
 
Real-time Television Companion 

Application 
 

 

 

 

 

 

 
James Carter 

6th May 2016 
 

Cardiff School of Computer Science & Informatics 
CM2303 Final Year Project  40 Credits 

 

Supervisor Dr Xianfang Sun 
Moderator Dr Richard Booth 

 

  



  

Abstract 

The objective of this project was to develop a TV companion application for Android capable of 
scraping data online and displaying them in a human-readable form. This information includes title, 
description, images and airing times. This report contains identification of the problem, research, 
specification, design, implementation and evaluation of the application. 
 

Acknowledgements 

Firstly, I would like to thank my supervisor, Dr Xianfang Sun for his consistent support and 
understanding throughout the project. He provided me with confidence from the start by taking an 
interest in my project proposal. His feedback proved to be invaluable to the project’s success. 
 
I’d also like to thank my mother and father in which I could confide in when times proved difficult; 
without them, I would be lost without.  
 
Finally, I would like to thank my partner and my closest friends. You all gave me the passion to 
achieve and were there for me when I needed you guys the most.  

 



James Carter CM2303 6th May 2016 
 

Table of Contents 
 

Abstract 2 

Acknowledgements 2 

Table of contents 3 

Table of figures 4 

Introduction 6 

Identifying Problem 6 

Project Aims 6 

Target Audience 6 

Scope 7 

Project Objectives 8 

Research 9 

Existing Solutions 9 

Data Sources 10 

Available IDEs 12 

Android Version 13 

Specification 14 

Approach 14 

System Requirements 15 
Must Have 15 
Should Have 15 
Could Have 16 

Non-functional Requirements 17 

Risk Assessment 18 

Design 19 

Use Case 20 
Primary Use Cases 21 
Secondary Use Cases 22 

Test Cases 23 

Pseudo Code 27 
API Access 27 
JSON Parsing 27 
Search TV Shows 28 
Series Information 28 
Episode Information 29 
Electronic Program Guide 29 
 

 
 
Favourites 30 
Settings 30 
Reminder 31 

Hand-drawn Designs 32 

Wireframe Design 34 

Branding 36 
Icon 36 
Name 37 

Implementation 38 

Android Application 38 
API 38 
Asynchronous HTTP Client 39 
Show Class 41 
Home Screen 42 
Search TV Shows 43 
Displaying Series Information 44 
Displaying Episode Information 46 
Electronic Program Guide 47 
Favourites 49 
Settings 50 
Class Diagram 51 

Testing 52 
Test Cases 52 
Questionnaires 56 
Test Report 58 

Results and Evaluation 59 

Future Work 60 

Conclusions 61 

Reflection on Learning 62 

Table of Abbreviations 63 

Appendices 64 

Images 64 

Code 69 
Show.java 69 
mainEPG.java 73 

Questionnaires 77 

References 83 

 



 

Table of Figures 
 

Figure 1: Comparison of existing solutions 9 

Figure 2: Comparison of IDE options 12 

Figure 3: Android Summary from Android Studio 13 

Figure 4: Table of Must Have requirements 15 

Figure 5: Table of Should Have requirements 15 

Figure 6: Table of Could Have requirements 16 

Figure 7: Table of Non-functional requirements 17 

Figure 8: Table of Risk Assessment 18 

Figure 9: Use Case 20 

Figure 10: Primary Use Cases 21 

Figure 11: Secondary Use Cases 22 

Figure 12: Table of Test Cases 23 

Figure 13: Table of Test Cases 24 

Figure 14: Table of Test Cases 25 

Figure 15: Table of Test Cases 26 

Figure 16: Hand-drawn EPG 32 

Figure 17: Hand-drawn Show TV Information 32 

Figure 18: Hand-drawn Search TV Shows 32 

Figure 19: Hand-drawn Main Screen 32 

Figure 20: Hand-drawn Settings 33 

Figure 21: Hand-drawn Episode Information 33 

Figure 22: Hand-drawn Favourites 33 

Figure 23: Wireframe Episode Information 34 

Figure 24: Wireframe Series Information 34 

Figure 25: Wireframe Search TV Shows 34 

Figure 26: Wireframe Search TV Shows 34 

Figure 27: Wireframe Favourites 34 

Figure 28: Wireframe Main Screen 34 

Figure 29: Wireframe Settings 35 

Figure 30: Wireframe EPG 35 

Figure 31: Sample icons from Android Studio's Emulator App Drawer 36 

Figure 32: Sample of TV related apps (Play.google.com5, 2016) 36 

Figure 33: Icon design development 36 

Figure 34: Home screen from Android Studio's Emulator App Drawer 37 

Figure 35: Main Screen 42 

Figure 36: Search TV Shows 43 

Figure 37: Series Information 45 

Figure 38: Episode Information 46 

Figure 39: Flow Diagram for EPG 47 

Figure 40: EPG 48 

Figure 41: Favourites 49 

Figure 42: Settings 50 

Figure 43: UML Class Diagram of Final System 51 

Figure 44: Table of Test Cases 52 

file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320264
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320271
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320272
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320273
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320274
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320275
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320276
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320277
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320278
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320279
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320280
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320281
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320282
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320283
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320284
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320285
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320286
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320287
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320288
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320289
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320290
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320291
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320292
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320293
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320294
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320295
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320296
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320297
file:///D:/Users/James/Dropbox/University/Year%203/Final%20Year%20Project/Final%20Report.docx%23_Toc450320298


