HTML
data.

To use Jsoup’s “.select” method to find HTML
data which matches a given word pattern on
a basic level.

It provided all the “information extraction” capabilities required.

F-3 (Intermediate) - Model
extracted properties in an
ontological form.

To add the properties in a simple, sequential
manner while ignoring more complex cases.

Kept simple to allow initial testing to prove that core techniques worked.
Ignoring special cases meant that core functionality could be achieved quickly.

F-6 (Initial) -
Class inference for a specific
animal.

To use the “Pellet” reasoner as the reasoning
tool.

“Pellet” was tested with the Protégé tool and it performed the required
inference tasks which I wanted to achieve with JENA.

F-9 - Animal Counter object
voting system.

To create the AnimalCounter class to emulate
the required “voting system”.

The voting system allows the validation of the extracted results.

D-10 - (Final)
Model extracted properties
as an ontology.

To use a set of developed methods in the
OntologyCreator.java class to create the
ontology and relationships.

This approach produced more modular code and hid away some of the
complexity of the solution. It was implemented in different functions rather
than in a large block of code (as it was in the previous iteration).

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 61 of 98 c1309705

D-11 (Final)- Functions for
testing

To improve formatting by adding spaces and
lines to separate out content.

Using spaces would make these Testing functions easier to read. This allowed
an understanding of when a certain module was being executed.

F-13 (Final) – Create key
value pairs for a given
animal and their
classification.

More complex key value pairs were
constructed of both an animal’s classification
and their properties.

This was a simple way to use the “split” function to separate out different
pieces of information.

F-14 (Final) - Get HTML data
for one or more different
animals to build an overall
model.

To retrieve the HTML for a given page,
extracting the properties and performing this
process for the required number of
classifications.

More classes would provide a better range of animal classifications. Several
animals could be featured in a given test.

S-20 (Intermediate) - Create
a list of animals for testing
purposes.

Building upon the previous design, a Java List
Object and the “.add()” function was used to
add different test Strings.

This approach is better for adding in test animals because of its simplicity. This
is also more extensible.

Iteration 3

Requirement ID & Brief
Summary

Design Decision Rationale

F-2 (Final)-
Extract properties in a more
sophisticated way.

To use a more specific set of classification
words to search and define a property as
being present.

A simple way of demonstrating the concept. There is a risk because there are
edge cases with properties, such as “feathers”, which are not classified as
Birds. This requirement, was more to prove that a refined choice of words
could work.

F-3 (Final) -
Model these properties in
an ontology

To create functionality to add “equivalent” or
“restricted” ontology relationships for either
an animal classification or animal
respectively.

This approach meant that the same code was not being repeated and
delivered a more effective function.

F-6 (Final) –
Class inference

The inference process was developed further
to print the inferred model as well as the
original models.

This was a useful feature to check what inference operations had been
performed and test whether this functionality was working.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 62 of 98 c1309705

F-9 (Final)-
Animal Counter object
voting system.

Additional functionality to find the most
likely classification for animals based on
results which include identified animal
classifications as well as unclassified ones,
represented by “NONE” values.

It is important to consider other cases where an Animal cannot be classified.
This also makes the system more robust as it is able to handle scenarios
where classifications are not found. N.B. The system will always default to
classified values when the voting process completes.

F-16 (Initial)-
Create food chain of
animals and the animals
they “eat” and are
“eatenBy.”

To use a recursive function to search through
each animal which eats and is eatenBy a
given animal.

Recursion was a good choice because this was a tree traversal task which
lends itself nicely to a recursive algorithm.

F-19 (Initial) -
Invertebrate and vertebrate
properties should be
considered.

To implement the properties of vertebrates.

N.B. Invertebrates were ignored.

The existing property extraction was enhanced with the properties of
vertebrates. It was more efficient to use this existing structure rather than
creating something from scratch. It also showed the extensibility aspects of
the system.

S-20 (Final) - Create a list of
animals for testing
purposes.

Use a Java List object and the “.add()”
function to add test extracted animal Strings
from a website of “A-Z” animals.

This is a more thorough testing method and gets a large list of test animals
quickly.

The code determines which animals should be added based on a modular
calculation.

S-22 (Initial)-
Checking the animal has an
accepted classification.

To implement functionality to check whether
the classification is similar enough to an
accepted set of classifications.

The well documented Levenshtein distance measure to compare Strings was
used.

Iteration 4

Requirement ID & Brief
Summary

Design Decision Rationale

F-2 (Final), Extract
properties in a more
sophisticated way.

To build upon the previous work for this
requirement to allow for capitalisation to be
taken into consideration.

To get a more robust system.

A scenario of no properties being extracted was also factored in.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 63 of 98 c1309705

F-16 (Initial)-
Create food chain of
animals and the animals
they “eat” and are
“eatenBy.”

To extend the recursive process and make
“eats” the inverse property of “eatenBy”.

This approach allowed the system to infer that if a given animal (Lion) is the
predator of some animal (Antelope), then an Antelope is the prey of a Lion.

The tree creation process considered all
animals which “eat” and are “eatenBy” in a
more advanced manner i.e. traversing all
possible outcomes recursively.

This even more recursive approach meant that additional information about
animals which was stored on the webpage could also lead to further
knowledge inference.

F-17(Initial) – Dinosaurs can
be classified in a basic way.

An animal can be stated to belong to the
“animal classification” of Dinosaur.

This proved that it was simple to extend the classification system, although
the properties for dinosaurs and insects were not considered.
 F-18 (Initial) – Insects can

be classified in a basic way.
An animal can be stated to belong to the
“animal classification” of Insect.

S-22 (Final)-
Checking the animal has an
accepted classification.

Taking the previous standardisation
functions, also considered cases where
animals have a different subclass name.

A dictionary was developed to allow an easy way to map from the value to a
key.

As long as the input value matches one of the separated Strings in the values
part of the dictionary, then that animal could be standardised to be the key
of that entry.

S-23 (Final) Allow the
scientific names of animals
to be added.

If the “ScientificName:” field does exist on a
given page, then extract this using Jsoup‘s
“.select()” method.

This was a test to see how easily new properties could be added.

S-24 (Final) Allow human
intervention when a given
animal cannot be classified.

If the system cannot retrieve a valid animal
classification then the system will ask for user
input.

A case statement was used which only would retrieve user input if a user
wanted to provide classification information.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 64 of 98 c1309705

Appendix C – Implementation Algorithms.

The following algorithms have been provided to aid in the understanding and replication of this work:

C: 1 - Information Extraction Pseudocode algorithm

As documented previously “mergeResults” function uses a voting system to decide on the most probable classification.

Most of this functionality is largely achieved by the AnimalCounter Java class which adds the probable classification and animal (as the key) and

the properties extracted (as the values).

