
Cardiff University

One Semester Individual Project CM3203

Monopoly Simulator

Marc Cork 1217468

Supervised by

Dr. Kirill Sidorov

Moderated by

Professor. Omer F Rana

May 13, 2016

1

Abstract

Monopoly is a popular board game around the world, which has
the possibility of having new rules designed and tested for it to make
it more exciting while still being fair to all of the players. The pur-
pose of this project was to create a complete working simulator of
Monopoly which can easily be extend to include new rules which can
then be tested to ensure that the new rules are fair. This project
found that such a simulator can be created and can be used to gather
data about the game of Monopoly and was used to design a new ad-
dition to the house rules which allows for a more exciting and tactical
game while keeping it fair to all players.

Contents

1 Introduction 8
1.1 Aims of the Project . 8
1.2 Beneficiaries . 9
1.3 Approach . 9
1.4 Assumptions . 10

2 Background 11
2.1 Context . 11
2.2 Problem . 13
2.3 Constraints . 13
2.4 Existing Solutions . 13
2.5 Tools Used . 14
2.6 Development Model . 15

3 Specification and Design 18
3.1 Description . 18
3.2 System Architecture . 19

4 Implementation 24

5 Development Log 34
5.1 Developing the Board . 34

5.1.1 Design . 34
5.1.2 Implementation . 35
5.1.3 Testing . 36
5.1.4 Issues . 37

5.2 Developing the Rules . 38
5.2.1 Design . 38
5.2.2 Implementation . 38
5.2.3 Testing . 40
5.2.4 Issues . 40

2

CONTENTS 3

5.3 Developing the Players . 41
5.3.1 Design . 41
5.3.2 Implementation . 42
5.3.3 Testing . 43
5.3.4 Issues . 43

5.4 Developing the GUI . 43
5.4.1 Design . 43
5.4.2 Implementation . 44
5.4.3 Testing . 46
5.4.4 Issues . 47

5.5 Integration of the Complete Simulator 47
5.5.1 Implementation . 47
5.5.2 Issues . 48

6 Results 50
6.1 Experiment 1: Frequency of landing on a space 51
6.2 Experiment 2: Amount of Money earned by each Property,

Station and Utility . 53
6.3 Experiment 3: How the quantity of players changes the length

and the net worth of the winning player in a game of Monopoly 55
6.4 Experiment 4: Does changing the amount of dice each player

have cause a difference to locations landed on? 56
6.5 Experiment 5: How much does the starting money affect the

players winning percentage 57
6.6 Experiment 6: What difference does the amount of dice have

on the players winning percentage 58
6.7 Experiment 7: Does starting position affect a players chance

of winning? . 60

7 Evaluation 61

8 Future Work 63

9 Conclusions 65

10 Reflection 66

Appendix 1 Git Branching Model 68

Appendix 2 Board Group Enum 69

Appendix 3 Space Class Code 70

CONTENTS 4

Appendix 4 Free Parking Class Code 71

Appendix 5 Ownable Class Code 72

Appendix 6 Monopoloy Map CSV File 74

Appendix 7 Card Actions Enum 76

Appendix 8 Card Class Code 77

Appendix 9 Chance Card Class Code 81

Appendix 10 Cards CSV File 83

Appendix 11 Board Helper Unit Test 85

Appendix 12 Card Unit Test 87

Appendix 13 Deck Unit Test 90

Appendix 14 Java to Lua Communication Example 93

Appendix 15 Jail Rules Class without Lua 94

Appendix 16 Bank Rules: Auction Method initial Version 95

Appendix 17 Jail Rules class Using Lua 97

Appendix 18 Jail Rules Lua File 99

Appendix 19 Tax Unit Test Code using Multiple Lua Files 100

Appendix 20 Table of simulation results due to Bug 102

Appendix 21 Bank Rules: Auction Method final version 104

Appendix 22 Player: Spend Money Method 106

Appendix 23 Player: wants to But property for Price Method107

Appendix 24 Player: on turn Method 109

Appendix 25 GUI: Main Window Basic Frame 111

Appendix 26 GUI: Main Window Top Section Design 112

CONTENTS 5

Appendix 27 GUI: Add/Edit Card Design 114

Appendix 28 GUI: Main Window Bottom Section Design 115

Appendix 29 GUI: Rules Window Design 117

Appendix 30 GUI: Players Window Design 119

Appendix 31 GUI: Generating Board Buttons Method 120

Glossary 121

Acronyms 123

Bibliography 124

List of Figures

2.1 UK Monopoly Board . 12
2.2 Continuous Integration Model 16
2.3 Test Driven Development Model 17

3.1 Jail Rules Original UML Diagram. 20
3.2 Jail Rules UML Diagram. 21
3.3 All Rules UML Diagram. 23

4.1 Class Dependency Diagram. 24
4.2 Module Dependency Diagram. 25
4.3 Board Class Diagram showing inheritance between classes . . . 25
4.4 Board Helper Class UML . 26
4.5 Board Class Diagram showing inheritance and dependencies be-

tween classes . 27
4.6 Card UML Diagram. 28
4.7 Deck Class Diagram . 29
4.8 Deck Dependency Diagram . 30
4.9 Rules Dependency Diagram . 30
4.10 Bank UML Diagram . 31
4.11 Go Rules UML Diagram . 32
4.12 A UML example of one class creating instances of the rules. . . 32
4.13 A UML example of classes accessing the instances of the rules. . 33

6.1 Percentage of landing on a space in a game of Monopoly 52
6.2 Percentage of landing on any Space in a Group in a game of

Monopoly . 53
6.3 Percentage of rent earned from each space in a game of Monopoly 54
6.4 Percentage of landing on any Space in a Group in a game of

Monopoly . 55
6.5 Percentage of landing on any Space in a Group in a game of

Monopoly depending on the amount of dice each player has . . 57

6

List of Figures 7

6.6 Chance of player winning depending on their starting money in
a game of Monopoly . 58

Chapter 1

Introduction

The purpose of this project was to create a complete simulator of the popu-
lar board game Monopoly c©, this simulator would have the ability to create
new rules and adjust the house rules of the game as the user saw fit. This
simulator would also be able to output the data of the simulations run that
can be analysed to give statistics about the game, this data would be used
as a comparison to ensure any new rules added to the simulator are fair and
how the changes differ the course of a game. By the end of the project I
will have been able to create a new more exciting set of rules for the game
of Monopoly which are interesting and fair.

1.1 Aims of the Project

The aim of the project is to create a working Monopoly simulator that can
allow users to easily extend the rules and gather data from these simulations
to be statistically analysed. The project should be able to:

• Complete a number of simulations of a game of Monopoly.

• Gather data from the simulations to be analysed for data regarding
the game including information regarding frequency of landing on a
place, average length of a game, most profitable space on the board
etc.

• Extend the house rules to change the logic of the game allowing for a
variety of different rules. The structure of the board should be easily
extended allowing users to change the information of each space and
the cards available within each of the Community Chest and Chance
decks.

8

CHAPTER 1. INTRODUCTION 9

• Analyse the data gathered from the simulator to find information
regarding simulations and data across a number of solutions, this
information will also be used to ensure any new rules implemented
are fair.

• Design a new variation of the rules that allows for a more exciting
and fair game of Monopoly.

1.2 Beneficiaries

The key beneficiaries of this project are users who wish to gain an under-
standing of the statistics regarding a game of Monopoly, this project would
also allow users to design their own new rules that can be then used within
the game and will allow for new variations of the game to become available
to people.

1.3 Approach

For the project my approach will be to split my work into four main stages:

• Design

• Develop

• Experiment

• Analyse

The stage that will take up the most time will be the development stage
due to the overall complexity of the project, for a project this large the
development stage will follow a Test Driven Development (TDD) process
to ensure the stability of the program through the iterations of the develop-
ment. Following the development stage the experiments run and analysed
will meet the aims that were stated in Section 1.1 and use enough data to
come to accurate conclusions both about the simulator as a piece of software
and the board game Monopoly.

CHAPTER 1. INTRODUCTION 10

1.4 Assumptions

For this project I made some assumptions for the software, firstly I focused
on the house rules for the UK version of Monopoly, due to the variety of
different versions of the board game each with different properties, Chance
and Community Chest cards and sometimes rules.

Secondly the simulator would use basic heuristics to simulate the players,
this is to ensure that all the players are identical and the focus of the project
is on how changes to the rules affect the game not the players. However I will
allow for room to possibly extend the software to allow users to introduce
their own player decision making algorithms.

Chapter 2

Background

2.1 Context

The context of this project is based on the board game Monopoly, ”real-
estate board game for two to eight players, in which the player’s goal is
to remain financially solvent while forcing opponents into bankruptcy by
buying and developing pieces of property.”1.

There are many different versions of Monopoly with different locations,
Chance and Community Chest cards and different rule sets. For this project
I based my design around the UK version of Monopoly. This version was
the one I was most familiar with and it also used the same house rules as the
original and with changes to the locations relevant to the UK. Figure 2.1
shows an example of a UK monopoly board.

1Encyclopædia Britannica Online (2016 accessed 06/05/2016)

11

CHAPTER 2. BACKGROUND 12

Figure 2.1: UK Monopoly Board

The purpose of the project is to be able to easily run simulations of
a Monopoly game with a variety of different players and different rules,
following this the rules need to be tested against the house rules to ensure
that they do not give a player a statistically advantage. The house rules
the project was initially based on can be found at the Hasbro website.2.

2http://www.hasbro.com/common/instruct/monins.pdf

CHAPTER 2. BACKGROUND 13

2.2 Problem

The problem that this project is focused on was to be able to easily define
new sets of rules for monopoly and run it through the simulator to gather
data which can be then used to ensure that the rules are fair to each of
the players allowing for the creation of new rules that can be run and
tested. The amount of configurations for new rules is almost infinite and
the program needs to be easily extended to allow for this.

The simulator can also be used for designing different AI’s for the players
to follow and then see how different playing styles affect the game, which
is another problem that can be solved by the project.

2.3 Constraints

This project is focused primarily on the impact changes to the rules have on
the game, so I will not focus on changing how the player acts in the game
but will see how different starting attributes change the game for example
the money they start with their location and how many dice they have. I
will also focus on minor changes to the rule set for the scope of this project
to observer how minor changes within the games rules affect the game.

Even with the constraints of the project, it is designed to allow for these
constraints to be lifted in future iterations with extendable design of the
project allowing for users to change as many details as they require of the
simulator without having to recompile the project.

2.4 Existing Solutions

From researching into the existing solutions I found a variety of different
partial solutions. Each of these solutions offers a different approach to
the problem however they never fully solve it. The first solution3 was a
project based in java, which simulated the bases of moving around the a
Monopoly board following very basic principles of the game and gathered
information about the most frequently visited places on the board. This
solution is a good basis for the simulator, however it does not take all the
rules into consideration and is often hard-coded with information, making
it very difficult to extend.

Other solutions4,5 that were written in python offered a more extended

3https://github.com/drgrhm/MonopolySimulator
4https://github.com/jm-contreras/monopoly
5https://github.com/johnnyRose/monopoly

CHAPTER 2. BACKGROUND 14

rule set than the first solution, however they lacked the ability to log infor-
mation for statistical analysis and also lacked the ability to easily extend
the rules beyond a set point.

The final solution I found, while not a complete simulator of the Monopoly
board game, it offered detailed statistical data taking into consideration the
house rules and the card decks and their effect on the game and the play-
ers.6 This solution although not extendable, would allow me to have base
data I can compare my simulator to, to ensure that my integration of the
traditional rules was correct in comparison to the data available from this
solution.

Overall there is currently no existing solution that allows people to fully
customise and extend the rules of monopoly and allow the user to get the
data from the simulations that have been run.

2.5 Tools Used

For the development of my project a different variety of tools were going
to be used. Firstly I needed to choose a suitable language for my project.
My choice was Java due to having the most experience with the language,
the ability to use a Object Orientated (OO) approach to my design and
the ability to easily extend my program with the use of Abstract classes
and interfaces. The use of JavaFX as a tool for creating my Graphical
User Interface (GUI) and JUnit for unit testing was also another reason for
choosing java as my main language for development.

Following my choice of language, I then chose a suitable build system to
be able to automatically download any libraries and allow for the program to
be built easily on different machines. For this I chose Maven this was due
to my experience using this technology and also the amount of Software
Repositories available to download from the Maven archives. This build
system also allowed for all the unit tests to be automatically run when the
software is built, this was essential when using a TDD approach and with
the use of a Continuous Integration (CI) server.

Another essential tool for the development of my project was my choice
in Version Control System (VCS) to store my project, due to my experi-
ence working with GIT, I decided this technology was the most efficient to
work with and it allowed me to use branching model in the development
of my project and allowed me to work on features independently and then
integrate them to the main branch of my development. An example of a

6Collins (1997 accessed 03/05/2016)

CHAPTER 2. BACKGROUND 15

branching model I would follow can be seen in Appendix 1. A more in-depth
description of my branching model can be seen in Section 2.6.

Finally I needed a tool for CI, my initial choice was to use Jenkins,
however due to my limited resources I was not able to set up an appropriate
server to handle this, therefore I needed to find an alternative. Following
research into online services available I found a service called Travis CI 7,
which allowed me to build and test my project in it’s entirety every time a
commit to the VCS was pushed to the server. This was essential to ensure
I had not missed running any unit tests and that it could be built and run
on other machines.

2.6 Development Model

The development of my project would use a combination of several models
for an effective development cycle and to ensure the code was thoroughly
tested and ready for deployment in future iterations of the design. The first
model will be followed was a CI model, this model was used to give me
feedback on the project following it being committed to the VCS and then
built and tested on the CI server. This model is used within many projects
and also allows for projects to be deployed to servers if it is successfully
built. This model is very effective for reducing the time taken between a
bug being entered into a system and myself being informed about it.

7https://travis-ci.org/

CHAPTER 2. BACKGROUND 16

Figure 2.2: Continuous Integration Model

8

Figure 2.2 shows an example of how a CI model is followed. As I was a
sole developer for my project this model was not used to its full potential
however having an understanding of how best to use the model was useful
for future projects with groups of developers.

The following development model I focused on was the structure of my
branches with my VCS, as shown in Appendix 1. My branching system
would be much simpler as it would focus on having the development of each
of modules as feature branches that merged into the development branch.
Although the style of this model is based on multiple developers developing
features concurrently, it will allow me to easily track the development of
each module and allow me to focus on each module at a time and easily
run any code committed through the VCS on the CI server.

The final development model I followed was TDD, ”Test-driven develop-
ment, or TDD, is a rapid cycle of testing, coding, and refactoring.” 9. With
this approach I focused on ensuring my test were written before my logic,
however in certain cases It can be difficult to set the tests up before writing
the logic of the class. This developing model is effective at ensuring that

8Cois (2015 accessed 28/04/2016)
9Shore & Warden (2007)

CHAPTER 2. BACKGROUND 17

bugs do not get introduced during the development and improvement of the
code and during refractoring stages it allowed me to ensure any changes I
made did not break the logic of the code.

Figure 2.3: Test Driven Development Model

Figure 2.310 shows an example of how TDD works, focusing on writing
the test of the method and then writing the logic of the method until the
tests pass and then refractoring the code to ensure its optimal and elegant.

10Swift Next Step (2015 accessed 28/04/2016)

Chapter 3

Specification and Design

3.1 Description

The specification of the project is a simple process, create a program that
can simulate the board game Monopoly and have allow for the rules to be
easily extended and adapted to the users preference. A user of the program
must:

• Be able to alter any space on the board to change it’s parameters, for
example group, cost, rent etc.