James Carter CM2303 6th May 2016 
 

Figure 45: Table of Test Cases 53 

Figure 46: Table of Test Cases 54 

Figure 47: Table of Test Cases 55 

Figure 48: Table to summarise choice of questions 56 



James Carter CM2303 6th May 2016 
 

Page 6 
 

 

Introduction 

Identifying Problem 
As mentioned in my initial plan, the use of smartphones and/or tablets while watching TV is has 

become an increasing trend. Just under a third of smartphone users in the UK use a smartphone while 

watching TV (Laura Zain, 2015). With 22.1% conducting activities directly related to the program, it is 

apparent that people use their smartphones to enhance their TV experience. 

From my own experience, I have found myself trying to find out information about a TV show that I 

am watching. When brought up in conversation it appears that many people do the same. The majority 

of the time, it can be achieved by simply using a search engine to search for the show. However, I find 

that this can take a long time as one would have to filter through the results offered by the search 

engine. Not only that, but the information returned can be of different qualities and formats. 

Information that was once previously available may also be deleted in the future due to websites 

changing content. 

Project Aims 
My project aims to improve the usability of smartphones while watching TV by creating a companion 

application that provides information about TV shows. This can be information about shows that are 

currently on, or by allowing the user to search for shows. During this project, I have produced a fully-

functioning Android application that is capable of allowing users to browse popular British TV channel 

schedules, search for TV shows, bookmark shows for future reference and access information for TV 

shows and episodes. 

I believe this project is important as I aim to pursue a career in mobile software development and as 

of yet, I have not had an opportunity to fully develop an Android application during my time at Cardiff 

University.  

This is also the first time I have been able to fully complete a software development project by myself 

from start to finish, an experience I feel is imperative to my own development and overall professional 

skills. 

I am also extremely interested in web scraping and how it can be used to display information in a more 

human-friendly manner, another opportunity that this project has provided me that would have 

otherwise been missed. 

My project aims to improve the usability of smartphones while watching TV by creating a companion 

application for Android. 

Target Audience 
As covered in the initial report, two thirds of people in the UK own a smartphone (Media.ofcom.org.uk, 

2015) and we are ever spending more time using them. Smartphones are a convenient tool for 

accessing the internet, especially when watching TV. I have aimed to develop this application to appeal 

to anyone who has an Android smartphone and has a basic knowledge of how to use it.  

  



James Carter CM2303 6th May 2016 
 

Page 7 
 

Scope 
Having some initial idea of what was required to develop an Android application, I was aware that I 

would be programming in Java for Android and also working with XML files. I was also aware that APIs 

normally return XML or JSON files. I have had little experience in all of these fields so knew that the 

scope of the project would be limited by the fact that this project would also form part of a learning 

experience in Android development.  

Nevertheless, I had a rough idea of how I would implement the system using Java, a language I have 

considerable experience with; All that was needed was research into applying this knowledge to 

Android and how to work with HTTP API requests, already a keen interest of mine and something I felt 

would be easy to learn given the multitude of resources available on the internet. 

  



James Carter CM2303 6th May 2016 
 

Page 8 
 

Project Objectives 
 

In order to best prioritise the aims of this project, I have categorised them as ‘Must Have’, ‘Should 

Have’ and ‘Could Have’. 

Must Have: These must be implemented to deem the project successful 

 A method to access the following information of TV programs: 

o Episode Name 

o Date aired 

o Description 

o Series Name 

 A method to process this information into a human-readable form 

 A GUI (Graphical User Interface) that follows basic Human Computer Interaction goals 

o A way for users to select a TV program 

o A method to display information of selected show 

 A way for users to browse TV shows: 

o This should mimic a traditional EPG 

 The system must be deployed on Android for smartphones 

Should Have: These will assist in the project’s overall success  

 A way for users to search for a TV show: 

o The user should be able to type in a show and select from a list of results 

 A way for users to select which sources to fetch the information from 

 A built-in user guide to enhance usability  

 

Could Have: These are additional aims that add value to the successful project 

 A way for users to bookmark favourite shows 

 A way for users to set reminders for when a favourite show is airing  



James Carter CM2303 6th May 2016 
 

Page 9 
 

Research 

Existing Solutions 
There are already existing TV companion applications available to download for Android, the majority 

of these applications are free to download and are supported by adverts to cover costs.  