Def InformationExtraction (ListAnimals):

 animalDict = {}

 For each (animal:ListAnimals):

 For each link:

 extractedHTML = retrieveHTML(link + animal)

 result = extractPatternData(extractedHTML)

 results += addResultToValuesPartOfDict(result)

 probableResult = mergeResults(results)

properties = extractProperties(animal, extractedHTML) #Also adds the animals ScientificName.

 put-in-animalDict(probableResult, properties)

return animalDict

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 65 of 98 c1309705

C: 2 – OntologyCreation Pseudocode Algorithm

The previous “Information Extraction” process provides the useful input to OntologyCreator.java which can then model the selected animals and

their extracted properties.

Def addProperties(animalDict):

 ANIMAL = createOntClass(“Animal”)

 For each animalPair in animalDict:

 If (check-classinfo-added = true):

 probableClassification= retrieveAnimalClassToBeAdded():

 Else:

 probableClassification = animalPair.getKey()

 acceptableClasses = Array("Mammal","Reptile","Amphibian","Fish","Bird","Unclassified")

 properties = animalPair.getValues.split(“,”)

 If properties.length >= 1:

 If (check-whether-animalclass = true):

 animalOntClass = createOntClass(animalKey)

 For each property in properties:

 p = createProperty(property, ANIMAL,ANIMAL)

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 66 of 98 c1309705

 add-equivalent-advancedRelationship(animalOntClass,p)

 add-superClass(ANIMAL)

 Else:

 animalOntClass = createOntClass(animalKey)

 For each property in properties:

 If (checkForScientificName(property) == true):

 property = extractScientificName

 p = createProperty(property, ANIMAL,ANIMAL)

 add-restricted-advancedRelationship(animalOntClass,p)

 add-superClass(ANIMAL)

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 67 of 98 c1309705

Appendix D – Detailed Testing Method & Approach

D-1: Test Plan

The approach for testing this prototype solution was focused on checking whether the requirements had been satisfied for each development
iterations. Code correctness was key and checks were made whether the solution was performing as expected against a number of test inputs.
The testing processes were repeated whenever changes were implemented

 Module/Unit Testing
o Each module was individually tested to check that it was working as expected. Program outputs for various inputs were documented

in advance and the results obtained were compared.

 Integration Testing
o Combining modules which had already been unit tested and checking that they still work as expected as an integrated whole. This

involved taking the modules which handled initial execution and slowly building up the overall program in each iteration until it
performed more and more prioritised functionality as further modules were added.

o This approach should reveal problems to do with the way variables are being passed and returned and has been performed
throughout the project during each iteration.

 Functional Testing
o Checking that the iteration requirements had been satisfied and that the system was robust enough to be used as a prototype

solution.

o Evaluation criteria which were specified at the problem specification phase were used to evaluate how close the prototype was to
the desired specification.

 Systems Testing
o The system was tested as a whole via "Black Box Testing" methods, where program outputs were compared to expected results for

given inputs.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 68 of 98 c1309705

Table D-2: Modular/Unit Testing

Feature being
tested

Why it being
tested?

How is it being tested? Expected Result Pass?
Y/N

Test Comments.

InformationExtraction.Java

[I1]-Animal List
Creation

Future tests rely on
this component.

Adding animals from a String[] to the list and
printing the result to check they are being
added properly.

All animals in the
appended list should
be output.

Yes animalList is a String[] and converted
to a list of Animals which is then
returned.

[I2]-Animal List
Creation

Future tests rely on
this component.

Adding animals to the animalList using the
.add() method of a List<String> to check they
are being added properly.

All animals in the
appended list should
be output.

Yes animalList is a List<String> and animals
are added with the .add() method.
List.add(“Lion”) as an example.

[I3]-Animal
List Creation

Future tests rely on
this component.

Adding animals to the animalList using the
Arrays.asList(String[] animals) method to check
they are being added properly.

All animals in the
appended list should
be output.

Yes animalList is appended by the animal
array which is a parameter in the
Arrays.asList() method.

[I1]-Logging
Capabilities
Enabled

Removes error
messages from the
console.

Examining the output to check that error
messages are not present.

No errors should be
reported relating to
the logging status.

Yes By importing and using the Log4j basic
configurator unnecessary messages
are removed and logging facilities are
available.

[I1]-Extract
HTML Page
Content for a
given URL.

Check that Jsoup is
providing the
HTML extraction
facilities correctly.

Testing that when the function is run that it
returns correct HTML for a given URL and
page.

Function returns the
HTML associated with
a given page.

Yes The Jsoup extraction method gets all
the HTML associated with a page.
Later processing extracts the specific
details. Testpage: http://a-z-
animals.com/animals/lion/

[I1]-Extract
HTML Page
Content for a
given URL.

Check that
incorrectly typed
URLs are trapped

Inputting an invalid URL into the program The URL should cause
the program to throw
an exception.

Yes The invalid URL I used was a http://a-
z-anmals.com/
This would be a simple case of
mistyping the address.

http://a-z-animals.com/animals/lion/
http://a-z-animals.com/animals/lion/
http://a-z-anmals.com/
http://a-z-anmals.com/

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 69 of 98 c1309705

and do not
generate errors.

[I1]Pattern
Extraction

Check that the
returned result is
correct.

Take an extracted Document page and select
the parts of the HTML which match the given
pattern.

That returned result
matches what is seen
in the HTML code.

Yes The Jsoup method “.select()” can be
used to extract information based on
the pattern.

[I2]Pattern
Extraction

Check that the
returned result is
correct.

Take a Document page and select the parts of
the HTML which do not have the given pattern.

That the returned
result is null.

Yes The method is syntax specific so when
no result is returned it is usually due to
a small syntax change being required.

[I1]-Overall
module

Check that all
features of the
module work
together

Take a set of animals, get the HTML for each of
them based on a startUrl and append the
animal’s name. Apply a pattern to search for
something unique to each.

That no errors result.
I will be testing
animals “Lion,
Crocodile, Frog and
Wild boar”. (This is an
edge case to
challenge the
program)

No The reason this test failed was because
“Wild boar” would not process into a
valid URL.

I.e Only “Wild_boar” is acceptable.

AnimalCounter.Java

Feature being
tested

Why it being
tested?

How is it being tested? Expected Result Did it pass
the test

Test Comments.

[I1]-Add animal
and a property to
the internal
dictionary.

Ensure that an
animal(key) and its
property(values)
can be added to
the dictionary.

Create an AnimalCounter object
and add an animal and a property
using the “addAnimalRecord()”
method.

Animal should be added
as the key and the values
should be equal to the
property set.

Yes Animal Counter is its own data
structure which is a bit more complex
than a Dictionary.

[I2]-Add animal
and its properties
to the internal
dictionary.