• Be able to add, edit and remove cards from either the Chance or
Community Chest deck, these cards will follow a list of actions which
the user can choose and then be able to input any given arguments
for example moving to a location, paying the bank a fee, go to jail
etc.

• Be able to change the details regarding the players starting design
for example the ability to change how much money they start with,
where on the board they start from, how many dice they have and
how many sides each dice has. The user will not be able to change
how the player makes decisions in this iteration of the project.

• Be able to change the design of core rules for example rules relating
to Jail, the amount of houses available in the bank, how an auction
is run and increased at intervals and many more. The user should
be able to change these rules at run time of the program without the
need to recompile the source code.

There was also specification for the what results I needed to collect
from the simulator to ensure that the simulator was fair, that rules that

18

CHAPTER 3. SPECIFICATION AND DESIGN 19

were created and tested were also fair and also I used these result to gain
an understanding of the game of Monopoly for example: which areas on
the boards were most frequently visited, which properties are the most
profitable, is it better to have both utilities or three stations and other
questions. To answer all these questions I needed to ensure that I had
gathered and analysed enough data, the information I would gain from this
analysis included:

• A visual representation of the game, showing players net worth over
the period of a game and how it fluctuates.

• Outputting the number of times each player won a simulation to en-
sure the simulation was fair.

• How often a space within the board was landed on.

• Which space earned the most money over the course of the simula-
tions.

3.2 System Architecture

The architecture of the project will be split into five key modules:

• A representation of the Monopoly Board which will allow for Players
to move around the board and also handle what happens when a
player lands on a specific space.

• A representation of the Community Chest and Chance card decks.
This module will store all the cards and also describe what occurs
when a player draws a card.

• A representation of the rules in a manner that can be easily extended
to allow for users to change any variable as they see fit at run time.
This module will also handle any transactions between players and
also between players and the bank.

• A representation of the players to describe how they make decisions
during the simulation and what actions they will take.

• A visual representation of the entire simulator to allow for changes to
be made to the rules and architecture of the simulator with relative
ease.

CHAPTER 3. SPECIFICATION AND DESIGN 20

The original concept of the architecture was to allow for changes to be
made to the rules by changing the details given to the constructor of a
given class, this was a simple design and would allow for a finite number of
changes to be allowed with the adjustment of rules. Figure 3.1 shows the
an example of the original design for one of the classes representing rules.
As shown in this figure the class uses a Singleton design pattern and the
method called init allows for the configuration of the rules to be set, in this
instance it describes how many rolls needed to get out of jail, the fine to
pay get out of jail and whether the user can earn rent in while in jail.

Figure 3.1: Jail Rules Original UML Diagram.

With the design of this class the principle was to initialise it once be-
fore the simulator began to run and any access to the class would use an
single instance of the class so the rules can never have more than one in-
stance at any given period. This design was simple however it had limited
extensiblity, therefore a new approach was required.

This approach utilises a scripting language called Lua, this language
enabled me to take the logic of the rules and have it read at run time, this

CHAPTER 3. SPECIFICATION AND DESIGN 21

allows for more customisable rules and allows the user to create rules as
they see fit by editing and creating Lua files. Figure 3.2 shows the UML
for the same class shown in Figure 3.1, however this time when a version
of the rules is constructed it takes in the location of the Lua file it will use
and each of the methods within this class will run a set method within the
Lua file with any given arguments and then get returned a specific type of
value that will be used within the Java code. This version of the class no
longer holds any of the values as properties, instead it holds a reference to
the Lua file as a property.

The code in Listing 3.1 is used to load the Lua into the instance of the
class allowing it to access any method within the Lua file.

Figure 3.2: Jail Rules UML Diagram.

CHAPTER 3. SPECIFICATION AND DESIGN 22

1 LuaValue _G;

2

3 public JailRules(String luaFileLocation) {

4 _G = JsePlatform.standardGlobals();

5 _G.get("dofile").call(LuaValue.valueOf(luaFileLocation));

6 }

Listing 3.1: JailRules.java Constructor For Lua

The code in Listing 3.2 is an example of the java method calling a
method within the Lua file, in this example it is calling the method to find
if the user can earn rent while in jail. Line 2 of Listing 3.2 is referencing
the method within the file called ”canEarnRentFunc”, while line 3 runs the
method on the Lua file and returns a value, which is then converted to the
correct type and then returned.

1 public boolean canEarnRent(){

2 LuaValue methodGetSalary = _G.get("canEarnRentFunc");

3 LuaValue salary = methodGetSalary.call();

4 return salary.toboolean();

5 }

Listing 3.2: JailRules.java Method canEarnRent

Due to the movement from a Singleton design pattern, I now needed a stor-
age for the rules that would ensure only one instance of the class is used,
therefore I created a new class called AllRules, the UML for this class can
be seen in Figure 3.3.

CHAPTER 3. SPECIFICATION AND DESIGN 23

Figure 3.3: All Rules UML Diagram.

This class stores all the rules as static objects which are encapsulated
within the class this was to ensure that at only one point are the initialised
and set into this class, any class that applied a rule would get a reference of
the one object created. This design allowed for both a single object creation
and also allowed for rules to be mocked out during unit tests.

This Lua architecture design was only implemented completely within
the rules module however in further iterations, I would move as much logic
from the Java code into Lua scripts to allow full extensiblity of not only
the rules but the structure and size of the board, the decisions of players
can make and how they make constraints to the overall game for example a
time limit. A more in-depth description of the architecture of each module
can be read in Chapter 4 on Page 24 and an in-depth description of the
implementation process for each of these modules can be read in Chapter 5
on Page 34.

Chapter 4

Implementation

From the the overall system architecture I had designed there were several
different modules I had to specifically design, implement and test. These
modules differed in size and complexity but were all essential pieces to
creating a complete, working Monopoly simulator that can also be easily
extended. Figure 4.1 is a representation of all the Java classes within the
simulator and the dependencies with one an other, as it shows it is rather
large and complex while Figure 4.2 shows the dependencies of the modules
in a broader sense and this Chapter will focus on the design choices of each
module.

Figure 4.1: Class Dependency Diagram.

24

CHAPTER 4. IMPLEMENTATION 25

Figure 4.2: Module Dependency Diagram.

As this diagram shows there is a lot of dependencies and communication
between modules however they can be broken down and will be explained
in overview in this section and in detail in Chapter 5.

The modules that were developed in the creation of the simulator in-
cluded.

1. Developing the board structure.

The board was a stand alone module and it included the design of
all the spaces within a standard ten by ten Monopoly board. The
includes the implementation of all of the spaces within a board using
a simple inheritance model as shown in Figure 4.3

Figure 4.3: Board Class Diagram showing inheritance between classes

CHAPTER 4. IMPLEMENTATION 26

The board would also need a class that can hold all the information
about the board and the methods regarding movement around the
board, Figure 4.4 shows the design of the class while Figure 4.5 shows
the dependencies with the other classes within the module.

Figure 4.4: Board Helper Class UML

CHAPTER 4. IMPLEMENTATION 27

Figure 4.5: Board Class Diagram showing inheritance and dependencies
between classes

The design of this module would also include the design of the Com-
munity Chest cards and Chance Cards, these would also follow a
simple inheritance model as shown in Figure 4.6.

CHAPTER 4. IMPLEMENTATION 28

Figure 4.6: Card UML Diagram.

The cards would also have a class called Deck which would handle
all the cards on the board and allow for cards to be added, edited or
removed from the deck. Figure 4.7 shows the UML diagram for the
Deck class while Figure 4.8 shows the dependencies between the deck
classes and the rest of the card classes and sub classes.

CHAPTER 4. IMPLEMENTATION 29

Figure 4.7: Deck Class Diagram

CHAPTER 4. IMPLEMENTATION 30

Figure 4.8: Deck Dependency Diagram

2. Developing the Rules

The rules would be integrated and used throughout the entire of the
simulator. The rules needed to be easily extendable to allow for sim-
ulations to easily be run on multiple different rules. As described in
the system architecture in Section 3.2 on Page 19 the design of this
module follows the use of Lua scripts which allow for changing the
logic of the rules without having to recompile the code allowing for
extensible structure of the program.

Figure 4.9 shows how each of the rules within the module depend on
each other, as shown, the AllRules class contains a reference to each
one of the rules, which allows any class within the program to access
the instance of a rules available.

Figure 4.9: Rules Dependency Diagram

CHAPTER 4. IMPLEMENTATION 31

Figure 4.9 also indicates the amount of dependencies the bank class
has with other rules do to the fact transactions between the bank
and players or between players take into consideration several rules,
therefore this was the most complex class to implement. Figure 4.10
shows the UML for Bank class and the amount of logic it contains,
especially in comparison to other rule class like Go Rules as shown in
Figure 4.11, which contains very little logic and methods.

Figure 4.10: Bank UML Diagram

CHAPTER 4. IMPLEMENTATION 32

Figure 4.11: Go Rules UML Diagram

A key element of this implementation was to ensure that the only one
instance of the rules can be accessed by classes. As shown in the UML
of Figure 4.12 only one class creates the instance of each rule, while in
Figure 4.13, shows how the player has access to the rules but cannot
create a new instance of any of the rules.

Figure 4.12: A UML example of one class creating instances of the rules.

CHAPTER 4. IMPLEMENTATION 33

Figure 4.13: A UML example of classes accessing the instances of the rules.

3. Developing the Players

The players would be a single class that would interact with the rest
of the modules so they can move to round the board, follow the rules
currently set for the simulation and also be able to make basic decision
like when to buy a property, when to buy a house and many more
decisions.

4. Developing the GUI

This module would need to be able to show all the information about
the rules, the players, the spaces on the board and also the information
of the Chance Cards and Community Chest, allowing the rules to be
extended and changed with relative ease.

5. Integration of the complete simulator

Once all the modules had been completely designed and tested they
would then need to be integrated into a module that would be set up
the rules, the board and the players and then run a simulation of a
Monopoly game. This module would be integrated as part of the GUI
as well.

Chapter 5

Development Log

5.1 Developing the Board

5.1.1 Design

The design of the board was based on a simple inheritance model. Figure 4.3
shows how the classes inherit from each other. All the objects that contain
the board spaces are children of the Space class, this space class contains
information that all areas on a monopoly board share, for example they all
have a name, a location on the board and a group that they are part of,
the names of the groups are contained in a Enum. Once the bases of the
board spaces had been designed, I needed to design a class that handled
any interactions with the board, for example moving a player around the
board, editing any of the spaces currently contained on the configuration,
populating the initial version of the board which is uses a Comma Separated
Values (CSV) file for the standard information.

Following the design of the board, I needed to design the structure of the
Community Chest and Chance cards. This followed a similar inheritance
model to the board, as how the cards affected the player or the game stayed
the same, what differed was which deck the card would be placed into.
Figure 4.6 shows how the class would inherit and interact with each other.
The Community Chest and Chance Cards are children of a card class which
holds the information about the card and what action the card takes, the
action is stored within a Enum. Similar to the board there is a Deck class
which is the class other modules interact with if they want to use any of the
cards in a manner and also populates the decks using a CSV file, containing
all the information of standard cards with a monopoly board.

34

CHAPTER 5. DEVELOPMENT LOG 35

5.1.2 Implementation

For the implementation of the Board module I began by creating an Enum
that stored all the possible groups a space on the board can belong to, this
would allow for an easier way to differentiate between the groups the space
belonged to and would be essential in later stages of development when the
groups become essential for the player to develop on properties. Appendix 2
shows the contents of the group Enum. Following the defining of the Enum,
I would then need to start defining how much information each of the spaces
would share independent of what type of space they are. Firstly each of
these spaces would have a name for the space, a unique integer location
on the board between 1 and 40, which group the space belonged to and
an Abstract Method called onVisit. This abstract class would follow the
principles of OO design, to ensure correct encapsulation of data between all
the classes designed, Appendix 3 shows the code written for the abstract
class: Space.

Once the abstract super class Space had been implemented, I then had
to define each of the possible areas a player could land on, these included:
Chance, Community Chest, Free Parking, Go To Jail, Go, Jail, Property,
Station, Tax and Utility. Each of these classes would have slightly different
information, all of them needed constructors to ensure that they were cre-
ated with the correct information and all the classes would also override the
onVisit method to ensure that they each classes used it in an appropriate
way to the class. Some classes like Free parking, as shown in Appendix 4,
only have a constructor and do not have any specific use for using onVisit
method, however it is ready to easily be extended to incorporate a new rule.

During later stages of the development, I began to notice that the classes
Property, Station and Utility all shared several bits of information as they
could be purchased by a player, this information included the cost of the
space, how much the player would receive if the property was mortgaged, the
player who owns the property and if the space has been mortgaged. Due to
this I decided to create another abstract class that extended the base Space
class, this class would contain this information shared information and allow
for more effective storing of what properties each player owned. Appendix 5
shows the code for the Ownable class, which has all the information shared
between Property, Station and Utility and in turn is extended by each of
these classes. Once all of the board classes had been implemented I then
needed to create a class which allowed for interactions between the board
and individual spaces.

The class that would be responsible for storing and retrieving all the
spaces of the board and also any movement made by player would be called

CHAPTER 5. DEVELOPMENT LOG 36

the Board Helper class. This class allows for the generation of all the spaces
from a CSV file, an example of the CSV file can be seen in Appendix 6. As
way as generating spaces this class controls how a player moves around the
board on any give roll of the dice and also allows for the changing of any
spaces within the vector they are stored in.

Once the board had been implemented I began the implementation of
the Card classes, I started by creating an Enum with all the possible actions
a card could be, Appendix 7 shows the actions stored in the Enum. From
this implementation I began to implement the Card abstract class, this class
would store all of the required information of the card and any methods
that would be used by both Community Chest and Chance cards. With
this implementation it meant that the children of the abstract class Card
would only have to contain the constructors for their respective class. The
reason for the use of this inheritance is at principle their Community Chest
and Chance cards are identical with the possible actions they could be, they
just are placed in separate decks in the game of Monopoly and so for a more
elegant solution to the problem they needed to be to separate classes but
share the same super class. Appendix 8 shows the code for the abstract
Card class and Appendix 9 shows the code for a Chance Card.

Once the card classes were implemented I needed to do similar to the
board and create a classes that communicated between the cards and the
players. This class would be called Deck, this class would store the decks
currently being used, allow for new cards to be added current cards to be
edited and also contains the method that would initialise the deck using
a CSV file. An example of a CSV containing cards can be seen in Ap-
pendix 10.

5.1.3 Testing

With the testing of the board module, I needed to confirm that movements
around the board worked as expected and that when querying the Board
Helper class for any information about positions on the board were correct.
With using TDD, I wrote my unit tests before implementing the body of
the code, I also used Mocking to ensure that any objects injected into the
tested methods simulated real objects this allowed for isolation of the unit
tests, ensuring that if one object is failing it’s test all other objects that
depend on it don’t fail as well. An example of a unit test using Mocking on
the board helper class can be seen in Appendix 11. Once these test were
written, I could use them to ensure that the logic of my code was correct
and also it allowed me to refractor my code and easily ensure I did not
break the logic of the code. All unit tests that were written were also run

CHAPTER 5. DEVELOPMENT LOG 37

on the CI server, due to the fact that I would want to check after every
commit to my VCS all my code was still working as expected.

For the testing of the card section of this module, I needed to ensure
that the cards worked as expected when drawn and that the deck could be
initialised and the write type of cards were going in the correct deck. The
tests on the card class were written to ensure that the drawing a card with
a specific action caused the correct response, again this required Mocking
of several classes to ensure that the tests were as isolated to the class being
tested as possible. Appendix 12 shows the testing ran on the card class and
is designed to ensure that the player mock object runs method expected the
correct amount of times. Following the tests on the card I now needed to test
the Deck class, this class did not require any Mocking and was designed to
ensure that the basic structure of the deck was correct. Appendix 13 shows
the unit tests ran on the deck class.

5.1.4 Issues

Through the development of the Board and Card module, I found I had
made minor mistakes in my logic with certain areas, for example I found
that my method for moving a player around the board worked fine normally,
however after developing more unit tests I found that players could gain an
extra space when they completed a loop of the board. I also found that if a
player had to go backwards due to a Card being drawn and they ended up
past the GO position they did were not placed in the right position. These
cases in errors of logic were found during my unit tests and meant I had to
create new unit tests to ensure I did not repeat the mistakes.

My main issue with implementing the module started in the later stages
of development, due to the Singleton design of my Board Helper and Deck
class I could not successfully mock these classes in later stages of testing of
other classes. This issue meant that the unit tests of other classes were not
completely isolated due to the fact the Board Helper and Deck would have
to be instated for the tests to run successfully; this was a design error by
myself and in future iterations of this project I would refractor the Singleton
design pattern out of all the code to ensure that the unit tests of all classes
are as isolated as possible.

CHAPTER 5. DEVELOPMENT LOG 38

5.2 Developing the Rules

5.2.1 Design

This section of the implementation was the most crucial section of the
project as the rules needed to be as extendable as possible to allow for
different configurations of rules to be testing with the project. The design
of the rules module went through several iterations during the development
process, the initial design of the rules was to have a base interface that
would define all the methods that a rule set for Monopoly would need to
implement to be able to run a game. This initial design however was very
complicated as there was too many rules to define in a single interface,
from this initial design, I then moved to creating classes using a Singleton
design pattern for each of the sections within the rules. These sections
included Auction Rules, Bank, Bankruptcy Rules, Go Rules, Jail Rules,
Selling Rules, Station Rules, Tax Rules and Utility Rules. The design of
each of these classes would allow for configurations to be set up during the
initialisation of the class, this would allow for discrete changes to be made to
the rules allowing for new variations of the rules to be run. This design was
completely implemented and tested in the first iteration of development,
however I decided move to a more elegant final design which would allow
for a more extensible design of the rules and allow for the an almost infinite
variations of rules to be designed and run through the simulator.

The current design of the rules module is based on using Lua scripts to
define the logic of the rules and the Java code interprets it at run time, this
design allowed for changes to be made to the Lua code when the project was
compiled and it would implement the changes into the simulator without
having to recompile the Java code. This change also allowed possible other
users to be able to create their own rules by modifying just the Lua scripts
and allow for an infinite possibility of new rules to be designed and run
through the simulator. Appendix 14 shows how the Java communicates to
the Lua scripts.

5.2.2 Implementation

The implementation of the rules took two main iterations, the first was
developing the classes successfully define the rules of a game of Monopoly
ensuring that the core information within the rules can be changed, during
this iteration a class called the Bank developed, this class would handle
all transactions between players and the Bank and contain the information
regarding the amount of houses and hotels that are in the bank and ensuring

CHAPTER 5. DEVELOPMENT LOG 39

that all rules regarding transactions are followed. Many of the rules needed
information from other rules so the rules had to be developed in orders of
their dependencies on other rules.

In the initial implementation of the rules I began by developing the basis
of the simplest rules, these being rules that only specified certain amounts
and did not have much logic to them, for example the jail rules defined
how many rolls before a player was let out of jail, the fee to pay for getting
out of jail, the amount of doubles rolled before being sent to jail and if
they can earn rent while in jail, Appendix 15 shows an example of the Jail
rules code initial implementation as shown in the code, the rules initially
followed a Singleton design pattern ensuring that only instance of the rules
were created but changes could be made to the initialisation of the class to
change the rules of the game; this design pattern was later refracted out to
improve the elegance of the code and to allow for better testing.

Once all the rules had been implemented in this style, I began imple-
menting the Bank class in a similar style, the logic of the bank class was
relatively simple as it handled transactions like purchasing a property, the
buying and selling of houses or hotels and any transactions between players
that may occur. The most complicated logic within the Bank class was the
handling of auctions between players, this involved using information set
by other rules and having access to all the players currently in the game.
The basic principle of the auction method would allow players to be asked
if they are willing to buy the property for a set amount; if they are willing
the asking price increases and they are then the top bidder. During the
initial implementation of this method, the auction would continue to run
until the top bidder stayed the same for a round of auction as shown in
Appendix 16. This method was one of the main issues that occurred in this
module and eventually got refractored to a more elegant solution after the
issue was found, the issue is explained in detail in 5.2.4 on page 40.

Following the first iteration of the rules module the design of how the
rules would be configured changed, the rules would now be configured using
Lua scripts to allow for more extensible rules. This refractor of design took
some time as the I was unfamiliar with writing code in Lua and not all of
the rules could be ported to Lua due to the complexity of the code, in future
iterations of the project I would want to move all the rules into Lua to allow
for maximum possible configurations and designs of new rules. An example
of how java communicates with the Lua script can be seen in Appendix 17
and an example of the Lua script read by this class is shown in Appendix 18

CHAPTER 5. DEVELOPMENT LOG 40

5.2.3 Testing

During the initial iteration of creating the rules module, unit testing was
very fragile due to the fact each of the classes containing a rule set followed
a Singleton design pattern, this meant that it was difficult Mocking any
classes the class under test depended on. Due to this, the design of the
tests had to change in minor details during the development of the module,
however the expected outcome from running the tests always stayed the
same.

With the majority of the classes in this module, the rules were defined
as sets of encapsulated data and thus did not need testing. However more
complicated classes like the Bank class for example had various different
methods to test and also a variety of different possibilities and corner cases
that needed to be tested. For the testing of the bank class, often classes had
to mocked to ensure that test was isolated to just the class, this often meant
mocking out players when testing that transactions and auctions worked as
expected. Even though I felt I had extensively tested my classes within
rules, I found that I had missed some corner cases, when integrating the
entire simulator, this caused the simulator to run as expected but outputed
results that were not expected. I explain in detail the corner case and issue
in the following sub-section 5.2.4 on page 40.

When moving the design of the module to use Lua based rules config-
urations, this caused some changes to the design of the unit tests. The
main change was how the class were constructed, as the constructor now
required the location of the Lua file instead of a list of variables defining
the configuration of the rules. This change also meant I had to design Lua
scripts for the purpose of testing to ensure that in cases where the rules
had been changed the Java program had mirrored these changes success-
fully. An example of a unit test using different Lua scripts can be seen in
Appendix 19.

5.2.4 Issues

During the implementation of the rules module, I only encountered minor
issues mostly due to my lack of experience with Lua and the unit tests
helped to eliminate any bugs I had created. The main issue I had regarding
this module occurred when I began running the simulator as whole project
and integrating all the modules, I found that the player to go last in a
simulation had a higher chance of winning; this advantage was reduced
with more players, Appendix 20 shows the percentage of players winning
due to this bug. This result was not the one expected especially as all

CHAPTER 5. DEVELOPMENT LOG 41

the players were identical. This anomaly meant that my simulator was not
working as expected and I had missed a corner case to test, after several
days of debugging and looking through logs of the simulations I had located
the cause of the anomaly, to be the Auction Method in the Bank class.

During the testing of the auction method in the Bank class I thought I
had imagined all cases that were possible, however I made a mistake and not
checked if the last person in the loop wanted to buy the property twice in
a row. Due to how the auction was run, the code is shown in Appendix 16,
the auction would end if the top bidder had not changed by the end of
iterating through all through the players. This seemed correct during the
implementation of the method and it passed the unit tests using mocked
players, however the issue arose from this method as the auction could end
after two loops as the last player could easily be top bidder twice in a row
and win the auction, even if other players bid for the property. This error in
logic caused the unexpected results I gained when running the simulation.

Following this issue, I found an elegant solution that allowed for a more
even auctioning strategy, which was to set the auction running boolean
to false before iterating through all of the players and if a player bid the
boolean would change true. This change allowed for the auction would
run until no player wants to match the current top bidder and this in turn
allowed for more reliable results of the simulator. Appendix 21 shows the
final version of the auction method.

5.3 Developing the Players

5.3.1 Design

From designing and implemented the previous modules, the methods were
already designed and only the logic had to be implemented. The core prin-
ciple for the players was to use a basic heuristic for their decision making.
This was to ensure that they were similar in how they acted and they did
not have an advantage due to the way they played, as the purpose of the
project was to look at how changing the rules impacted the game. However
in future iterations of the simulator it would be interesting to move the
logic of the players into Lua scripts, so playing styles can also be analysed.

The key features with designing the logic of the players was to ensure
that any decision they could make was accounted for, like if the player
wanted to buy a property for an asking price and if they wanted to develop
houses on a property. Other features that needed to be designed was algo-
rithms for how they would sell any of their owning’s if they owed money

CHAPTER 5. DEVELOPMENT LOG 42

to another player or a bank and methods to calculate the net worth of a
player. Other key areas that were required included the designing of what
needed to be done when it was a player’s turn and also if the players wanted
to do any transactions or build on their properties during turns. All this
logic was needed for the simulator to run successfully and gather reliable
data about the simulations.

5.3.2 Implementation

For the basis of the implementation of the player module I first began by
creating two classes, the first was a basic class to simulate a Dice, the second
was a class to hold information on the last roll the player took, including
the sum of the dice rolled and if they are eligible for a re roll depending on
the rules. This classes were required for the player to be able to make a
move and also for the rest of the program to have knowledge of the last roll
the player took, this was required in certain cases like Chance cards which
depended on the last roll the player took.

After implementing these two simple classes I began to implement any
methods that had already been defined in the implementation of the Board
module and the rules module. These methods contained the logic for trans-
actions, the purchasing of properties and the building of the houses. These
methods were often simple in the logic, just confirming that the player was
able to complete the transaction before doing the transaction. Appendix 22
shows an how if a player had to spend money for a specific reason then the
logic would first confirm they had the funds available to do so before re-
turning a boolean on whether the transaction was successful or not.

Many of the methods implemented within the player class return a
boolean as it is essential for other modules and methods for example the
Auction method, the method within player is called to see if they are will-
ing to buy the property for the asking price. When there are any methods
that want are called to see if the player is willing to purchase a property or
build a house or spend any money optionally, they are given a heuristical
value of how much they are willing to spend. For example in Appendix 23,
if the player owns none of the group the space belongs to they are willing
to spend 50% of their remaining money, if they own one space within the
group they are willing to spend 60% of their remaining money and if they
own two or more spaces within the group they are willing to spend 70%
of their money. This basic heuristic allowed to simulate basic players for a
game of Monopoly.

The final stages of implementation was to account for how the player
would play their turn, this method was simple in logic as all it had to do

CHAPTER 5. DEVELOPMENT LOG 43

was take into account a dice roll, if the dice roll caused a re roll,(House
rules of monopoly state that if a player rolls two of the same number they
get to roll again), and how to act if the player is spending their turn in
jail. These methods can be seen in Appendix 24. The turn in jail method
uses simple logic and heuristics to decide if how they want to play the turn,
if they have a card that can get them out of jail they will use it and if
the fine is less then 90% of their remaining money they will pay the fine
otherwise they will try and roll a double to get out of jail.Another key bit
of implementation that was required was for the players to be able to do
certain actions between their turns, for example building houses and hotels
on their properties, if they want to buy a property of another player and if
they want to un-mortage any of the properties they have.

5.3.3 Testing

For the testing of this module, I focused on unit testing the player class
and any methods within it that did a variety of calculations or were used
within other modules or classes. For this I focused on the methods that
calculate net worth and saleable items as these methods needed to give
an accurate result for the simulations to work as expected and not cause
inaccurate data. For these methods under test I had to mock a variety of
different objects including properties and Dice to ensure that the test were
as isolated as possible.

5.3.4 Issues

5.4 Developing the GUI

5.4.1 Design

With the design of the project their was not an essential requirement for
a GUI, however I decided to design a simple GUI to allow a user to easily
change the configuration of the simulator and what rules the simulator
should follow and information about the players, the board and the Chance
and Community Chest cards. This simple design would also assist with the
experiments I wished to run as I could visually change the configuration of
the rules to without changing the code.

The initial design of the GUI was to contain as much of the configuration
into one single window. Appendix 25 shows a basic layout of the main
window. I decided to split the window into three main sections, the main
section would contain a visual representation of the board including all the

CHAPTER 5. DEVELOPMENT LOG 44

spaces and both the Chance and Community Chest decks. The second
section next to the board will show the information of either the space
selected from the board, which can then be edited and then saved, and the
cards currently in the deck selected. Appendix 26 shows the design of the
top two sections within the main window.

With the design of the cards list, I found that it would be impractical
to keep it on the one window as the design would get too cramped, from
this I decided to design a new window which would allow for the editing
and adding of new cards to a specific deck. The new window would have
all the information needed to create a new card or edit a selected card
while the main window would allow for cards to be removed from the deck.
Appendix 27 shows how the basic layout of the GUI for adding or editing
cards from the deck.

Following the design of the top section of the main window, which needed
to be able to configure the players, the rules of the simulation and also con-
figure how many simulations need to be run and also where to store all the
data collected from the simulations. The issue with designing this section of
the GUI was the limitation of space within the window, to overcome this is-
sue, I decided to split the configuration of the players and the configuration
of the rules into two separate windows allowing for simulation configura-
tions to be shown in this section of the window. Appendix 28 shows how
the bottoms bar is split into three main rows, the first row contains buttons
to allow the user to configure the rules and the players in separate windows,
as shown in both Appendix 29 and Appendix 30. The second row allows
for the user to configure which folder the data logs need to be stored in
when the simulations are run. The final row contains a field that allow the
user to set the quantity of the simulations to run and two buttons; the first
begins the simulations storing all the data in the folder specified, the second
button allows the simulations to be reset to the default configuration.

5.4.2 Implementation

For the implementation of the GUI I decided to use JavaFX as it is the
most flexible and support GUI framework for Java and with my personal
experience with developing Android applications and its use of Extensible
Markup Language (XML) to define the layout of the windows made it
simpler to implement the planned design for the GUI. With the design of
each XML layout it would have a controller attached to it to handle any
logic and communicate with elements within the XML layout. There was
also a main function which set up the main window and loaded the entire

CHAPTER 5. DEVELOPMENT LOG 45

program as a whole and also initialise any of the elements like default rules,
the board and the decks of Chance and Community Chest cards.

During the initial stages of the implementation I began by designing
the layout of the three main sections and then focusing on populating the
visualisation of the board. For the design of the this section I split the
frame into a grid that could easily hold buttons to represent all of the
spaces within the board. Once the layout of the buttons had been defined
each of them needed to be linked to the Space object it represented and
visually show which space each button was defined as. This took some
different configurations, however I found the most elegant solution was to
define all the locations of the buttons using XML and using a unique id for
each location linking them to the correct space location within the board.
Appendix 31 shows the method that iterates through all the buttons stored
within the grid and then sets the name and id of the button in reference to
the Space on the board. Before I could fully implement the buttons to open
either the Space information or the list of cards within the chosen deck I
first needed to design the basis of the XML for the sections to display this
information.

.
With designing the XML to represent the cards within a deck it needed

to contain the information regarding each of the card within the deck which
can be contained within a ListView. The ListView shows to the user the
name of the card however is linked to the card object in the background for
that would allow for the object to be sent to the new window for editing.
The controller in charge of this XML needed to be able to communicate
with the controller of the board so the correct deck was opened, it also
needed to be able to communicate with the new window generated to add
or edit the card information. This controller also needed to refresh the list
of cards available within the deck whenever a card was added, edited or
removed. Whenever a button representing a deck was clicked within the
Board section, the board controller would need to communicate to the deck
information controller to ensure the right deck was visible to the user.