Ensure that an
animal(key) and its
properties(values)
can be added to
the dictionary.

Create an AnimalCounter object
and add an animal and a property
using the “addAnimalRecord()”
method. Adding a second
property using the same method.

Animal should be added
as the key and the values
should be equal to the
properties set.

Yes When testing 5 properties were
correctly added in the same way for a
given animal.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 70 of 98 c1309705

[I1]-Print results
contained in the
AnimalCounter
object.

Check whether the
print function is
working.

Examining the output from the
animalcounter.printDictResults()
method.

The key should be printed
with a “:” and the values
should be printed after.

Yes Provides an easy way to print the
dictionary to standard output.

[I1]-Merge
together results of
an AnimalCounter
object.

Functionality to
combine results
from several
sources.

Merge a list which contains an
animal and 2 of the same
classifications. E.g
[Lion: Mammal,Mammal]

Should return the animal
with just the most
frequently occurring
classification ->
i.e. [Lion:Mammal]

Yes

[I2]-Merge results
of an
animalCounter
object.

Functionality to
take results from
several sources
and combine them.

Merge a list which contains 2
similar classifications and 1
different classification.
e.g.
[Lion: Mammal,Mammal,Bird]

Should still return the
animal with the most
occurring classification.
i.e. [Lion:Mammal]

Yes

[I3]-Merge results
of an
AnimalCounter
object.

Functionality to
take results from
several sources
and combine them.

Merge a more complex list of
animal and classifications

e.g.
[Lion:Mammal,Mammalia,Bird]

Return the animal with
the most frequently
occurring classification.
i.e. [Lion:Mammal]

 This was completed during the final
iterations.

Use of the animalClassify() method to
convert classifications to a simple and
accepted form.

[I3]-Merge results
of an
animalCounter
object.

Functionality to
take results from
several sources
and combine them.

A long list of challenging
dictionary elements would be
input and checked that they are
being merged correctly.

Should still return the
animals each with their
most occurring
classification.

Yes

[I3]-Add a set of
additional
properties to the
already classified
AnimalCounter.

Properties provide
the inference
capabilities for the
JENA reasoner.

Examining the dictionary output
to ensure that properties are
being added correctly.

That the dictionary adds
the expected properties
into the values and adds
the correct key for that
animal.

Yes Later iterations began to examine
“properties” more closely than
extracting the classification which
meant more of an inference approach
was being applied.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 71 of 98 c1309705

[I3]-Checking
whether a result
for the animal’s
classification has
been worked out
successfully.

Provide the option
for human
intervention where
an animal’s
classification
cannot be found.

Using as input an animal which
does not possess an animal
classification in the web sources.

The system should ask
whether the user wants to
add their own
classification.

Yes

If there is no “largest key count”
i.e no animal classification result:
The system asks “Do you know the
classification(Y/N)?”

[I4]-Checking
whether a result
for the animal’s
classification has
been worked out
successfully.

Provide the option
for human
intervention when
an animal’s
classification
cannot be found.

If a user knows the classification
the system should handle this
appropriately.

When a user states they
know an animal’s
classification and inputs
(“Y”) or (“y”) the system
should ask for the manual
animal classification and
check this is valid.

No A case conversion function was used to
get the lowercase value of “y” to work
as expected. The system was parsing an
exact input of “Y” only in the first
instance.

[I4]-Checking
whether a result
for the animal’s
classification has
been worked out
successfully.

Provide the option
for human
intervention when
an animal’s
classification
cannot be found.

If a user does not know the
classification the system should
handle this appropriately.

Note: if the user types anything
other than (“Y”,”y”,”N”,”n”) the
system will handle that input as
“no” or “n”.

When a user states they
do not know an animal’s
classification and inputs
(“N”) or (“n”) the system
should not ask for any
further input for that
animal.

No See previous comment.

[I4]-Checking
whether a result
for the animal’s
classification has
been worked out
successfully.

Provide the option
for human
intervention when
an animal cannot
be added.

Given that an animal currently
possesses no classification and a
user knows what the
classification is (they input “Y”
previously).

The system should allow
the user to add a new
classification if they want
to and this value will be
added as the new
largestKeyCount.

Yes The system will then prompt for the
input from the user and if this is an
accepted animal class it will add the
classification to that animal’s entry in
the dictionary.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 72 of 98 c1309705

[I4]-Checking
whether a result
for the animal’s
classification has
been worked out
successfully.

In the case of an
invalid input, don’t
add anything to
the animal entry in
question.

Trying to manually add a
classification which is not yet
supported e.g. “Insect”
If a user types anything else other
than a specified animal
classification (“Bird,”Mammal”,
etc) the input is not added.

The system will tell the
user they have tried to
add an incorrect
classification and tells
them that this input has
not been added.

Yes Also outputs the set of accepted
animals.

AnimalClassExtractor.Java

Feature
being tested

Why it being tested? How is it being tested? Expected Result Did it pass
the test

Test Comments.

[I2]-URLs
being used
for
Information
Extraction

Check that the web
source of : http://a-z-
animals.com/ is
classifying properly

Compare the results of extraction
with the results of manually looking
at the animal’s classification for a
given set of animals.

The results of extraction
for a given animal for this
URL should match the
results found when
manually looking at the
same content on the
actual webpage.

Yes The only problem is when an animal
does not have valid webpage content.

[I3]-Test the
more difficult
cases of
classification

Whether the system
can handle more
complex cases.

Adding a difficult set of animals as
an input to this class.

e.g [“seaturtle”,”flyingfox”]

That the system can
classify some results but
not all.

No I found that I needed to add an
underscore to animals which have
several words which make up their
name.

[I4]-Test the
more difficult
cases of
classification

Whether the system
can handle impossible
cases of classification.

Adding a set of animals which are
not animals!

e.g. “Dragon”, “Cyclops”

That the system does not
crash when these results
are given as an input.

Yes These results simply return no
classification. However, “Dragon” does
have properties such as “wings” which
rather interestingly can be used to infer
that a “Dragon” is a Bird, although this
is not quite accurate.

http://a-z-animals.com/
http://a-z-animals.com/

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 73 of 98 c1309705

[I2]-The
result which
is calculated
is added to
the
dictionary.

Ensure that that
results are being
added correctly into
the dictionary.

Providing a set of animals and web
page source links and ensuring
where animal classification has been
successfully achieved that these
results are added correctly to the
dictionary.

The system adds an
animal and its
classifications to the
dictionary structure ready
to be “merged”.

Yes Results are added to the dictionary
with the key being the animal and its
values being the classifications which
have been determined.

[I2]-The
result which
is calculated
is added to
the
dictionary.

Ensure that results
are being added
correctly into the
dictionary.

Providing a set of animals and web
page source links which have a mix
of both classified and unclassified
results and checking both of these
results are being added correctly.