Following the design of the section to show the cards in a deck I needed to
design the XML for the section showing the information regarding the space
clicked within the board section and implement the logic in the controller
for the XML. Similar to the card information section this section needed
to be able to communicate to the board controller and vice versa so the
correct space information was loaded and when the changes were saved the
board needed to update it’s view to show the updated changes. However
a key part of implementing the logic of this section was to ensure that the
fields available to the user changed in regard to which group for the space

CHAPTER 5. DEVELOPMENT LOG 46

was selected. This was to ensure that the user did not have unnecessary
fields which were not required for the group selected and it allowed the user
to change any space how they saw fit. This section of the design did not
require any additional windows as all fields needed were easily displayed
within the frame available.

The final section that needed to be implemented was the bottom frame,
this contained links to access the windows containing the information re-
garding the rules and the players while also containing the information
regarding the configuration of the simulation runs and where to store the
data logs. The XML for this frame was focused on a simple grid pane that
allowed to split all the elements into individual cells making it easier to
adjust the layout. The two buttons referring to the players and the rules
were linked to opening new windows and had access to the controllers for
each of these windows. The rules window contained a list of all the rules
that could be changed and the ability to choose the Lua file that controlled
the rules, each of these buttons opened a file dialog which allowed the user
to choose which file that would be loaded as a rule set. For the players win-
dow it contained a ListView containing all the the players currently within
the game and upon selecting a player from the list would load the players
details into the editable fields which would allow for the editing of these
details or the adding of new players into the game with new information.
The final parts of this frame contained the ability to choose which directory
the logs were stored in from running the simulations, a text field to indicate
the number of runs the simulation needed to run, a button that would allow
for the user to reset all changes to default and finally a button to begin the
simulations and show a basic progress bar, the logic of the begin simulation
button will be described in detail in Section 5.5.

5.4.3 Testing

The testing of the GUI took a different form then previous tests due to
the integration of several classes from the simulator, all the test I ran on
the GUI were manual testing while I was developing to ensure the outcome
from each section of the GUI was expected. The testing I did was not as
in-depth as other areas I had tested due to the fact the GUI was to be used
as a tool for myself to run the experiments I wished to carry out without
having to change any source code and re-compile every time.

In future versions of this simulator, I would want to run a more in-depth
test suite that would allow for effective automatic testing of the GUI and
ensure that a variety of fundamental features worked as expected and this
would help with the future development of the simulation as any changes

CHAPTER 5. DEVELOPMENT LOG 47

made to the program as a whole could be checked at both a class level and
then a fully integrated level.

5.4.4 Issues

A lot of issues regarding the implementation of the GUI were found during
the integration of the complete simulator and are discussed in more detail
in Section 5.5. However their were some issues face in regards to other
aspects of the GUI.

The issue that was mostly faced was the lack of error handling within the
GUI almost all fields that could be edited could not be check for consistency
and viable values, for the purpose of using the GUI as a tool for myself to
run experiments this was not an issue however if another user were to use
the program they could possible cause major errors if mistakes were made.

Another key issue I found that would be rectified in future work was the
fact Lua files were not checked to ensure that they would work within the
system, therefore any issues with Lua files could not be shown to the user
and would not be easily pinpointed, it would be best that any time a new
Lua file is chosen that a series of tests are run against it to ensure that it is
compatible with the simulator as a whole. These issues would be the main
focus of iterations in the future.

5.5 Integration of the Complete Simulator

5.5.1 Implementation

The complete integration of all the modules was initially quite a simple
task as each of the modules had been unit tested and implemented all that
remained was to ensure that all a suitable way of initialising all the rules,
board, decks an players was completed before running a method to run the
simulations. This method for running the simulations would initialise new
players from those set from the GUI and then sort them in and order based
on the first roll they take ensuring that the ordering of the players was done
in accordance to the house rules of Monopoly.

Following the ordering of the players each player was looped through
to run their on turn method and between each turn every play ran their
between turn method to allow for properties to built and trades to be done.
This loop would continuously run until either their was only one player
remaining in the simulation or if the simulation had run for a certain amount
of iterations. For the experiments I conducted I had set this limit to 500

CHAPTER 5. DEVELOPMENT LOG 48

to ensure a big enough limit to prove it was an infinite game but smaller
enough not to make a drastic impact on the time it would take to run the
simulations.This method was then repeated for as many times as the user
had set within the GUI allowing for a set number of simulations to be run.

5.5.2 Issues

Even though I felt the testing of my individual modules was extensive there
were some issues that did arise and were only noticed during the running
of the simulations. The first noticeable issue within the simulator was the
fact many of the simulations would run infinitely, this was due to the fact
that my communication between the java and Lua scripts that defined the
rules for building a house or hotel were not functioning as expected. This
issue was rectified when I in-lined all of my Lua script into the java class,
this fix ensured that the simulator worked in accordance to the house rules
of Monopoly, however in future iterations I expect to move these rules back
into Lua to further the programs extensibility.

Another key issue that I encountered during the integration of complete
simulator was the time it took to run each simulator, through the initial
stages of running the simulator I noticed that the time taken to run each
of the simulations was between one and four seconds, this was too slow for
running the amount of simulations I wished to conduct for each experiment.
This issue was eventually traced back to the class I had created to log data
to a CSV file. The method was taking a lot of time due to the file being
opened and closed every time a log was written to the file, this was a small
mistake but once rectified the time taken for a simulation to run was reduced
to between 0.01 and 0.1 seconds to run a simulation. This allowed for me
to run the amount of simulations that I required for the experiments I will
run.

One other issue that arose during the integration was found when I
moved the simulation from a command line based program to the GUI
application, I found that the player that won the first simulation would
run every simulation within three turns. This was meant that a player
would have an unfair advantage and would give unreliable data for analysis.
The cause of this issue was due to my misunderstanding of a vector data
structure and the fact the player objects were only soft copied into new
vectors when running the simulations, therefore when the one simulation
finished and a new one began all the players still contained all the properties
and money from the previous simulation. This was rectified by using the
information stored within the GUI vector of players and using them as
defaults for creating new objects which would run the simulation and this

CHAPTER 5. DEVELOPMENT LOG 49

would be done at the beginning of each simulation to ensure that the players
would be new objects during the running of each simulation removing the
unfair advantage.

Chapter 6

Results

With the simulator implemented and tested I now needed to begin to run
experiments and gather data to be analysed from these experiments. I ran
a variety of experiments to both gain an understanding of the traditional
board game and how certain adjustments to the rules would change the
game and find ways to create new and fair rules. The experiments I ran
included:

• How often each space on the board is visited over the course of a
number of simulations to find out which space is the most visited and
which group on the board was visited the most.

• How much rent each of the properties, stations and utilities earned
over the course of a number of simulations, this would show both the
most profitable space on the board but also the most profitable group.

• How does the amount of players within a game change the length of
the game and also how much net worth the winner had at the end of
the game and is there a noticeable link.

• If the amount of dice each player have available changes will the prob-
abilities of landing on spaces change dramatically and will it have an
effect on the most profitable space and group.

• What difference does the starting money of a player have on their
possibility of winning the game.

• What difference does the amount of dice a player uses have on their
possibility of winning the game.

• Does the starting postion of a player make an impact on their chances
of winning a game of Monopoly.

50

CHAPTER 6. RESULTS 51

These experiments needed to run a sizeable amount of times to ensure that
the probability is as accurate as possible and removed the skew the chance
of Monopoly has on the results, for this I originally wanted to run a million
simulations for each part of the simulations, however with the simulator
this took over seven hours with each simulation lasting between 0.1 and
0.01 seconds. This was too long and created over 82GB worth of data to
analyse, therefore a suitable amount of a thousand simulations to gather
the appropriate data in a acceptable time was chosen.

6.1 Experiment 1: Frequency of landing on

a space

From gathering data from the experiments and running the CSV files through
Matlab scripts I was able to extract the frequency of landing on locations
within the board. This information was gathered by extracting any location
the player moved to during the simulation and then counting the full total
of how many times each of the spaces was landed on. For this experiment
I ran the simulator 1000 times to ensure reduce the chance of the game
skewing the statistics and I used the Monopoly UK house rules.

Figure 6.1 shows a detailed the graph indicating the frequency of landing
on each specific space. As the graph shows there are several areas of frequent
visiting. Firstly is the space Jail, due to the variety of different ways to be
sent to Jail for example, landing on the Go To Jail Space, rolling three
doubles in a row and picking up a Go To Jail card in either the Community
Chest or Chance decks.

Secondly this Figure shows that Community Chest and Chance are one
of the most visited places, this is due to the fact there are three of each
spaces on the entire board which means the average for landing on each
of these spaces is a third of the stated values. This graph also shows that
certain spaces for example Marleybone Station and Mayfair have higher per-
centages which can be attributed to the fact they have cards that progress
the to these locations.

CHAPTER 6. RESULTS 52

Figure 6.1: Percentage of landing on a space in a game of Monopoly

Figure 6.2 shows the percentage of landing on specific groups around
the board, due to their being Four stations of the board, the percentage of
landing on these spaces is highest, followed by Jail due to the ways of being
sent to jail. After this there are three common groups to land on, these are
Orange, Red and Yellow. The reason for the high frequency of landing on
these spaces is due to the location of the groups on the board, due to the
distance from Jail, the most frequently visited Space on the board, they
are likely to be landed on from a dice roll. Due to the frequency of landing
on these spaces these areas have the possibility for the largest amount of
money made.

CHAPTER 6. RESULTS 53

Figure 6.2: Percentage of landing on any Space in a Group in a game of
Monopoly

6.2 Experiment 2: Amount of Money

earned by each Property, Station and

Utility

Following the first experiment I wanted to investigate my hypothesis that
either of the Orange, Red or Yellow group earns the most money during a
several simulations. My simulator would keep a log of every time money
was paid to a player when landing on a space to gather the data needed
for an analysis. For this experiment I ran the simulator 1000 times to
ensure reduce the chance of the game skewing the statistics and I used the
Monopoly UK house rules.

Figure 6.3 shows the percentage of rent earned over the period of the
simulations, the key area to note is the fact Mayfair, the most expensive
property on the board earns the most money while the second most expen-
sive property, Park Lane earns almost half as much, this can be explained
due to the fact their is a card that sends players directly to Mayfair which
increases the frequencies of players landing on this space. Following this it
can be seen that the spaces to earn the most money are all linked closely
with their group. Figure 6.4 shows the split of percentage of money earned
in regards to the group each space belonged to, this result proved my hy-

CHAPTER 6. RESULTS 54

pothesis that the groups Orange, Red and Yellow are the groups that earn
the most money, as Red and Orange are the top two and Yellow is a close
fourth in money earned from a group.

Figure 6.3: Percentage of rent earned from each space in a game of
Monopoly

CHAPTER 6. RESULTS 55

Figure 6.4: Percentage of landing on any Space in a Group in a game of
Monopoly

6.3 Experiment 3: How the quantity of

players changes the length and the net

worth of the winning player in a game

of Monopoly

With the analysis of data from my experiments I would gather data regard-
ing the average length of the game in turns, a turn is defined as a single
loop through all of the players in the game, the average net worth of each
winner in the simulation and the percentage each player won within a simu-
lation. For this experiment I ran the simulator 1000 times to ensure reduce
the chance of the game skewing the statistics and I used the Monopoly UK
house rules.

Table 6.1 shows the how adding players to the simulations affects the
length of the game as the data shows 5 and 6 players in a game create the
longest length while a 4 player game results in a short game. Their could
be many reasons for this increase in time, it may be due to the fact with
5 and 6 players it takes a while for player to gain a full group from other
players and takes time before a player is bankrupt. I found with the data

CHAPTER 6. RESULTS 56

Players in Game Average Length in turns
2 165
3 155
4 151
5 210
6 222
7 166
8 153

Table 6.1: Players In Game vs Average Length of Game

Players in Game Average Net Worth of Winner
2 9452
3 8132
4 9560
5 14547
6 18360
7 15746
8 16556

Table 6.2: Players In Game vs Average Net Worth of Winner

I used for these experiments due to the fact some games would never end
and would be stopped at 500 turns to ensure that the simulator did not get
stuck in a loop, these anomalies could have caused a skew in these results.

Table 6.2 shows how the number of players in a game affects the average
net worth of the player that won the simulation. This data indicates that
the more players in a game, the greater the amount of net worth of the
winner. It also indicates that length of the game as shown in Table 6.1
may have an effect of the net worth of the winner. Again the data may
have been skewed due to the possibility of games lasting forever and these
anomalies are included within the data analysis.

6.4 Experiment 4: Does changing the

amount of dice each player have cause a

difference to locations landed on?

For this experiment I examined the affect that more dice for each player
would make a difference to the percentages of landing on specific groups.

CHAPTER 6. RESULTS 57

For this experiment I ran the simulator 1000 times with traditional house
rules, however each player had a different quantity of dice during each
run of the simulator. Figure 6.5 shows a table which has the percentages
between landing on spaces and the amount of dice each player has. From
the table you can notice that several of the most common groups normally
had reduced the frequency of landing on these positions, while spaces closer
to the starting position were increased in their frequency.

Figure 6.5: Percentage of landing on any Space in a Group in a game of
Monopoly depending on the amount of dice each player has

6.5 Experiment 5: How much does the

starting money affect the players

winning percentage

For this experiment I examined the effect how different starting money
would affect a players chance of winning in a game of Monopoly. Although
this would not be a fair addition to new rules it could be part of a new
rule set so the experiment will show me how the percentage differs to the

CHAPTER 6. RESULTS 58

starting money. For this experiment I used four players, three of which had
the default starting money of 1500 while the fourth player had between 500
and 3000 as their starting money and the experiments went up in iterations
of 100. The simulator was run 1000 times to reduce the possibility of chance
effecting the results.

Figure 6.6 indicates a positive correlations between starting money and
the percentage of wins the player achieves. On average for every 100 they
have above the starting money they gain 2% and every 100 below the start-
ing money the lose 2% chance of winning the game. This is an interesting
result and could be used as a possible new set of rules.

Figure 6.6: Chance of player winning depending on their starting money in
a game of Monopoly

6.6 Experiment 6: What difference does

the amount of dice have on the players

winning percentage

Similar to the previous experiment I wanted to see how much of a difference
the amount of dice a player rolled with had within the game. The reason
for this experiment and the last experiment was to investigate of creating
a rule to allow players to buy or sell dice at the beginning of the game. To

CHAPTER 6. RESULTS 59

Number of Dice Win %
1 8.1
2 24.1
3 36.7
4 51.5
5 60.5

Table 6.3: Number of Dice vs Player Win %

craft this rule however I needed to gather information about the effect the
dice had on a players winning percentage, so for this experiment I again
used four players, three of which had the default amount of dice being two
and the fourth player had between one and five dice. The simulator was
ran 1000 times to reduce the effect chance had on the results.

Table 6.3 shows the difference the amount of dice has on the players
winning percentage, as expected there is a positive correlation between the
amount of dice the player has and the percentage of games they win. From
the information from Table 6.3 I took an estimation of how much to buy
and sell dice for at the beginning as a possible rules. Table 6.4 contains
the winning percentage for buying and selling dice at 500 each the results
indicate that buying up to two dice for 500 each creates a fair game, however
buying three dice creates an unfair situation and so does selling one dice
for 500. Table 6.5 has a minor adjustment to the rules, the player can buy
up to two dice for 500 each and sell one dice for 1000 this creates a fair new
rule that allows players to make a tactical decision before the game starts
to allow them to have more dice or more starting money.