The system adds an
animal and its
classifications as well as
the “NONE” classifications
to the dictionary structure
ready to be “merged”.

Yes This is so that the AnimalCounter
object only has to deal with “merging”
results which are a part of an accepted
set of classifications and therefore this
ignores any results which are
unclassifiable.

[I3]-Where
no result is
calculated
that this
result is
added
appropriately
.

Ensure that where no
result is calculated
that this is added
appropriately.

Add an animal which cannot be
classified as input.

The system adds this
animal and its
classifications of “NONE”
to the dictionary structure
ready to be “merged”.

Yes Where no results are found the system
will append “NONE” to the same
dictionary structure. However the
“merge” operation ignores this phrase,
thus it just indicates that no result was
found.

PropertyExtractor.Java

Feature
being tested

Why it being tested? How is it being tested? Expected Result Did it pass
the test

Test Comments.

[I2]-Property
Extraction

Core functionality. Extracting properties for a easy to
classify animal. E.g. Ostrich.

That the property which is
added is “wings”.

Yes Birds are a good choice for a simple
test, finding the word “wings” or
“feathers” is almost always true on a
website involving Birds.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 74 of 98 c1309705

[I3]-Property
Extraction

Core functionality. Extracting properties for more
difficult supported case E.g.
barracuda

That the property which is
added is “gills”.

Yes Fish are a lot more difficult to classify
and its only by virtue that they relate to
a superclass of “Fish” which classifies
them on the “a-z animals” website used
for property extraction

[I3]-Property
Extraction
(when no
properties
are found for
a given
animal)

There are
circumstances where
the HTML which is
being returned is
relating to the
“general” A-Z result
page which catches
incorrect URL inputs.

Trying to extract the properties for
an animal which is not stored on the
site in question of “a-z animals.com”

e.g Silver Arrowana

That the system gets no
properties and appends
“NOPROPERTIESFOUND”
to the unclassified animal’s
entry.

Yes The system checks whether the animal
specified is contained in the page and if
it is not it infers that therefore the page
does not have the relevant information.

[I3]-Property
Extraction
(when no
properties
are found for
a given
animal)

The problem here is
when the URL does
have the correct
name in it but does
not contain any of the
required information.

Trying to extract the properties for
an animal does not contain any of
the properties which are featured.

e.g. old_english_sheepdog

That the system gets no
properties and appends
“NOPROPERTIESFOUND”
to the unclassified animal’s
entry.

Yes The system checks for these properties
and if none are found it adds the
appropriate statement.

AnimalClassSimilarity.Java

Feature
being tested

Why it being tested? How is it being tested? Expected Result Did it pass
the test

Test Comments.

[I3]-
Standardising
animal
classifications

Core functionality. Giving an input of “eptile” and
seeing whether the class in question
can handle this sort of error.

The standardised word
returned will be “Reptile”.

Yes As long as the input word matches one
of the set of “acceptable” animal
classifications by at least 50% then that
animal classification will be returned.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 75 of 98 c1309705

[I3]-
Standardising
animal
classifications

Additional
functionality added
which needs to be
tested.

Given an input of an animal which
can be standardised, the system
should return the standardised
form.

The standardised word
should be returned

e.g. Actinopterygii -
>returns Fish

Yes Another type of fish was commonly
called “Chondrithyes” or cartilaginous
fishes. I added this and other
subsequent classifications, retested and
these changes did not affect the
programs execution.

[I4]-
Standardising
animal
classifications

Handle cases where
the calculated animal
classification is not
found in the set of
“acceptable animal
classes” and cannot
be standardised.

Adding an animal such as “T-rex”
which cannot be standardised
without the new acceptable animal
class of Dinosaur being added.

T-rex is classified as a
Dinosaur but no
acceptable animal class is
currently available.

Yes Dinosaurs were later added to the set of
acceptable animal classes and now the
program can classify Dinosaurs on the
basic level.

Additionally, I found that “crustacean”
animals could be extracted and were
added to the standardising dictionary so
they would become Fish.

OntologyCreator.Java

Feature
being tested

Why it being tested? How is it being tested? Expected Result Did it pass
the test

Test Comments.

[I2]-Adding a
set of animal
classification
properties

The animal’s
classification
properties need to be
added as an
“equivalent”
relationship.

Providing as input an animal
classification’s properties
e.g. [“Bird”,”wings”]

Results are added to the
ontological model as an
“equivalent” to
relationship.

Yes This works for any animal classification
which is specified in the
animalClassesArray.

[I2]-Adding a
set of animal
properties

The animal’s
properties need to be
added as a
“restriction”
relationship.

Providing as input an animal’s
properties
e.g. [“Ostrich”, “wings”]

Results are added to the
ontological model as a
“restriction” on
relationship.

Yes

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 76 of 98 c1309705

[I3]-Adding a
set of animal
properties

In the case of no
properties being
found.

Providing as input an animal which
will not have properties extracted.

e.g [“Yorkshire_terrier”]

The class is created but no
properties are added.

Yes

[I1]-Ontology
Creation

Core functionality. Is an animal ontology and their
relationships created?

Ontology is created with
animals and their
classifications.

Yes

[I2]-Model
Inference.

This allows the
inference of unknown
knowledge to be
retrieved.

Giving as input an ontology which
has the potential to provide
inference.

The class should create an
ontology of inferred
animals and their related
properties.

Yes The “Pellet” reasoner was used to
achieve this.

OntologyCreator.Java - Later Iterations

Feature

being tested
Why it being tested? How is it being tested? Expected Result Did it pass

the test
Test Comments.

[I3]-Complex
functionality
to add
properties
while
classification
information
is still
present.

More complex
functionality to get
the properties via
splitting by the “#”.
This means the
animals classification
is still present to
check when testing.

Adding a set of animal properties
which have also been appended by
an animal classification.

[“Ostrich”,”Bird#wings”]

The OntClass Ostrich has
an ObjectProperty of
“wings” added as a
“restriction” on its
subclass relationship.

Yes

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 77 of 98 c1309705

[I4]-Complex
functionality
to add
properties
while
classification
information
is still
present.

As above Adding a set of animal properties
which have also been appended by
an animal classification.

[“Ostrich#Bird”,”wings”]

The OntClass Ostrich has
ObjectProperty of “wings”
added as a “restriction” on
subclass relationship.

Yes Realised that it made more sense to
include the animal classification in the
key.

Ostrich#Bird makes the property
splitting process sensible.

[I4]-Scientific
name
property
being added

The scientific name
for some animals is an
interesting property
to examine.

Inputting an animal which has a
scientific name.

The scientific name should
be added as a property for
that animal.

Yes A Lion should have a scientificName
property of Panthera Leo.