Number of Dice Starting Money Win %
1 2000 15.7
2 1500 24.8
3 1000 25.5
4 500 26.0
5 0 7.2

Table 6.4: Number of Dice Starting Money vs Player Win % version 1

CHAPTER 6. RESULTS 60

Number of Dice Starting Money Win %
1 2500 24.4
2 1500 24.8
3 1000 25.5
4 500 26.0

Table 6.5: Number of Dice Starting Money vs Player Win % version 2

6.7 Experiment 7: Does starting position

affect a players chance of winning?

For this experiment I wanted to investigate if the starting position of the
player had an impact on their chances of winning, this experiment would
involve four players, three players would start from GO, while one player
will start from one of the four corners. The simulator would be run 1000
times to ensure reduce the effect chance has on the results.

As Table 6.6 shows the effect the starting position has on a players
chance of winning is minimal, the fluctuation from the fair results of 25%
can be explained by the element of chance in the game of Monopoly

Starting Position Win %
Go 24.4
Jail 25.1

Free Parking 26.0
Go To Jail 25.6

Table 6.6: Player Starting vs Player Win %

Chapter 7

Evaluation

From the results I have gathered I can see that their are many possibili-
ties for extending the rules of Monopoly to be both fair and interesting I
have also found some interesting information regarding possible tactics for
playing Monopoly with the spaces that other the most profit due to the
frequency they are visited.

My first experiment, in Section 6.1 on Page 51, showed the probabilities
of landing on specific spaces and groups. The information gained from
this experiment not only gave me an insight into the statistics of the game
but was also used, with reference to the work done by Truman Collins1,
to ensure that my simulator worked as expected. Although some of my
frequency percentages were off by small margins, possibly due to the chance
of the game and the limited simulations I could do in the time frame, no
major anomalies were visible except for the Chance, Community Chest and
Go to Jail locations due to the way I was gathering and calculating my
data. If I followed the same decisions as Truman Collins1, then my results
may have been even closer which would have given me more confidence in
the implementation of the simulator. The results from my first experiment
gave me a hypothesis to which I needed to run another experiment to prove
that the most frequently visited spaces create the most profit. The results
from the experiment proved this and further experiments allowed me to
look into the changes certain rules made to the locations.

Although I ran some experiments to find out the difference new rules had
on the game and was able to create a new addition to the house rules that
was fair with my rule of being able to buy and sell dice before the game
starts, I feel like I could have run a lot more experiments with different
combinations of rules and see how each of the changes effected the game,

1Collins (1997 accessed 03/05/2016)

61

CHAPTER 7. EVALUATION 62

not only in the fairness of the game but also analysing the length of the
game and the winning net worth like I focused on in my third experiment.
The amount of possibilities available to extend and expand the rules is
large and the amount of data available to analyse gives arise to hundreds
and thousands of different experiments looking into different aspects of the
games and how certain changes to the rules effect these aspects.

Overall the results from my experiments were promising as they indicate
both a working complete simulator and the possibility of extending the rules
of Monopoly and testing them against the simulator to ensure the changes
were fair, however I feel like more experiments ran on how different rules
change the aspects of the game could have created a better conclusion
overall. However from the experiments I have run I have designed a new
addition to house rules of Monopoly which will allow players, before the
start of the game, to buy dice with their starting money for 500 each and
have a max of 4 dice or to sell one die for 1000 and only have one die for
the duration of the game. This rules adds a exciting and tactical twist to
the game but does not give any player an advantage or disadvantage for
making this decision.

Chapter 8

Future Work

There are many areas of the project I would expand on in future iterations
with the inclusion of more flexible scripting , more robust testing and the
creation of another program which can take in the rule set created by a
user and thus play a game of Monopoly with a custom rule set they have
designed.

The first change I would make would to be refractor some of the orig-
inal design choices I had made for example the BoardHelper class uses a
Singleton design. Although at the time it felt like the most effective way to
implement the class to ensure only one instance of the class is allowed in
a simulation, overall it restricted the unit tests of other classes and made
them fragile. During my implementation I found alternatives to a Singleton
design which allowed for one instances to be used, this was in the form of a
static class which held the instances and would be the only form of access
for classes to use the one instance.

Following this refractoring of any Singleton design patterns I had im-
plemented I would refractor and expand the unit tests I had created, this
would be to ensure that the classes were working as expected and ensure
that any dependencies were mocked out allowing for a more stable build
and ensuring as many bugs were removed from the program before further
development began. These tests would also be essential, with the second
iteration of refractoring that would occur within the project. This refac-
toring would focus on moving as much core logic from Java and writing it
in Lua allowing for the simulator to be expanded and extended as much as
possible while retaining the structure of the simulator.

The key areas that would be moved into Lua would be the logic of the
Bank class which holds the logic to handling all transactions between players
and between players and the Bank, this class holds a lot of possibility for
extending and changing which would allow for more creative rules to take

63

CHAPTER 8. FUTURE WORK 64

into consideration. Another area that I would to refractor out would be
the BoardHelper class, using Lua to run the logic of how players move from
one space to another would also be critical to expanding the possibilities of
creating new and exciting rules. Finally the last area I would move to Lua
would be the decision making of the players within the simulator, this would
allow for users to easily experiment with different play styles and implement
different AI for the players and see the difference that would make in the
simulation. Currently the player is based of a basic heuristic, if they have
enough money over a threshold they will buy otherwise they won’t. An
expansion on the decision making would allow for more interesting results
from the data and also give an idea of the most effective playing style for a
game of Monopoly.

Following the implementation of the Lua scripts I would want to create
a form of test bench, this would allow for users to test that the Lua scripts
worked as expected with the Java code, these tests would give the user
feedback on where their Lua script failed tests and would ensure the entire
program did not crash when the user changed the Lua file. This would
also add into the changes that would be made to the GUI, to ensure that
any error handling was done correctly and that the user was informed if
mistakes were made. Another area to expand on, would be to run basic
data analysis of the simulations after they have run to ensure the new rules
implemented were fair by cross referencing with data based on the house
rules and also give basic information of the simulation, for example how
many turns the game lasted for, which property earned the most money
etc.

Lastly I would plan on implementing an export feature which would
allow a user to export a file containing all the rules they have designed
and then run it through another program which would allow they to play a
game of Monopoly, with their own designed rules and also with any player
AI they have designed. This would allow for an way to use the rules that
have been created by running the simulations and also allow for exchanging
of different rules and AIs through the open-source community.

Chapter 9

Conclusions

The key aim of this project was to create a complete working simulator
of the board game Monopoly that can be easily extend to implement new
and exciting rules with the end result to create a new rule that can be
applied to the house rules of Monopoly which is both exciting and fair.
Following a TDD development approach I was able to develop a complete
working simulator which allowed users to extend and add new rules into
the simulator and gather the raw data from the simulations ready to be
analysed to ensure that the new rules were fair. This development process
took up the majority of the project time frame.

From the experiments I ran and with reference to the work done by Tru-
man Collins1 I was able to confirm that my simulator was able to simulate
games of Monopoly, with a small degree of variation in the statistics, and
following the experiments I was able to design a new set of rules. This new
rule will allow players, before the start of the game, to buy dice with their
starting money for 500 each and have a max of 4 dice or to sell one die for
1000 and only have one die for the duration of the game. This rules adds
a exciting and tactical twist to the game but does not give any player an
advantage or disadvantage for making this decision.

With more development on the simulator and more experiments run.
testing different rules and playing styles and their effect on the game creates
new possilbites for designing new rules and understanding the most effective
strategies for playing a Monopoly.

Overall the project was a success in developing a complete working sim-
ulator and the designing of a new addition to the house rules of Monopoly,
with more work on the project and the running of additional experiments
more rules could be designed and tested using the simulator..

1Collins (1997 accessed 03/05/2016)

65

Chapter 10

Reflection

Through the course of this project I have been able to learn a variety of
skills, techniques and approaches to tackling a problem. Although I have
learnt a many of skills during this project, there are areas of the project I
would have done differently and will use a guidance in further projects to
come.

Firstly I feel like I could have spent more time designing the architecture
of the project, this would have allowed me to avoiding making some errors
in my implementation for example my choice of using Singleton design
pattern. This choice caused issues with the implementation of my project
and made the testing of certain class less robust, which in the long run
caused the refractoring of the project a more difficult task then it needed
to be. However if I spent more time to design the architecture I could have
come up with a more elegant solution rather than using a Singleton design
pattern.

Secondly my choice of development strategy of TDD linked with the use
of a CI server was very useful to ensure that bugs within my system were
found quickly after being introduced and it allowed me to ensure a certain
degree of stability within any stage of my project. Although the use of a CI
server was useful, I felt for a sole developer project it may have be slightly
redundant due to the fact all code I wrote was tested before committing
and by the end of the project I only had unit tests which run fast enough
on my own machine. In future iterations of the project when the unit tests
increase in volume and both integration tests and GUI tests are integrated
the use of a CI server to handle running all the tests will come into greater
effect. The use of following a TDD development model did allow me to
focus on ensuring that my code was tested as much as possible, however
I feel that I needed to include more tests to ensure edge cases within the
program were tested. Also the stability of some tests needed to be improved

66

CHAPTER 10. REFLECTION 67

as not all the dependencies were Mocked out, allowing for one class to fail
tests because of incorrect logic within a class it uses meaning that bugs
were hard to trace.

In hindsight the development section of my project was the most efficient
even with mistakes that were made and poor design decisions. However I
found once my simulator was complete the running of my experiments was
unstructured, which led to difficulty In both analysing the results, I should
have taken more time to structure my experiments and analyse the data,
this in turn would have provided me with more experiments to run and
possibly have better conclusions to draw from my results.

Lastly I feel like I should have spent longer on the report, due to the
difficulty I have in writing technical reports my progress in writing this
report was not as effective as I would have hoped. With such a large
project undertaken there was a lot that could have been discussed with
this report and in varying detail, this led to me being overwhelmed by the
task of writing the report. I feel like if I had structured my report more
effectively I would have been able to write a more structured and detailed
report, this would have been achieved by writing parts of the report as I
was developing the project for example writing the log of my development
during the development would have allowed me to go into detail of all the
issues that arose as they happened instead of recalling them from memory.
Even though I struggle with writing technical reports, I still think I have
learnt a great deal in regards to structuring and designing a professional
report and the use of LaTeX to generate reports.

Overall I have learnt a great deal from this project not only in software
development but also in my own management of both skills and time. Key
areas I would aim to improve in the future would be the designing of my
architecture and taking some time to design the overall system before be-
ginning to write code and the structuring of my documentation, including
the results analysis and the writing of the technical report.

Appendix 1

Git Branching Model

1

1Driessen (2010 accessed 28/04/2016)

68

Appendix 2

Board Group Enum

1 //Group.java

2 public enum Group {

3 Brown,LightBlue,Violet,Orange,Red,Yellow,Green,DarkBlue,Utility,

4 Station,GO,Tax,Jail,GoToJail,Chance,CommunityChest,FreeParking

5 }

69

Appendix 3

Space Class Code

1 //Space.java

2

3 public abstract class Space {

4 private Group group;

5 private int location;

6 private String name;

7

8 public Group getGroup(){

9 return group;

10 }

11 protected void setGroup(Group newGroup){

12 group = newGroup;

13 }

14 public int getLocation(){

15 return location;

16 }

17 protected void setLocation(int loc){

18 location=loc;

19 }

20 public String getName() {

21 return name;

22 }

23

24 protected void setName(String name) {

25 this.name = name;

26 }

27 public abstract void onVisit(Player player);

28

29 }

70

Appendix 4

Free Parking Class Code

1 //FreeParking.java

2 public class FreeParking extends Space {

3

4

5 public FreeParking(String name, int loc, Group group){

6 super.setGroup(group);

7 super.setLocation(loc);

8 super.setName(name);

9 }

10

11 @Override

12 public void onVisit(Player player) {

13 }

14 }

71

Appendix 5

Ownable Class Code

1 //Ownable.class

2 public abstract class Ownable extends Space {

3 private int cost;

4 private int mortgagePrice;

5 private boolean mortgaged;

6 private Player owner;

7

8 public int getCost() {

9 return cost;

10 }

11

12 public void setCost(int cost) {

13 this.cost = cost;

14 }

15

16 public int getMortgagePrice() {

17 return mortgagePrice;

18 }

19

20

21

22 public void setMortgagePrice(int mortgagePrice) {

23 this.mortgagePrice = mortgagePrice;

24 }

25

26 public boolean isMortgaged() {

27 return mortgaged;

28 }

29

72

APPENDIX 5. OWNABLE CLASS CODE 73

30 public void setMortgaged(boolean mortgaged) {

31 this.mortgaged = mortgaged;

32 }

33

34 public Player getOwner() {

35 return owner;

36 }

37

38 public void setOwner(Player owner) {

39 this.owner = owner;