[I4]-Scientific
name
property
being added

Some animals do not
have a scientific name
in the website being
searched.

Inputting an animal without a record
for a scientific name.

The scientificName
property should not be
added.

Yes Uses “if” logic conditions to determine
whether the scientificName property
has been set.

Testing.Java

Feature
being tested

Why it being tested? How is it being tested? Expected Result Did it pass
the test

Test Comments.

[I1]-
Appropriate
testing
functionality
is present.

Core functionality. Code inspection to check for testing
methods.

Testing methods are
implemented and they
offer useful Testing
functionality.

Yes

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 78 of 98 c1309705

[I1]-
Debugging

The value of the
“debug” switch
should set whether
functionality is
performed.

Check whether these debugging
functions can be switched off.

Debugging functions offer
the facility to be turned
off and on.

Yes

[I1]-Input to
test functions

The input to the test
function should be
correctly printed.

Adding different String inputs to the
test functions.

Checking that they are
performing required
functionality

Yes

FoodChain.Java

Feature
being tested

Why it being tested? How is it being tested? Expected Result Did it
pass

the test

Test Comments.

[I4]-
Searching for
a given
animal’s
predators
and prey.

So animals which
have spaces in the
name do not cause
errors.

Checking that animals with spaces
do not cause errors.

That the system runs
through these tests
fine.

No An “_” replaced a space in a name to fix the
problem.

[I4]-Ontology
properties
added
correctly.

The “eatenBy” and
“eats” properties
should be correctly
added to the
ontology.

Checking whether the ontology
contains the correct property added
for predators/prey of a seed animal.

The predators/prey
should be successfully
added.

Yes Tested for one animal initially and that the
properties were added correctly. Recursive
techniques were then employed.

[I4]-Recursive
search for
predators
and prey of
animals.

Check that different
animals can still be
recursively searched.

Giving an input of “crocodile” and
checking whether appropriate
properties are added to an Ontology

That properties are
added for a
“crocodile.”

(Or a different animal)

Yes This system retrieved most of the necessary
animals and their relationships, but problems
with infinite recursion. E.g. Lion eats Human,
Human eats Lion.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 79 of 98 c1309705

[I4]- Add to
the list of
animals
added so far.

To prevent an infinite
loop from occurring.

Examining the output and checking
whether the list of animals was
added.

That every animal
which is recursively
searched through is
added to the list.

Yes. The list is populated correctly.

[I4]- Infinite
loop
prevention.

Prevent an infinite
loop from a 2 way
“eats” or “eatenBy”
relationship.

Using an animal which makes an
infinite loop occur and checking
whether the system responds
appropriately.

That the infinite loop
is prevented.

Yes

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 80 of 98 c1309705

Table D-3: Functional Testing

Requirement
No.

Requirement Description How is it being tested?

Did it
pass

the test

Test Comments.

F-1 The system extracts HTML data
from several different
webpages.

By extracting HTML data from: a-zanimals,
Wikipedia and sandiegozoo.

Yes

The AnimalPropertyExtractor.java class was
tested in Modular/Unit Testing.

F-2 The system will get useful
properties from extracted HTML
data.

The PropertyExtractor.java class implemented
this desired behaviour. It was verified that
appropriate properties had been retrieved.

Yes As above.

F-3 The system will model the
extracted properties and animal
data in an ontological form.

The OntologyCreator.java class implements these
two requirements and animal properties
extracted by the “InformationExtraction” process
are modelled correctly. The model can then be
subject to a reasoner such as “Pellet”.

Yes “Information extraction” provides the dictionary
of animals and their animal classification and
properties extracted and OntologyCreator.java
then takes the properties extracted and adds
them to the ontological model for a given animal.

The OntologyCreator.java class was tested
previously in Modular/Unit testing.

F-4 The system should be able to
generate the ontology itself.

F-5 The system will display suitable
error messages for most
problems.

The most obvious problems/error situations were
tested and suitable error messages were
generated.

Yes E.g. an error to do with getting the HTML for a
URL which does not have a valid webpage on
the internet.

F-6 The system should be able to
infer what class most animals
belong to.

The system performs the inference process
through the OntologyCreator.java class which
contains a method to printModel() which uses
the “Pellet” reasoner to add assertions.

Yes It is difficult to perform inference for
“Amphibians” and “Mammals” due to the lack of
relevant information which is found in the
webpages.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 81 of 98 c1309705

D-7 The system will be programmed
in a well-documented and
modular way. Using a language
which is suitable for this
purpose.

Java was used for this reason. Yes The code is well documented.

F-8

The system will return the
output of the program to the
command line.

Output from system functionality (e.g. the
Ontology) is presented to the user.

Yes

F-9 The system should be able to
validate itself; comparing results
of extraction from several
webpages and using a “voting
system” to find the likely
classification.

The AnimalCounter.java class was created for this
purpose and the “merges” operation performed
this “voting system”.

Yes The AnimalCounter.java class was tested in
Modular/Unit Testing.

D-10 The program will have a set of
methods dedicated to building
the ontological model of animal
classifications.

These functions are implemented in
OntologyCreator.java and were tested previously.

Yes The OntologyCreator.java class was tested in
Modular/Unit Testing.

D-11 There will be a set of functions
for testing, with the possibility
to extend these further.

The Testing functions are implemented in
Testing.java and were tested previously.

Yes The Testing.java class was tested in
Modular/Unit Testing.

F-12

The system will output the
created ontology to the
command line.

The OntologyCreator.java class contains
printModel() which prints the model before and
after inference has occurred.

Yes

The OntologyCreator.java class was tested in
Modular/Unit Testing.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 82 of 98 c1309705

F-13 The system will output key value
pairs for each animal based on
their animal classification.

Verify that the AnimalCounter.java class
performed the “merges” operation to determine
the most likely animal classification.

Yes The AnimalCounter.java class was tested in
Modular/Unit Testing.

F-14

The system will get the HTML
data for several different animals
to build an overall model.

Verify whether the system can implement this
requirement given that several animals are used
as input.

Yes

Could be only testing with one animal.

F-15 The system’s ontological model
should allow the inference of
additional information about
animal classifications and
associated properties.

Verify that the system’s ontological model allows
for additional information inference about animal
classifications e.g. “Reptiles always live in a
desert”.

No This is yet to be implemented.

F-16 The system should create a
hierarchy based on the “one
animal” “eats” “another animal”
relationship to create an animal
food chain.

Check that a hierarchy is correctly constructed
based on animals and their predators and prey.

Yes

F-17 The system should extend the
ontology to include dinosaur
classifications and relationships.

Check whether a correct Ontology of
Dinosaur/Insect classification has been built.

Yes

A very simple ontology can be created of a
dinosaur/insect.

F-18

The system should extend the
ontology to include Insect
classifications and relationships.