40 }

41 }

Appendix 6

Monopoloy Map CSV File

74

APPENDIX 6. MONOPOLOY MAP CSV FILE 75
L
o
ca

ti
o
n

N
a
m
e

G
ro
u
p

C
o
st

M
o
rt
g
a
g
e

H
o
u
se

C
o
st

B
a
se

R
en

t
1
h
o
u
se

re
n
t

2
h
o
u
se

re
n
t

3
h
o
u
se

re
n
t

4
h
o
u
se

re
n
t

h
o
te
l
re
n
t

1
G
O

G
O

0
0

0
2
0
0

0
0

0
0

0
2

O
ld

K
en

t
R
o
a
d

B
ro
w
n

6
0

3
0

5
0

2
1
0

3
0

9
0

1
6
0

2
5
0

3
C
o
m
m
u
n
it
y
C
h
es
t

C
o
m
m
u
n
it
y
C
h
es
t

0
0

0
0

0
0

0
0

0
4

W
h
it
ec
h
a
p
el

R
o
a
d

B
ro
w
n

6
0

3
0

5
0

4
2
0

6
0

1
8
0

3
2
0

4
5
0

5
In
co

m
e
T
a
x

T
a
x

2
0
0

0
0

0
0

0
0

0
0

6
K
in
g
s
C
ro
ss

S
ta
ti
o
n

S
ta
ti
o
n

2
0
0

1
0
0

0
0

0
0

0
0

0
7

T
h
e
A
n
g
el

Is
li
n
g
to
n

L
ig
h
tB

lu
e

1
0
0

5
0

5
0

6
3
0

9
0

2
7
0

4
0
0

5
5
0

8
C
h
a
n
ce

C
h
a
n
ce

0
0

0
0

0
0

0
0

0
9

E
u
st
o
n
R
o
a
d

L
ig
h
tB

lu
e

1
0
0

5
0

5
0

6
3
0

9
0

2
7
0

4
0
0

5
5
0

1
0

P
en

to
n
v
il
le

R
o
a
d

L
ig
h
tB

lu
e

1
2
0

6
0

5
0

8
4
0

1
0
0

3
0
0

4
5
0

6
0
0

1
1

J
a
il

J
a
il

0
0

0
0

0
0

0
0

0
1
2

P
a
ll
M
a
ll

V
io
le
t

1
4
0

7
0

1
0
0

1
0

5
0

1
5
0

4
5
0

6
2
5

7
5
0

1
3

E
le
ct
ri
c
C
o
m
p
a
n
y

U
ti
li
ty

1
5
0

7
5

0
0

0
0

0
0

0
1
4

W
h
it
eh

a
ll

V
io
le
t

1
4
0

7
0

1
0
0

1
0

5
0

1
5
0

4
5
0

6
2
5

7
5
0

1
5

N
o
rt
h
u
m
b
er
la
n
d
A
v
en

u
e

V
io
le
t

1
6
0

8
0

1
0
0

1
2

6
0

1
8
0

5
0
0

7
0
0

9
0
0

1
6

M
a
ry
le
b
o
n
e
S
ta
ti
o
n

S
ta
ti
o
n

2
0
0

1
0
0

0
0

0
0

0
0

0
1
7

B
o
w

S
tr
ee
t

O
ra
n
g
e

1
8
0

9
0

1
0
0

1
4

7
0

2
0
0

5
5
0

7
5
0

9
5
0

1
8

C
o
m
m
u
n
it
y
C
h
es
t

C
o
m
m
u
n
it
y
C
h
es
t

0
0

0
0

0
0

0
0

0
1
9

M
a
rl
b
o
ro
u
g
h
S
tr
ee
t

O
ra
n
g
e

1
8
0

9
0

1
0
0

1
4

7
0

2
0
0

5
5
0

7
5
0

9
5
0

2
0

V
in
e
S
tr
ee
t

O
ra
n
g
e

2
0
0

1
0
0

1
0
0

1
6

8
0

2
2
0

6
0
0

8
0
0

1
0
0
0

2
1

F
re
e
P
a
rk
in
g

F
re
eP

a
rk
in
g

0
0

0
0

0
0

0
0

0
2
2

T
h
e
S
tr
a
n
d

R
ed

2
2
0

1
1
0

1
5
0

1
8

9
0

2
5
0

7
0
0

8
7
5

1
0
5
0

2
3

C
h
a
n
ce

C
h
a
n
ce

0
0

0
0

0
0

0
0

0
2
4

F
le
et

S
tr
ee
t

R
ed

2
2
0

1
1
0

1
5
0

1
8

9
0

2
5
0

7
0
0

8
7
5

1
0
5
0

2
5

T
ra
fa
lg
a
r
S
q
u
a
re

R
ed

2
4
0

1
2
0

1
5
0

2
0

1
0
0

3
0
0

7
5
0

9
2
5

1
1
0
0

2
6

F
en

ch
u
rc
h
S
t
S
ta
ti
o
n

S
ta
ti
o
n

2
0
0

1
0
0

0
0

0
0

0
0

0
2
7

L
ei
ce
st
er

S
q
u
a
re

Y
el
lo
w

2
6
0

1
3
0

1
5
0

2
2

1
1
0

3
3
0

8
0
0

9
7
5

1
1
5
0

2
8

C
o
v
en

tr
y
S
tr
ee
t

Y
el
lo
w

2
6
0

1
3
0

1
5
0

2
2

1
1
0

3
3
0

8
0
0

9
7
5

1
1
5
0

2
9

W
a
te
r
W

o
rk
s

U
ti
li
ty

1
5
0

7
5

0
0

0
0

0
0

0
3
0

P
ic
ca

d
il
ly

Y
el
lo
w

2
8
0

1
4
0

1
5
0

2
2

1
2
0

3
6
0

8
5
0

1
0
2
5

1
2
0
0

3
1

G
o
T
o
J
a
il

G
o
T
o
J
a
il

0
0

0
0

0
0

0
0

0
3
2

R
eg

en
t
S
tr
ee
t

G
re
en

3
0
0

1
5
0

2
0
0

2
6

1
3
0

3
9
0

9
0
0

1
1
0
0

1
2
7
5

3
3

O
x
fo
rd

S
tr
ee
t

G
re
en

3
0
0

1
5
0

2
0
0

2
6

1
3
0

3
9
0

9
0
0

1
1
0
0

1
2
7
5

3
4

C
o
m
m
u
n
it
y
C
h
es
t

C
o
m
m
u
n
it
y
C
h
es
t

0
0

0
0

0
0

0
0

0
3
5

B
o
n
d
S
tr
ee
t

G
re
en

3
2
0

1
6
0

2
0
0

2
8

1
5
0

4
5
0

1
0
0
0

1
2
0
0

1
4
0
0

3
6

L
iv
er
p
o
o
l
S
tr
ee
t

S
ta
ti
o
n

2
0
0

1
0
0

0
0

0
0

0
0

0
3
7

C
h
a
n
ce

C
h
a
n
ce

0
0

0
0

0
0

0
0

0
3
8

P
a
rk

L
a
n
e

D
a
rk
B
lu
e

3
5
0

1
7
5

2
0
0

3
5

1
7
5

5
0
0

1
1
0
0

1
3
0
0

1
5
0
0

3
9

S
u
p
er

T
a
x

T
a
x

1
0
0

0
0

0
0

0
0

0
0

4
0

M
a
y
fa
ir

D
a
rk
B
lu
e

4
0
0

2
0
0

2
0
0

5
0

2
0
0

6
0
0

1
4
0
0

1
7
0
0

2
0
0
0

Appendix 7

Card Actions Enum

1 //CardAction.java

2 public enum CardAction {

3 AdvanceToLocation,CollectMoneyFromBank,GetOutOfJail,

4 GoToJail,PayBank,CollectFromPlayers,

5 PayBankDependingOnHousesAndHotelsOwned,GoBackSpaces,

6 AdvanceToNearestUtility,AdvanceToNearestStation,PayPlayers

7 }

76

Appendix 8

Card Class Code

1 //Card.java

2 public abstract class Card {

3 private String name;

4 private CardAction action;

5 private int feeToPlayer;

6 private int spacesToMove;

7 private int feePerHouse;

8 private int feePerHotel;

9 private Space location;

10

11

12 protected void setAction(CardAction action) {

13 this.action = action;

14 }

15

16 protected void setFee(int fee) {

17 feeToPlayer = fee;

18 }

19

20 protected void setName(String name) {

21 this.name = name;

22 }

23

24 protected void setLocation(Space location) {

25 this.location = location;

26 }

27

28 protected void setFeePerHouse(int feePerHouse) {

29 this.feePerHouse = feePerHouse;

77

APPENDIX 8. CARD CLASS CODE 78

30 }

31

32 protected void setFeePerHotel(int feePerHotel) {

33 this.feePerHotel = feePerHotel;

34 }

35

36 protected void setSpacesToMove(int spacesToMove) {

37 this.spacesToMove = spacesToMove;

38 }

39

40 public CardAction getAction() { return action; }

41

42 public String getName() {

43 return name;

44 }

45

46 public int getFeeToPlayer() {

47 return feeToPlayer;

48 }

49

50 public int getSpacesToMove() {

51 return spacesToMove;

52 }

53

54 public int getFeePerHouse() {

55 return feePerHouse;

56 }

57

58 public int getFeePerHotel() {

59 return feePerHotel;

60 }

61

62 public Space getLocation() {

63 return location;

64 }

65 public void onDraw(Player player){

66 Logger.getLogger(Logger.GLOBAL_LOGGER_NAME).info(player.getName()

+ " Picked up card " + name + " " + action);

67 Deck deck = Deck.getInstance();

68 BoardHelper boardHelper = BoardHelper.getInstance();

69 Space currentLocation = player.getCurrentLocation();

70 Space newLocation = null;

71 switch (action){

APPENDIX 8. CARD CLASS CODE 79

72

73 case AdvanceToLocation:

74 player.moveToLocation(location);

75 deck.addCard(this);

76 break;

77 case CollectMoneyFromBank:

78 player.receiveMoney(feeToPlayer);

79 deck.addCard(this);

80 break;

81 case GetOutOfJail:

82 player.keepCard(this);

83 break;

84 case GoToJail:

85 player.goToJail();

86 deck.addCard(this);

87 break;

88 case PayBank:

89 player.giveMoneyToBank(feeToPlayer);

90 deck.addCard(this);

91 break;

92 case CollectFromPlayers:

93 player.receiveMoneyFromPlayers(feeToPlayer);

94 deck.addCard(this);

95 break;

96 case PayBankDependingOnHousesAndHotelsOwned:

97 int houses = player.calculateHousesOwned();

98 int hotels = player.calculateHotelsOwned();

99 int payment =

(houses*feePerHouse)+(hotels*feePerHotel);

100 player.giveMoneyToBank(payment);

101 deck.addCard(this);

102 break;

103 case GoBackSpaces:

104 newLocation = boardHelper.moveToSpace(player,

-spacesToMove);

105 player.moveToLocation(newLocation);

106 deck.addCard(this);

107 break;

108 case AdvanceToNearestUtility:

109 newLocation =

boardHelper.moveToNearestUtility(currentLocation);

110 player.moveToLocation(newLocation);

111 deck.addCard(this);

APPENDIX 8. CARD CLASS CODE 80

112 break;

113 case AdvanceToNearestStation:

114 newLocation =

boardHelper.moveToNearestStation(currentLocation);

115 player.moveToLocation(newLocation);

116 deck.addCard(this);

117 break;

118 case PayPlayers:

119 player.payOtherPlayers(feeToPlayer);

120 deck.addCard(this);

121 break;

122 }

123 }

124 }

Appendix 9

Chance Card Class Code

1 //ChanceCard.java

2 public class ChanceCard extends Card {

3

4 public ChanceCard(String name, CardAction action) {

5 super.setAction(action);

6 super.setName(name);

7 }

8

9 public ChanceCard(String name, CardAction action, int

feeOrSpaces) {

10 super.setAction(action);

11 super.setName(name);

12 if(action.equals(CardAction.GoBackSpaces)) {

13 super.setSpacesToMove(feeOrSpaces);

14 }

15 else{

16 super.setFee(feeOrSpaces);

17 }

18 }

19

20 public ChanceCard(String name, CardAction action, Space

location){

21 super.setAction(action);

22 super.setName(name);

23 super.setLocation(location);

24

25 }

26 public ChanceCard(String name, CardAction action, int

feePerHouse, int feePerHotel){

81

APPENDIX 9. CHANCE CARD CLASS CODE 82

27 super.setAction(action);

28 super.setName(name);

29 super.setFeePerHouse(feePerHouse);

30 super.setFeePerHotel(feePerHotel);

31

32 }

33 }

Appendix 10

Cards CSV File

83

APPENDIX 10. CARDS CSV FILE 84

C
a
rd

T
y
p
e

A
ct
io
n

N
a
m
e

A
rg
s

C
o
m
m
u
n
it
y
C
h
es
t

A
d
v
a
n
ce
T
o
L
o
ca

ti
o
n

A
d
v
a
n
ce

to
G
o

G
O

C
o
m
m
u
n
it
y
C
h
es
t

A
d
v
a
n
ce
T
o
L
o
ca

ti
o
n

G
o
to

O
ld

K
en

t
R
o
a
d

O
ld

K
en

t
R
o
a
d

C
o
m
m
u
n
it
y
C
h
es
t

G
o
T
o
J
a
il

G
o
to

J
a
il
d
o
n
o
t
p
a
ss

g
o
d
o
n
o
t
p
a
ss

g
o

C
o
m
m
u
n
it
y
C
h
es
t

P
a
y
B
a
n
k

P
a
y
H
o
sp

it
a
l
B
il
ls

1
0
0

C
o
m
m
u
n
it
y
C
h
es
t

P
a
y
B
a
n
k

D
o
ct
o
r’
s
F
ee
s

5
0

C
o
m
m
u
n
it
y
C
h
es
t

P
a
y
B
a
n
k

P
a
y
y
o
u
r
In
su

ra
n
ce

P
re
m
iu
m

5
0

C
o
m
m
u
n
it
y
C
h
es
t

C
o
ll
ec
tM

o
n
ey

F
ro
m
B
a
n
k

B
a
n
k
er
ro
r
in

y
o
u
r
fa
v
o
u
r
co

ll
ec
t
+
A
K
M
-2
0
0

2
0
0

C
o
m
m
u
n
it
y
C
h
es
t

C
o
ll
ec
tM

o
n
ey

F
ro
m
B
a
n
k

A
m
m
u
n
it
y
M
a
tu

re
s
co

ll
ec
t
+
A
K
M
-1
0
0

1
0
0

C
o
m
m
u
n
it
y
C
h
es
t

C
o
ll
ec
tM

o
n
ey

F
ro
m
B
a
n
k

Y
o
u
in
h
er
it

+
A
K
M
-1
0
0

1
0
0

C
o
m
m
u
n
it
y
C
h
es
t

C
o
ll
ec
tM

o
n
ey

F
ro
m
B
a
n
k

F
ro
m

sa
le

o
f
st
o
ck

y
o
u
g
et

+
A
K
M
-5
0

5
0

C
o
m
m
u
n
it
y
C
h
es
t

C
o
ll
ec
tM

o
n
ey

F
ro
m
B
a
n
k

R
ec
ei
v
e
in
te
re
st

o
n
sh

a
re
s

2
5

C
o
m
m
u
n
it
y
C
h
es
t

C
o
ll
ec
tM

o
n
ey

F
ro
m
B
a
n
k

In
co

m
e
T
a
x
R
ef
u
n
d

2
0

C
o
m
m
u
n
it
y
C
h
es
t

C
o
ll
ec
tM

o
n
ey

F
ro
m
B
a
n
k

Y
o
u
h
a
v
e
w
o
n
se
co

n
d
p
la
ce

in
a
b
ea

u
ty

co
n
te
st

co
ll
ec
t
+
A
K
M
-1
0

1
0

C
o
m
m
u
n
it
y
C
h
es
t

C
o
ll
ec
tF

ro
m
P
la
y
er
s

It
’s

y
o
u
r
B
ir
th

d
a
y

1
0

C
o
m
m
u
n
it
y
C
h
es
t

G
et
O
u
tO

fJ
a
il

G
et

o
u
t
o
f
J
a
il
fr
ee

C
a
rd

C
h
a
n
ce

G
o
B
a
ck

S
p
a
ce
s

G
o
b
a
ck

th
re
e
sp

a
ce
s

3
C
h
a
n
ce

A
d
v
a
n
ce
T
o
L
o
ca

ti
o
n

A
d
v
a
n
ce

to
G
o

G
O

C
h
a
n
ce

G
o
T
o
J
a
il

G
o
to

J
a
il
d
o
n
o
t
p
a
ss

g
o
d
o
n
o
t
p
a
ss

g
o

C
h
a
n
ce

A
d
v
a
n
ce
T
o
L
o
ca

ti
o
n

A
d
v
a
n
ce

to
P
a
ll
M
a
ll

P
a
ll
M
a
ll

C
h
a
n
ce

A
d
v
a
n
ce
T
o
L
o
ca

ti
o
n

A
d
v
a
n
ce

to
M
a
rl
y
eb

o
n
e
S
ta
ti
o
n

M
a
ry
le
b
o
n
e
S
ta
ti
o
n

C
h
a
n
ce

A
d
v
a
n
ce
T
o
L
o
ca

ti
o
n

A
d
v
a
n
ce

to
M
a
y
fa
ir

M
a
y
fa
ir

C
h
a
n
ce

P
a
y
B
a
n
k
D
ep

en
d
in
g
O
n
H
o
u
se
sA

n
d
H
o
te
ls
O
w
n
ed

G
en

er
a
l
R
ep

a
ir
s

2
5

1
0
0

C
h
a
n
ce

P
a
y
B
a
n
k
D
ep

en
d
in
g
O
n
H
o
u
se
sA

n
d
H
o
te
ls
O
w
n
ed

S
tr
ee
t
R
ep

a
ir
s

4
0

1
1
5

C
h
a
n
ce

P
a
y
B
a
n
k

P
a
y
S
ch

o
o
l
fe
es

1
5
0

C
h
a
n
ce

P
a
y
B
a
n
k

D
ru

n
k
in

C
h
a
rg
e

2
0

C
h
a
n
ce

P
a
y
B
a
n
k

S
p
ee
d
in
g
F
in
e

1
5

C
h
a
n
ce

C
o
ll
ec
tM

o
n
ey

F
ro
m
B
a
n
k

B
u
il
d
in
g
L
o
a
n
M
a
tu

re
s

1
5
0

C
h
a
n
ce

C
o
ll
ec
tM

o
n
ey

F
ro
m
B
a
n
k

W
o
n
a
cr
o
ss
w
o
rd

co
m
p
et
io
n

1
0
0

C
h
a
n
ce

C
o
ll
ec
tM

o
n
ey

F
ro
m
B
a
n
k

B
a
n
k
p
a
y
s
d
iv
id
en

d
5
0

C
h
a
n
ce

G
et
O
u
tO

fJ
a
il

G
et

o
u
t
o
f
J
a
il
fr
ee

C
a
rd

C
o
m
m
u
n
it
y
C
h
es
t

A
d
v
a
n
ce
T
o
N
ea

re
st
U
ti
li
ty

A
d
v
a
n
ce

to
N
ea

re
st

U
ti
li
ty

C
h
a
n
ce

A
d
v
a
n
ce
T
o
N
ea

re
st
S
ta
ti
o
n

A
d
v
a
n
ce

T
o
N
ea

re
st

S
ta
ti
o
n

Appendix 11

Board Helper Unit Test

1 //BoardHelperTest.java

2 public class BoardHelperTest extends TestCase {

3

4 public void testPopulateBoard() throws Exception {

5 BoardHelper boardHelper = BoardHelper.getInstance();

6 boardHelper.populateBoard("Monopoly Map.csv");

7 }

8

9 public void testRetrieveSpaceFromIntLocation() throws

Exception {

10 BoardHelper boardHelper = BoardHelper.getInstance();

11 boardHelper.populateBoard("Monopoly Map.csv");

12 Space go = boardHelper.getSpaceOnBoard(0);

13 assertTrue(go.getName().equalsIgnoreCase("GO"));

14 }

15

16 public void testRetrieveSpaceFromName() throws Exception {

17 BoardHelper boardHelper = BoardHelper.getInstance();

18 boardHelper.populateBoard("Monopoly Map.csv");

19 Space go = boardHelper.getSpaceOnBoard("go");

20 assertEquals(go.getLocation(), 0);

21 }

22 public void testMoveAroundBoard() throws Exception {

23 BoardHelper boardHelper = BoardHelper.getInstance();

24 boardHelper.populateBoard("Monopoly Map.csv");

25 Space go = boardHelper.getSpaceOnBoard(0);

26 int spacesToMove = 4;

27 Space expectedSpace =

boardHelper.getSpaceOnBoard(spacesToMove);

85

APPENDIX 11. BOARD HELPER UNIT TEST 86

28 Player mockPlayer = mock(Player.class);

29 when(mockPlayer.getCurrentLocation()).thenReturn(go);

30 assertEquals(expectedSpace,boardHelper.moveToSpace(mockPlayer,spacesToMove));

31 }

32

33 }

Appendix 12

Card Unit Test

1 //CardTest.java

2

3 public class CardTest extends TestCase {

4

5 private Deck deck = Deck.getInstance();

6 public void setUp(){

7 deck.initializeBlankDeck();

8 }

9

10 public void testOnDrawAdvanceToLocation() throws Exception {

11 Player player = mock(Player.class);

12 Space space = mock(Space.class);

13 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.AdvanceToLocation,space);

14

15 card.onDraw(player);

16 verify(player,atLeastOnce()).moveToLocation(space);

17 }

18 public void testOnDrawCollectMoneyFromBank() throws Exception {

19 Player player = mock(Player.class);

20 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.CollectMoneyFromBank,10);

21

22 card.onDraw(player);

23 verify(player,atLeastOnce()).receiveMoney(10);

24 }

25 public void testOnDrawGetOutOfJail() throws Exception {

26 Player player = mock(Player.class);

27

87

APPENDIX 12. CARD UNIT TEST 88

28 Space space = mock(Space.class);

29 CommunityChestCard card = new CommunityChestCard("Test

1",CardAction.GetOutOfJail);

30

31 card.onDraw(player);

32 verify(player,atLeastOnce()).keepCard(card);

33 }

34 public void testOnDrawPayBank() throws Exception {

35 Player player = mock(Player.class);

36 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.PayBank,10);

37

38 card.onDraw(player);

39 verify(player,atLeastOnce()).giveMoneyToBank(10);

40 }

41 public void testOnDrawCollectFromPlayers() throws Exception {

42 Player player = mock(Player.class);

43 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.CollectFromPlayers,10);

44

45 card.onDraw(player);

46 verify(player,atLeastOnce()).receiveMoneyFromPlayers(10);

47 }

48 public void testOnDrawPayBankDependingOnHouseAndHotels()

throws Exception {

49 Player player = mock(Player.class);

50 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.PayBankDependingOnHousesAndHotelsOwned,10,20

);

51

52 card.onDraw(player);

53 verify(player,atLeastOnce()).giveMoneyToBank(anyInt());

54 }

55

56 public void testOnDrawGoBackSpaces() throws Exception {

57 BoardHelper boardHelper = BoardHelper.getInstance();

58 boardHelper.populateBoard("Monopoly Map.csv");

59 Player player = mock(Player.class);

60 Space startingSpace = boardHelper.getSpaceOnBoard(1);

61 Space expectedSpace = boardHelper.getSpaceOnBoard(38);

62

63 when(player.getCurrentLocation()).thenReturn(startingSpace);

APPENDIX 12. CARD UNIT TEST 89

64 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.GoBackSpaces,3);

65

66 card.onDraw(player);

67 verify(player,atLeastOnce()).moveToLocation(expectedSpace);

68 }

69 public void testOnDrawAdvanceToNearestUtility() throws

Exception {

70 BoardHelper boardHelper = BoardHelper.getInstance();

71 boardHelper.populateBoard("Monopoly Map.csv");

72 Player player = mock(Player.class);

73 Space space = boardHelper.getSpaceOnBoard(10);

74 when(player.getCurrentLocation()).thenReturn(space);

75 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.AdvanceToNearestUtility);

76

77 card.onDraw(player);

78 verify(player,atLeastOnce()).moveToLocation(any(Space.class));

79 }

80 public void testOnDrawAdvanceToNearestStation() throws

Exception {

81 BoardHelper boardHelper = BoardHelper.getInstance();

82 boardHelper.populateBoard("Monopoly Map.csv");

83 Player player = mock(Player.class);

84 Space space = boardHelper.getSpaceOnBoard(10);

85 when(player.getCurrentLocation()).thenReturn(space);

86 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.AdvanceToNearestStation);

87

88 card.onDraw(player);

89 verify(player,atLeastOnce()).moveToLocation(any(Space.class));

90 }

91 public void testOnDrawPayOtherPlayers() throws Exception {

92 Player player = mock(Player.class);

93 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.PayPlayers,10);

94

95 card.onDraw(player);

96 verify(player,atLeastOnce()).payOtherPlayers(10);

97 }

98

99

100 }

Appendix 13

Deck Unit Test

1 //DeckTest.java

2 public class DeckTest extends TestCase {

3

4 private Deck deck = Deck.getInstance();

5 public void setUp(){

6

7 deck.initializeBlankDeck();

8 }

9 public void testInitialiseEmptyDeck(){

10

11 assertTrue(deck.drawChanceCard() == null);

12 assertTrue(deck.drawCommunityChestCard() == null);

13 }

14 public void testAddingChanceCardToDeck(){

15

16 ChanceCard card = new ChanceCard("Test 1",

CardAction.GoBackSpaces);

17 deck.addCard(card);

18 assertEquals(card,deck.drawChanceCard());

19 }

20 public void testAddingSeveralChanceCardToDeck(){

21

22 ChanceCard card = new ChanceCard("Test 1",

CardAction.GoBackSpaces);

23 ChanceCard card1 = new ChanceCard("Test 2",

CardAction.GoBackSpaces);

24 ChanceCard card2 = new ChanceCard("Test 3",

CardAction.GoBackSpaces);

90

APPENDIX 13. DECK UNIT TEST 91

25 ChanceCard card3 = new ChanceCard("Test 4",

CardAction.GoBackSpaces);

26 ChanceCard card4 = new ChanceCard("Test 5",

CardAction.GoBackSpaces);

27 deck.addCard(card);

28 deck.addCard(card1);

29 deck.addCard(card2);

30 deck.addCard(card3);

31 deck.addCard(card4);

32

33 assertEquals(card,deck.drawChanceCard());

34 assertEquals(card1,deck.drawChanceCard());

35 assertEquals(card2,deck.drawChanceCard());

36 assertEquals(card3,deck.drawChanceCard());

37 assertEquals(card4,deck.drawChanceCard());

38

39 }

40 public void testAddingCommunityChestCardsToDeck(){

41

42 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.GoBackSpaces);

43 deck.addCard(card);

44 assertEquals(card,deck.drawCommunityChestCard());

45 }

46 public void testAddingSeveralCommunityChestCardsToDeck(){

47

48 CommunityChestCard card = new CommunityChestCard("Test 1",

CardAction.GoBackSpaces);

49 CommunityChestCard card1 = new CommunityChestCard("Test

2", CardAction.GoBackSpaces);

50 CommunityChestCard card2 = new CommunityChestCard("Test

3", CardAction.GoBackSpaces);

51 CommunityChestCard card3 = new CommunityChestCard("Test

4", CardAction.GoBackSpaces);

52 CommunityChestCard card4 = new CommunityChestCard("Test

5", CardAction.GoBackSpaces);

53 deck.addCard(card);

54 deck.addCard(card1);

55 deck.addCard(card2);

56 deck.addCard(card3);

57 deck.addCard(card4);

58

59 assertEquals(card,deck.drawCommunityChestCard());

APPENDIX 13. DECK UNIT TEST 92

60 assertEquals(card1,deck.drawCommunityChestCard());

61 assertEquals(card2,deck.drawCommunityChestCard());

62 assertEquals(card3,deck.drawCommunityChestCard());

63 assertEquals(card4,deck.drawCommunityChestCard());

64

65 }

66 public void testShuffleFunction(){

67

68 ChanceCard card = new ChanceCard("Test 1",

CardAction.GoBackSpaces);

69 ChanceCard card1 = new ChanceCard("Test 2",

CardAction.GoBackSpaces);

70 ChanceCard card2 = new ChanceCard("Test 3",

CardAction.GoBackSpaces);

71 ChanceCard card3 = new ChanceCard("Test 4",

CardAction.GoBackSpaces);

72 ChanceCard card4 = new ChanceCard("Test 5",

CardAction.GoBackSpaces);

73 CommunityChestCard card5 = new CommunityChestCard("Test

1", CardAction.GoBackSpaces);

74 CommunityChestCard card6 = new CommunityChestCard("Test

2", CardAction.GoBackSpaces);

75 CommunityChestCard card7 = new CommunityChestCard("Test

3", CardAction.GoBackSpaces);

76 CommunityChestCard card8 = new CommunityChestCard("Test

4", CardAction.GoBackSpaces);

77 CommunityChestCard card9 = new CommunityChestCard("Test

5", CardAction.GoBackSpaces);

78 deck.addCard(card);

79 deck.addCard(card1);

80 deck.addCard(card2);

81 deck.addCard(card3);

82 deck.addCard(card4);

83 deck.addCard(card5);

84 deck.addCard(card6);

85 deck.addCard(card7);

86 deck.addCard(card8);

87 deck.addCard(card9);

88 deck.shuffleDecks();

89

90 }

91

92 }

Appendix 14

Java to Lua Communication
Example

93

Appendix 15

Jail Rules Class without Lua

1 //JailRules.class

2

3 public class JailRules {

4 private static JailRules instance = new JailRules();

5 private static int amountOfRollsToGetOutOfJail;

6 private static int feeToPayToGetOutOfJail;

7 private static boolean canEarnRent;

8

9 private JailRules(){};

10 public static void init(int rollsToGetOutOfJail, int fee,

boolean earnRent){

11 amountOfRollsToGetOutOfJail = rollsToGetOutOfJail;

12 feeToPayToGetOutOfJail = fee;

13 canEarnRent = earnRent;

14 }

15

16 public static JailRules getInstance(){

17 return instance;

18 }

19 public int amountOfRollsToGetOutOfJail(){

20 return amountOfRollsToGetOutOfJail;

21 }

22 public int feeToPayToGetOutOfJail(){

23 return feeToPayToGetOutOfJail;

24 }

25 public boolean canEarnRent(){

26 return canEarnRent;

27 }

28 }

94

Appendix 16

Bank Rules: Auction Method
initial Version

1 public void auctionProperty(Ownable property){

2 Vector<Player> players =

AllPlayers.getInstance().getAllPlayers();

3 int baseCostOfProperty = property.getCost();

4 int startingPriceOfProperty = (int)(baseCostOfProperty *

auctionRules.getStartingPriceMultiplier());

5 int currentPriceOfProperty = startingPriceOfProperty;

6 int askingPriceOfProperty = startingPriceOfProperty;

7 int incrementOfAuction = (int)(baseCostOfProperty*

auctionRules.getIncrementMultiplier());

8 boolean auctionRunning = true;

9 Player topBidder = null;

10 while(auctionRunning){

11 Player oldTopBidder = topBidder;

12 for(Player player : players){

13 if(player.wantsToBuyPropertyForPrice(property,askingPriceOfProperty)

&& !player.equals(topBidder)){

14 topBidder = player;

15 currentPriceOfProperty= askingPriceOfProperty;

16 askingPriceOfProperty += incrementOfAuction;

17 }

18 }

19 if(topBidder.equals(oldTopBidder)){

20 auctionRunning = false;

21 }

22 }

23 topBidder.spendMoney(currentPriceOfProperty);

95

APPENDIX 16. BANK RULES: AUCTION METHOD INITIAL
VERSION 96

24 property.setOwner(topBidder);

25 topBidder.addProperty(property);

26 }

Appendix 17

Jail Rules class Using Lua

1 \\JailRules.java

2

3 public class JailRules {

4

5 LuaValue _G;

6

7 public JailRules(String luaFileLocation) {

8 _G = JsePlatform.standardGlobals();

9 _G.get("dofile").call(LuaValue.valueOf(luaFileLocation));

10 }

11

12

13 public int amountOfRollsToGetOutOfJail(){

14 LuaValue methodAmountOfRollsToGetOutOfJail =

_G.get("amountOfRollsToGetOutOfJailFunc");

15 LuaValue amountOfRolls =

methodAmountOfRollsToGetOutOfJail.call();

16 return amountOfRolls.toint();

17 }

18 public int feeToPayToGetOutOfJail(){

19 LuaValue methodGetSalary =

_G.get("feetToPayToGetOutOfJailFunc");

20 LuaValue salary = methodGetSalary.call();

21 return salary.toint();

22 }

23 public boolean canEarnRent(){

24 LuaValue methodGetSalary = _G.get("canEarnRentFunc");

25 LuaValue salary = methodGetSalary.call();

26 return salary.toboolean();

97

APPENDIX 17. JAIL RULES CLASS USING LUA 98

27 }

28

29 public int amountOfDoublesToBeSentToJail() {

30 LuaValue methodGetSalary =

_G.get("amountOfDoublesToBeSentToJailFunc");

31 LuaValue salary = methodGetSalary.call();

32 return salary.toint();