F-19 The system should extend the
ontology to include vertebrates
and invertebrates.

Verify that vertebrate/invertebrate
classifications, properties and associated
relationships have been correctly added.

Yes Invertebrates were not implemented.

S-20 The system should generate
different lists of animals.

Verify that a list of animals can be correctly
generated by the system.

Yes More sophisticated approaches were later
developed and all passed testing.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 83 of 98 c1309705

S-21

The system should get the
HTML for a given page.

Verify that given an input URL, the system will
correctly return the HTML for a given page in a
“Document” format.

Yes This supplementary requirement was added due
to the way Jsoup worked. It was tested
throughout and did not fail without an incorrect
URL.

S-22 The system could check the
animal classification against
expected results

Verify that facilities have been provided to check
whether an animal has been classified correctly
and if not standardise the result.

Yes For [Snake,Eptile] the system should return
[Snake,Reptile].

S-23 The system could also look for
scientific names (usually in
Latin) for Animals which can be
added to the Ontology.

Verify that scientific names can be correctly
added to an ontological model.

Yes This was implemented and tested in iteration 4
in “OntologyCreator.java”. e.g Lion
hasScientificName Panthera Leo

S-24 The system could ask for user
input for unclassified results.

If neither class nor property can be found these
can be added manually.

Yes If a user incorrectly classifies an animal then this
is a problem.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 84 of 98 c1309705

Table D-4: System Testing

Feature being

tested
Why it being

tested?
How is it being tested? Expected Result Did it

pass
the

test?

Test Comments.

Checking code
output is
sensible

To improve test
readability.

Looking at the output and
checking that it is readable.

The output should be
easy to read.

Yes Formatting changes were made to make content
easier to read and print then it passed.

Unexpected
results (such as
“T-Rex”) do not
crash the
program.

The program should
be robust.

2 difficult to handle cases
were used:

Butterfly and T-Rex

The program should not
crash but handle test
cases gracefully.

Yes The system did not crash and obtained properties
of “hairy,wings” for the Butterfly page.

System runs in
an acceptable
timeframe.

The system should
not take longer than
it would take to
manually check
results.

Timing the programs
execution for classifying 10
animals.

The system should
return the results in less
a minute.

Yes “Old_English_Sheepdog,NONE,NONE,NONE” was
a problem in the merge() function. This was later
rectified and then the program executed in an
acceptable time.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 85 of 98 c1309705

D-5: Unit Testing Code Output for Lion

The calculated dictionary entries for a Lion provided a good way to test whether the system was adding properties correctly and whether or not

the voting system was working. If the Lion has the property of “hairy” then I know that the correct property has been added because it is a

“Mammal”. The system should also add this classification data to the key. Both of these features were present as can be shown below.

--

Passing list of animals & getting properties for each animal:

**

Animal:Lion

https://en.wikipedia.org/wiki/Lion classified: Mammal

http://a-z-animals.com/animals/Lion classified: Mammalia

http://animals.sandiegozoo.org/animals/Lion classified: Mammalia (Mammals)

Lion

Mammal

Animal:Lion

Lion-Class to be added:Mammal

Scientific name cannot be found:http://animals.sandiegozoo.org/animals/Lion

Scientific name added:Panthera leo from source:http://a-z-animals.com/animals/Lion/

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 86 of 98 c1309705

 Animal Dictionary contains

{Lion#Mammal=hairy,hasScientificName%Panthera leo}

Final animal dictionary of properties: {Mammal#ANIMALCLASS=hairy, Fish#ANIMALCLASS=gills, Snake#Reptile=scaled,

Amphibian#ANIMALCLASS=coldBlooded,eggs, Unclassified#ANIMALCLASS=NOPROPERTIESFOUND, poison_frog=eggs,coldBlooded,

Reptile#ANIMALCLASS=scaled, Bird#ANIMALCLASS=winged, Lion#Mammal=hairy,hasScientificName%Panthera leo}

This result can then be passed to the “OntologyCreator.java” function to create a model of these animals and their properties.

D-6: System Testing Code Output for “Butterfly” and “t-rex”.

Program output was examined to check that this system test had passed. This example additionally illustrates the way Modular and Unit testing

was performed with relevant test messages showing when the system cannot perform extraction on a given page.

Butterfly is not a mammal as the system infers, but the edge-case “butterflies” are a hairy Insect, such Insects are out of scope for this project.

Dinosaur properties are also out of scope and this is why the system does not extract any suitable properties.

The system does not fail to execute in either of these situations, ensuring even out of scope “animals” do not crash the system.

Start main

**

--

Animal List chosen:[butterfly, t-rex]

**

--

Passing list of animals & getting properties for each animal:

**

Animal:Butterfly

https://en.wikipedia.org/wiki/Butterfly classified: Insect

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 87 of 98 c1309705

http://a-z-animals.com/animals/Butterfly classified: Insecta

http://animals.sandiegozoo.org/animals/Butterfly classified: Insecta (Insects)

Animal:T-rex

https://en.wikipedia.org/wiki/T-rex classified: Dinosaur

JSoup URL Error: Page could not be accessed : http://animals.sandiegozoo.org/animals/T-rex

Butterfly

Insect

Animal:Butterfly

Butterfly-Class to be added:Insect

Scientific name cannot be found:http://animals.sandiegozoo.org/animals/Butterfly

Scientific name added:Papilionoidea from source:http://a-z-animals.com/animals/Butterfly/

T-rex

Dinosaur

Animal:T-rex

T-rex-Class to be added:Dinosaur

JSoup URL Error: Page could not be accessed : http://animals.sandiegozoo.org/animals/T-rex

Scientific name cannot be found:http://www.example.com/seanjames/document

Scientific name cannot be found:http://a-z-animals.com/animals/T-rex/

T-rex cannot be classified by system

Do you know the properties(Y/N)

n

Animal will not be classified

Add properties for T-rex and Butterfly only (Ignoring other unimportant dictionary entries).