33 }

Appendix 18

Jail Rules Lua File

1 --JailRules.lua

2

3 local amountOfDoublesToBeSentToJail = 3

4 local amountOfRollsToGetOutOfJail = 3

5 local feetToPayToGetOutOfJail = 50

6 local canEarnRent = true

7

8 function amountOfDoublesToBeSentToJailFunc()

9 return amountOfDoublesToBeSentToJail

10 end

11

12 function amountOfRollsToGetOutOfJailFunc()

13 return amountOfRollsToGetOutOfJail

14 end

15

16 function feetToPayToGetOutOfJailFunc()

17 return feetToPayToGetOutOfJail

18 end

19

20 function canEarnRentFunc()

21 return canEarnRent

22 end

99

Appendix 19

Tax Unit Test Code using
Multiple Lua Files

1 public class TaxRulesTest extends TestCase {

2

3 public void testCalculateIncomeTax() throws Exception {

4 Player player = Mockito.mock(Player.class);

5 Tax tax = Mockito.mock(Tax.class);

6 when(tax.getFee()).thenReturn(200);

7 when(player.getCurrentLocation()).thenReturn(tax);

8 when(player.calculateNetWorth()).thenReturn(100);

9

10 TaxRules rules = new

TaxRules(Paths.get("").toAbsolutePath().toString() +

"/src/main/LuaFiles/TaxRules.lua");

11 assertEquals(10,rules.calculateIncomeTax(player));

12 }

13 public void

testCalculateIncomeTaxWhereNetWorthIsMoreThanSetTax()

throws Exception {

14 Player player = Mockito.mock(Player.class);

15 Tax tax = Mockito.mock(Tax.class);

16 when(tax.getFee()).thenReturn(200);

17 when(player.getCurrentLocation()).thenReturn(tax);

18 when(player.calculateNetWorth()).thenReturn(4000);

19 TaxRules rules = new

TaxRules(Paths.get("").toAbsolutePath().toString() +

"/src/main/LuaFiles/TaxRules.lua");

20 assertEquals(200,rules.calculateIncomeTax(player));

21 }

100

APPENDIX 19. TAX UNIT TEST CODE USING MULTIPLE LUA
FILES 101

22 public void testCalculateIncomeTaxWhenNoFixedTaxIsAllowed()

throws Exception {

23 Player player = Mockito.mock(Player.class);

24 Tax tax = Mockito.mock(Tax.class);

25 when(tax.getFee()).thenReturn(200);

26 when(player.getCurrentLocation()).thenReturn(tax);

27 when(player.calculateNetWorth()).thenReturn(4000);

28 TaxRules rules = new

TaxRules(Paths.get("").toAbsolutePath().toString() +

29 "/src/main/LuaFiles/TestingLuaFiles/TaxRulesTestNoFixedTax.lua");

30 assertEquals(400,rules.calculateIncomeTax(player));

31 }

32 public void

testCalculateIncomeTaxWhenNoFixedTaxIsAllowedAndDifferentTaxPercentage()

throws Exception {

33 Player player = Mockito.mock(Player.class);

34 Tax tax = Mockito.mock(Tax.class);

35 when(tax.getFee()).thenReturn(200);

36 when(player.getCurrentLocation()).thenReturn(tax);

37 when(player.calculateNetWorth()).thenReturn(4000);

38 TaxRules rules = new

TaxRules(Paths.get("").toAbsolutePath().toString() +

39 "/src/main/LuaFiles/TestingLuaFiles/TaxRulesTestNoFixedTaxAndDifferentIncomeTaxPercentage.lua");

40 assertEquals(1000,rules.calculateIncomeTax(player));

41 }

42

43 }

Appendix 20

Table of simulation results due
to Bug

102

APPENDIX 20. TABLE OF SIMULATION RESULTS DUE TO BUG103

P
la

ye
rs

in
ga

m
e

P
la

ye
r

1
W

in
%

P
la

ye
r

2
W

in
%

P
la

ye
r

3
W

in
%

P
la

ye
r

4
W

in
%

P
la

ye
r

5
W

in
%

P
la

ye
r

6
W

in
%

P
la

ye
r

7
W

in
%

P
la

ye
r

8
W

in
%

2
23

77
-

-
-

-
-

-
3

21
23

56
-

-
-

-
-

4
20

19
19

42
-

-
-

-
5

22
19

15
16

29
-

-
-

6
17

18
13

13
12

27
-

-
7

18
14

15
14

12
9

18
-

8
15

16
14

12
11

8
9

16

Appendix 21

Bank Rules: Auction Method
final version

1

2 public void auctionProperty(Ownable property){

3 Vector<Player> players =

AllPlayers.getInstance().getAllPlayers();

4 int baseCostOfProperty = property.getCost();

5 int startingPriceOfProperty = (int)(baseCostOfProperty *

auctionRules.getStartingPriceMultiplier());

6 int currentPriceOfProperty = startingPriceOfProperty;

7 int askingPriceOfProperty = startingPriceOfProperty;

8 int incrementOfAuction = (int)(baseCostOfProperty*

auctionRules.getIncrementMultiplier());

9 boolean auctionRunning = true;

10 Player topBidder = null;

11 try{

12 while(auctionRunning){

13

14 auctionRunning=false;

15 for(Player player : players){

16 if(player.wantsToBuyPropertyForPrice(property,askingPriceOfProperty)

&& !player.equals(topBidder)){

17 topBidder = player;

18 currentPriceOfProperty=

askingPriceOfProperty;

19 askingPriceOfProperty += incrementOfAuction;

20 auctionRunning=true;

21 }

22 }

104

APPENDIX 21. BANK RULES: AUCTION METHOD FINAL
VERSION 105

23 }

24 topBidder.spendMoney(currentPriceOfProperty);

25 property.setOwner(topBidder);

26 topBidder.addProperty(property);

27 }

28 catch (NullPointerException e){

29 Logger.getLogger(Logger.GLOBAL_LOGGER_NAME).severe("No

one can afford property");

30 property.setOwner(null);

31 }

32 }

Appendix 22

Player: Spend Money Method

1 public boolean spendMoney(int amount){

2 boolean enoughMoney;

3 if(money-amount<0){

4 enoughMoney= false;

5 }

6 else{

7 money-=amount;

8 enoughMoney=true;

9 LOGGER.info(loggingName + " spent " + amount + "\nThey

now have: " + money);

10 }

11 return enoughMoney;

12

13 }

106

Appendix 23

Player: wants to But property
for Price Method

1 public boolean wantsToBuyPropertyForPrice(Space property, int

askingPriceOfProperty) {

2 boolean willingToBuyProperty = false;

3 int amountOfSpacesOwnedOfGroup =

ownsSpacesOfGroup(property.getGroup());

4 int amountOfSpacesOnBoardOfGroup =

boardHelper.amountOfSpacesInGroup(property.getGroup());

5 int amountOfMoneyWillingToSpend = 0;

6

7 //VERY BASIC HEURISTIC

8 switch (amountOfSpacesOnBoardOfGroup -

amountOfSpacesOwnedOfGroup) {

9 case 1:

10 amountOfMoneyWillingToSpend = (int) (money * 0.7);

11 break;

12 case 2:

13 amountOfMoneyWillingToSpend = (int) (money * 0.6);

14 break;

15 default:

16 amountOfMoneyWillingToSpend = (int) (money * 0.5);

17 break;

18 }

19 if (amountOfMoneyWillingToSpend > askingPriceOfProperty) {

20 willingToBuyProperty = true;

21 }

22 return willingToBuyProperty;

23 }

107

APPENDIX 23. PLAYER: WANTS TO BUT PROPERTY FOR PRICE
METHOD 108

Appendix 24

Player: on turn Method

1 public void onTurn() {

2 if (inJail) {

3 this.playTurnInJail();

4 } else {

5 DiceRoll roll = rollDice();

6 LOGGER.info(loggingName + " rolled dice of " +

roll.getSumOfDiceRolls());

7 int rolls = 1;

8 while (roll.isReRoll()) {

9 LOGGER.info(loggingName + " Got a double roll, has

another roll of dice");

10 if (rolls >=

jailRules.amountOfDoublesToBeSentToJail()) {

11 this.goToJail();

12 turnInJail = 0;

13 break;

14 }

15 this.moveToLocation(BoardHelper.getInstance().moveToSpace(this,

roll.getSumOfDiceRolls()));

16 roll = rollDice();

17 rolls++;

18 LOGGER.info(loggingName + " rolled dice of " +

roll.getSumOfDiceRolls());

19 }

20 if (!inJail) {

21 this.moveToLocation(BoardHelper.getInstance().moveToSpace(this,

roll.getSumOfDiceRolls()));

22 moveTaken = MoveType.DiceRoll;

23 }

109

APPENDIX 24. PLAYER: ON TURN METHOD 110

24 }

25

26 }

27 private void playTurnInJail() {

28 turnInJail++;

29 DataLogger.writeToLog(TurnCounter.getTurn(), this,

currentLocation);

30 if (cards.size() > 0) {

31 for (Card card : cards) {

32 if

(card.getAction().equals(CardAction.GetOutOfJail))

{

33 inJail = false;

34 turnInJail = 0;

35 cards.remove(card);

36 Deck.getInstance().addCard(card);

37 break;

38 }

39 }

40 } else if (turnInJail >

jailRules.amountOfRollsToGetOutOfJail()) {

41 inJail = false;

42 turnInJail = 0;

43 } else if (this.wantsToPayJailFine()) {

44 spendMoney(jailRules.feeToPayToGetOutOfJail());

45 inJail = false;

46 turnInJail = 0;

47 } else {

48 DiceRoll roll = rollDice();

49

50 if (roll.isReRoll()) {

51 moveToLocation(BoardHelper.getInstance().moveToSpace(this,

roll.getSumOfDiceRolls()));

52 inJail = false;

53 turnInJail = 0;

54

55 }

56 }

57 }

Appendix 25

GUI: Main Window Basic
Frame

111

Appendix 26

GUI: Main Window Top
Section Design

112

APPENDIX 26. GUI: MAIN WINDOW TOP SECTION DESIGN 113

Appendix 27

GUI: Add/Edit Card Design

114

Appendix 28

GUI: Main Window Bottom
Section Design

115

APPENDIX 28. GUI: MAIN WINDOW BOTTOM SECTION DESIGN116

Appendix 29

GUI: Rules Window Design

117

118

APPENDIX 30. GUI: PLAYERS WINDOW DESIGN 119

Appendix 30

GUI: Players Window Design

Appendix 31

GUI: Generating Board
Buttons Method

1 public void reloadButtons() {

2 Vector<Space> allSpaces =

BoardHelper.getInstance().getAllSpaces();

3 int index = 0;

4 for (Node n : BoardGui.getChildren()) {

5 if (n instanceof Button) {

6 String spaceName = allSpaces.get(index).getName();

7 ((Button) n).setText(spaceName);

8 String id =

Integer.toString(allSpaces.get(index).getLocation());

9 ((Button) n).setId(id);

10 index++;

11

12 }

13 }

14 }

120

Glossary

Abstract Method An abstract class is a class that can’t be instantiated.
It’s only purpose is for other classes to extend. Abstract methods are
methods in the abstract class (have to be declared abstract) which
means the extending concrete class must override them as they have
no body.. 35

Chance Chance is one of the two types of card-drawing spaces in Monopoly.
Chance cards are orange and are placed near the Go space.. 8, 10,
11, 18, 19, 27, 33, 34, 36, 42–45, 51

Community Chest Community Chest is one of the two types of card-
drawing spaces in Monopoly. Community Chest cards are most likely
to give you money. Community Chest cards are usually yellow, and
sit next to Free Parking. . 8, 10, 11, 18, 19, 27, 33, 34, 36, 43–45, 51

Enum An enum type is a special data type that enables for a variable to
be a set of predefined constants. The variable must be equal to one
of the values that have been predefined for it. Common examples
include compass directions (values of NORTH, SOUTH, EAST, and
WEST) and the days of the week.. 34–36

GIT Git is a open source distributed version control system designed to
handle everything from small to very large projects with speed and
efficiency. Git uses features like local branching, staging areas, and
multiple workflows.. 14

JavaFX JavaFX is a software platform for creating and delivering desktop
applications, as well as rich internet applications (RIAs) that can run
across a wide variety of devices. JavaFX is intended to replace Swing
as the standard GUI library for Java SE, but both will be included
for the foreseeable future.. 14, 44

121

GLOSSARY 122

Jenkins Jenkins is an open source continuous integration tool written in
Java. Jenkins provides continuous integration services for software
development. It is a server-based system running in a servlet container
such as Apache Tomcat.. 15

LaTeX LaTeX is a high-quality typesetting system; it includes features
designed for the production of technical and scientific documentation.
LaTeX is the de facto standard for the communication and publication
of scientific documents. LaTeX is available as free software.. 67

Lua Lua is a powerful, fast, lightweight, embeddable scripting language.
Lua combines simple procedural syntax with powerful data descrip-
tion constructs based on associative arrays and extensible semantics..
20–23, 30, 38–41, 46–48, 63, 64

Maven Maven is a build automation tool used primarily for Java projects.
Maven addresses two aspects of building software: first, it describes
how software is built, and second, it describes its dependencies.. 14

Mocking Mocking is primarily used in unit testing. An object under test
may have dependencies on other (complex) objects. To isolate the
behaviour of the object you want to test you replace the other objects
by mocks that simulate the behavior of the real objects.. 36, 37, 40

Monopoly Monopoly is a board game published by Parker Brothers, a
subsidiary of Hasbro. Players compete to acquire wealth through
stylised economic activity involving the buying, renting, and trad-
ing of properties using play money, as players take turns moving
around the board according to the roll of the dice. The object of
the game is to own every piece of property and drive the other players
into bankruptcy. The game is named after the economic concept of
monopoly, the domination of a market by a single entity. 1, 8–11, 18,
19, 24, 25, 33, 36, 38, 42, 47, 48, 51, 53, 55, 60–65

Singleton In software engineering, the singleton pattern is a design pattern
that restricts the instantiating of a class to one object. This is useful
when exactly one object is needed to coordinate actions across the
system. 20, 22, 37–40, 63, 66

Software Repositories A software repository is a storage location from
which software packages may be retrieved and installed on a com-
puter.. 14

Acronyms

CI Continuous Integration. 14–16, 37, 66

CSV Comma Separated Values. 34, 36, 48, 51

GUI Graphical User Interface. 14, 33, 43, 44, 46–48, 64, 66

OO Object Orientated. 14, 35

TDD Test Driven Development. 9, 14, 16, 17, 36, 65, 66

VCS Version Control System. 14–16, 37

XML Extensible Markup Language. 44–46

123

Bibliography

Cois, C. A. (2015 accessed 28/04/2016), Continuous Integration in DevOps.
URL: https://insights.sei.cmu.edu/devops/2015/01/continuous-
integration-in-devops-1.html

Collins, T. (1997 accessed 03/05/2016), Probabilities in the Game of
Monopoly R©.
URL: http://www.tkcs-collins.com/truman/monopoly/monopoly.shtml

Driessen, V. (2010 accessed 28/04/2016), A successful Git branching model.
URL: http://nvie.com/posts/a-successful-git-branching-model/

Encyclopædia Britannica Online (2016 accessed 06/05/2016), Monopoly
Board game.
URL: http://www.britannica.com/topic/Monopoly-board-game

Shore, J. & Warden, S. (2007), The Art of Agile Development, 1 edn,
O’Reilly, chapter 9, pp. 289–308.

Swift Next Step (2015 accessed 28/04/2016), Swift TDD – Test Driven
Development for Swift no more bugs.
URL: http://swiftnextstep.com/wp-content/uploads/2016/02/tdd-red-
green-refactor-diagram.gif

124