 Animal Dictionary contains

{Butterfly#Insect=hairy,winged,hasScientificName%Papilionoidea, T-rex#Dinosaur=NOPROPERTIESFOUND}

--

Create ontology of animals and their properties:

**

{#Insect=hairy,winged,hasScientificName%Papilionoidea, T-rex#Dinosaur=NOPROPERTIESFOUND }

Properties for:Butterfly:[hairy, winged, hasScientificName%Papilionoidea]

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 88 of 98 c1309705

Should be classifed as:Insect

Animal being added:Butterfly

Property being added:hairy

Property being added:winged

Property being added:hasScientificName%Papilionoidea

Split result[hasScientificName, Papilionoidea]

Properties for:T-rex:[NOPROPERTIESFOUND]

Should be classifed as:Dinosaur

Animal being added:T-rex

Property being added:NOPROPERTIESFOUND

Ontology (With only Insect and Dinosaur classes represented)

<http://www.example.com/seanjames/ontologies/animals#Butterfly>

 a owl:Class ;

 rdfs:subClassOf <http://www.example.com/seanjames/ontologies/animals#Animal> ;

 rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty <http://www.example.com/seanjames/ontologies/animals/winged> ;

 owl:someValuesFrom <http://www.example.com/seanjames/ontologies/animals#Animal>

] ;

 rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty <http://www.example.com/seanjames/ontologies/animals/hairy> ;

 owl:someValuesFrom <http://www.example.com/seanjames/ontologies/animals#Animal>

] ;

 <http://www.example.com/seanjames/ontologies/animals/#hasScientificName>

 <http://www.example.com/seanjames/ontologies/animals#Papilionoidea> ,

<http://www.example.com/seanjames/ontologies/animals#hasScientificName> .

<http://www.example.com/seanjames/ontologies/animals#T-rex>

 a owl:Class ;

 rdfs:subClassOf <http://www.example.com/seanjames/ontologies/animals#Animal> ;

 rdfs:subClassOf

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 89 of 98 c1309705

 [a owl:Restriction ;

 owl:onProperty <http://www.example.com/seanjames/ontologies/animals/NOPROPERTIESFOUND> ;

 owl:someValuesFrom <http://www.example.com/seanjames/ontologies/animals#Animal>

] .

Inferred model:

<http://www.example.com/seanjames/ontologies/animals#Butterfly>

 a owl:Thing , <http://www.example.com/seanjames/ontologies/animals#Animal> , owl:Class ;

 rdfs:subClassOf owl:Thing , <http://www.example.com/seanjames/ontologies/animals#Bird> ,

<http://www.example.com/seanjames/ontologies/animals#Animal> ,

<http://www.example.com/seanjames/ontologies/animals#Mammal> , _:b1 , _:b2 ;

 <http://www.example.com/seanjames/ontologies/animals/#hasScientificName>

 <http://www.example.com/seanjames/ontologies/animals#Papilionoidea> ,

<http://www.example.com/seanjames/ontologies/animals#hasScientificName> ;

 owl:disjointWith owl:Nothing ;

 owl:equivalentClass <http://www.example.com/seanjames/ontologies/animals#Butterfly> ;

 owl:sameAs <http://www.example.com/seanjames/ontologies/animals#Butterfly> .

<http://www.example.com/seanjames/ontologies/animals#T-rex>

 a owl:Class ;

 rdfs:subClassOf owl:Thing , <http://www.example.com/seanjames/ontologies/animals#Animal> ,

<http://www.example.com/seanjames/ontologies/animals#Unclassified> , _:b12 ;

 owl:disjointWith owl:Nothing ;

 owl:equivalentClass <http://www.example.com/seanjames/ontologies/animals#T-rex> .

<http://www.example.com/seanjames/ontologies/animals#Papilionoidea>

 a owl:Thing , <http://www.example.com/seanjames/ontologies/animals#Animal> , owl:Class ;

 rdfs:subClassOf owl:Thing ;

 owl:disjointWith owl:Nothing ;

 owl:equivalentClass <http://www.example.com/seanjames/ontologies/animals#Papilionoidea> ;

 owl:sameAs <http://www.example.com/seanjames/ontologies/animals#Papilionoidea> .

Appendix E –Screenshots

Screenshot E-1: Eclipse IDE

Eclipse was a very useful programmatic tool and offered functionality to test code through

“console” output, correct and indicate errors and the ability to modify code in a project

structure.

Screenshot E-2: Eclipse Console and system output

The “console” output feature is very similar to a CMD style interface.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 91 of 98 c1309705

Screenshot E-3: Adding dependancies using Maven

Dependancies can be easily added using the “Add” button, making it straightforward to add

libraries (as .JAR files) and maintain dependancies for the solution.

Screenshot E-4: Corresponding Maven POM.XML file

The POM.XML file specifies each of the dependancies and with this file anyone can download

the required libraries (such as JENA and Jsoup) to use my solution.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 92 of 98 c1309705

Screenshot E-5: Protégé

Protégé was a very useful tool for modelling and testing ontological models; it allows the

addition and creation of properties in a basic GUI manner.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 93 of 98 c1309705

Appendix F – Animal Website Selection Criteria

The following factors were taken into account in selecting websites to be used for this

prototype:

Positive Factors

 The site contain animal information suitable for animal information extraction

and features suitable patterns for information identification

 The site is available with little or no visible downtime for maintenance

 Contains words to allow property extraction to occur

 Provided Latin names for animals

 Provided information about an animal’s prey

 Provided information about the predators of a given animal

 Searching for animal can be facilitated by adding the animal’s name to the URL

 The existence of an A through Z list of animals

 Contains an extensive encyclopaedia of animals representing used animal classes

e.g. Fish, Mammals, Reptiles, Birds etc

 The website features a search facility to assist with testing

 The website features a useful set of animal facts and figures

Negative Factors

 The site is too specific e.g. rather than Frog uses “Golden Poison Dart Frog”

 The site’s HTML is too unstructured to parse effectively

 Excessive unstructured text

 Site contains more exotic animals e.g. Golden Lion Tamarin

 No clear patterns in the text

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 94 of 98 c1309705

Website F-1- A-Z Animals Site

The site which offered the most functionality in terms of Information Extraction. The key

advantage and difference being the presence of “predators” and “prey” of a given animal.

The site offered a substancial amount of useful text and provided a lot of fact type information

which could be additionally extracted in future iterations.

Useful Food Chain Information: Predators and Prey

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 95 of 98 c1309705

The next two sites were only used for extracting the classification and finding properties.

Predator and prey information was not available and so they were not used for “Food Chain”

processes.

Website F-2- sandiegozoo.org site

A useful site with plenty of possibilities for extension, such as using “tweet” information to

add further details to a given model. The detailed text present on this time was good for

property classification and although the class extraction required some standardisation

“Mammalia (Mammals)” to “Mammal” it was very effective overall.

Website F-3- Wikipedia

It was useful for initial testing purposes because it was a familiar and complete resource. It

offered “animal classification” information which was almost normalised. The necessary

patterns were present to perform effective information extraction making it a good site for

testing whether techniques were feasible. It was accepted that it was not the best resource

because of its public nature and so any results obtained were closely examined.

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 96 of 98 c1309705

References

 agile software development (ASD) [Online]. Available at:

http://searchsoftwarequality.techtarget.com/definition/agile-software-development

[Accessed 30th April 2016]

 Anzaroot Q.L, Lin W.P, Li.X, Ji.H. Joint Inference for Cross-document Information

Extraction [Online]. Available at: http://nlp.cs.rpi.edu/paper/reasoning_cikm.pdf

[Accessed 25th February 2016]

 Apache Jena [Online]. Available at: https://jena.apache.org [Accessed 10th February

2016]

 Apache Maven [Online]. Available at: https://maven.apache.org

[Accessed 10th February 2016]

 Eric Schmidt Quote: Every 2 days we create as much information as we did up to 2003.

[Online].Available at: http://www.azquotes.com/quote/921446 [Accessed 20th February

2016]

 Fonou-Dombeu J and Huisman M. 2011. Combining Ontology Development

Methodologies and Semantic Web Platforms for E-government Domain Ontology

Development [Online]. Available at:

http://arxiv.org/ftp/arxiv/papers/1104/1104.4966.pdf [Accessed 13th March 2016]

 Geoffrey Moore Quote: Without big data, you are blind and deaf and in the middle of a

freeway [Online]. Available at: http://www.azquotes.com/quote/641515 [Accessed 20th

February 2016]

 GitHub [Online]. Available at: https://github.com/

 Gravelle. R. Web Page Scraping With Jsoup [Online]. Available at:

http://www.htmlgoodies.com/html5/other/web-page-scraping-with-jsoup.html
[Accessed 11th March 2016]

 Janevski A. 2000. UniversityIE: Information Extraction From University Web Pages

[Online]. Available at:

http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1219&context=gradschool_thes

es [Accessed 2nd February 2016]

 Jani.K and Chavda.V. 2014. A Study on Semantic Web Framework: JENA and Protégé

[Online]. Available at:

https://www.worldwidejournals.com/ijar/file.php?val=January_2014_1388583791_ee7

8c_43.pdf[Accessed 11th March 2016]

http://searchsoftwarequality.techtarget.com/definition/agile-software-development
http://nlp.cs.rpi.edu/paper/reasoning_cikm.pdf
https://jena.apache.org/
https://maven.apache.org/
http://www.azquotes.com/quote/921446
http://arxiv.org/ftp/arxiv/papers/1104/1104.4966.pdf
http://www.azquotes.com/quote/641515
http://www.htmlgoodies.com/feedback.php/html5/other/web-page-scraping-with-jsoup.html
http://www.htmlgoodies.com/html5/other/web-page-scraping-with-jsoup.html
http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1219&
https://www.worldwidejournals.com/ijar/file.php?val=January_2014_1388583791_ee78c_43.pdf
https://www.worldwidejournals.com/ijar/file.php?val=January_2014_1388583791_ee78c_43.pdf

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 97 of 98 c1309705

 jsoup: Java HTML Parser [Online]. Available at: http://jsoup.org/

[Accessed 10th February 2016]

 Kaiser K, Miksch S. Information Engineering Group: Information Extraction. [Online]

Available at: http://publik.tuwien.ac.at/files/pub-inf_2999.pdf [Accessed 26th February].

 Lakeworks: The Scrum Process[Online].Available at:

https://en.wikipedia.org/wiki/Scrum_%28software_development%29#/media/File:Scru

m_process.svg

 LevenshteinDistance.java [Online]. Available at:

https://commons.apache.org/sandbox/commons-

text/jacoco/org.apache.commons.text.similarity/LevenshteinDistance.java.html

[Accessed 21st March 2016]

 McGuinness D.L, Harmelen F. W3C: OWL Web Ontology Language Overview [Online].

Available at: http://goo.gl/9VrWxK.

 Protégé. [Online]. Available at: http://protege.stanford.edu/

 Protégé: Protege-OWL Reasoning API. [Online] Available at:

http://protegewiki.stanford.edu/wiki/ProtegeReasonerAPI

 Ratwani R.M, Trafton J.G, Boehm-Davis D.A. From Specific Information Extraction to

Inferences: A Hierarchical Framework of Graph Comprehension [Online]. Available at:

http://www.nrl.navy.mil/itd/aic/sites/www.nrl.navy.mil.itd.aic/files/pdfs/ratwani_0.pdf

[Accessed 25th February 2016]

 Sas. Big Data [Online]. Available at:http://www.sas.com/en_us/insights/big-data/what-

is-big-data.html

 seth, SETH is a software effort to deeply integrate Python with Web Ontology Language

[Online]. Available at: http://seth-scripting.sourceforge.net/ [Accessed 20th March 2016]

 Sigletos G,Paliouras G, Spyropoulos C, Hatzopoulos M. Mining Web sites using wrapper
induction, named entities and post-processing [Online]. Available at :
https://km.aifb.kit.edu/ws/ewmf03/papers/Sigletos.pdf [Accessed 11th March 2016]

 Stephen Hawking, 2014 Notable Quotes. [Online] Available at: http://www.notable-

quotes.com/h/hawking_stephen_ii.html [Accessed 1st May 2016]

 TechTarget. Natural language Processing [Online] Available at:

http://searchcontentmanagement.techtarget.com/definition/natural-language-

processing-NLP

http://jsoup.org/
http://publik.tuwien.ac.at/files/pub-inf_2999.pdf
https://en.wikipedia.org/wiki/Scrum_%28software_development%29#/media/File:Scrum_process.svg
https://en.wikipedia.org/wiki/Scrum_%28software_development%29#/media/File:Scrum_process.svg
https://commons.apache.org/sandbox/commons-text/jacoco/org.apache.commons.text.similarity/LevenshteinDistance.java.html
https://commons.apache.org/sandbox/commons-text/jacoco/org.apache.commons.text.similarity/LevenshteinDistance.java.html
http://goo.gl/9VrWxK
http://protegewiki.stanford.edu/wiki/ProtegeReasonerAPI
http://www.nrl.navy.mil/itd/aic/sites/www.nrl.navy.mil.itd.aic/files/pdfs/ratwani_0.pdf
http://seth-scripting.sourceforge.net/
http://www.python.org/
http://www.w3.org/TR/owl-features/
http://seth-scripting.sourceforge.net/
https://km.aifb.kit.edu/ws/ewmf03/papers/Sigletos.pdf
http://www.notable-quotes.com/h/hawking_stephen_ii.html
http://www.notable-quotes.com/h/hawking_stephen_ii.html
http://searchcontentmanagement.techtarget.com/definition/natural-language-processing-NLP
http://searchcontentmanagement.techtarget.com/definition/natural-language-processing-NLP

Ashley Sean James Information Extraction From Webpages To Project 133
Infer New Knowledge Using Ontological Modelling.

Page 98 of 98 c1309705

 The University of Sheffield. GATE Information Extraction [Online]. Available at:

https://gate.ac.uk/ie/ [Accessed 25th February 2016]

 W3C: Resource Description Framework (RDF) [Online]. Available at:

https://www.w3.org/RDF/

https://gate.ac.uk/ie/
https://www.w3.org/RDF/