The Freeview TV Guide is one example of such an application (Play.google.com 20161). This application 

displays what shows are being aired on each Freeview channel, much like a traditional EPG. It also 

displays upcoming shows, a feature to favourite a show, a recommended show section based on 

favourite shows and Twitter integration. Although this may appear to be an ideal solution, it should 

be noted that the application has not been updated since July 2015 and has received negative reviews 

regarding stability, random crashes and intrusive adverts.  

Another existing solution is the TV Listings UK application (Play.google.com 20162). This application 

also displays shows being aired and upcoming shows. The only additional feature this application has 

the ability to set a reminder for a show. Like Freeview TV Guide, this application has adverts, 

something my solution will avoid in order to improve usability.  

Feersum UK TV Guide (Play.google.com 20163) is yet another potential existing solution. It features an 

EPG complete much like other solutions. This application allows the user to highlight genres as well as 

search channels. Feersum UK TV Guide also features a colour-coded system where films are shown in 

orange text and finished shows are grey. This application has received more favourable reviews on 

the Google Play Store, however, it has not been updated since 3rd of April 2014.  

UK’s TV Guide Free (Play.google.com, 20164) is another example of an existing solution. It features a 

basic EPG style list that allows users to select a channel to see what is scheduled to be aired. The 

application allows users to see a list of every show that is currently being aired. Users can also search 

for content. This application hasn’t been updated since March 2015 and the only available review 

states that the application doesn’t load any data. 

These applications all have similar functionality of my planned solution. However, they are generally 

outdated and rely on adverts to cover their costs. Main broadcasters such as the BBC, Channel 4 and 

ITV offer their own applications for viewing schedules on their channels. However, this would mean 

the user has to have many applications to view schedule information which is far from ideal.  

Figure 1: Comparison of existing solutions 

 EPG Search  Reminders Bookmark/Favourite Adverts 

Freeview TV Guide      

TV Listings UK      

Feersum UK TV Guide      

UK’s Television Guide Free      



James Carter CM2303 6th May 2016 
 

Page 10 
 

Data Sources 
In order to develop a solution, it is necessary to provide information about television shows to the 

user. In theory, it would be possible to hard code in this information, however, it would be extremely 

time consuming and memory intensive. Updates would need to be pushed very frequently to ensure 

future shows are displayed.  

Alternatively, data can be accessed and saved in a central database. As the information aims to cover 

many different TV shows, the database necessary would be huge and would require frequent updates 

as and when new TV shows are aired. Not only that but representing airing times for channels would 

require the system to be constantly updated as channels list their schedules. My solution is non-

profitable; it would be economically ineffective to purchase a subscription for a server to be able to 

host this information.  

Another method for dynamically accessing TV data would be through the use of existing APIs. This 

method avoids costly servers and takes advantage of data that is already available. 

There are many websites that offer TV data through use of an API in which the user sends an API 

request. This includes a unique API Key and what data is required, for example, ‘GET /4/schedules/{X}’, 

using Metabroadcast’s API (Atlas.metabroadcast.com 2016) would return all shows scheduled for 

channel with the ID: X. The general format for TV data is through XML (Extensible Mark-up Language), 

a common format used to store and transport data. It provides users with both human-readable and 

machine-readable content, useful for displaying data and supported in Android. There is also a lesser 

common format called XMLTV, an extension of XML that is used for describing TV listings, however it 

is not widely supported.  

The BBC have their own API for shows aired on the BBC network (Developer.bbc.co.uk 2016). 

Documentation for their API is currently in a draft status with limited guidance on how to use it and 

as it only includes data for BBC broadcasts, it would only provide a partial solution.   

Another API that could be used is the Digiguide.tv API (Digiguide.tv 2016), a free and open platform 

that aims to support TV listings for its users. The API has well-structured documentation to aid 

development and supports JSON responses, a simpler data-exchange format than XML that is also 

supported in Android. The API shows information about Terrestrial, Sky Digital and Virgin Media 

broadcasts in the UK and Ireland, ideal scope for my solution. Information about shows such as 

seasons, images, airing time and actors can be retrieved using Digiguide.tv’s API. 

TheTVDB (Thetvdb.com 2016) also features an API similar to that of Digiguide.tv, however, it is an 

open database that can be modified by anybody, and it also supports the XML format. This allows for 

extensive information to be produced for TV programs in virtually any country from regular users, this 

may include additional fields such as fan art, director and even DVD disk number. The API also features 

useful documentation and support for developers. Considerations must be taken regarding the 

openness of this data, it may be inaccurate despite having a large user base of honest people. Also, it 

should be noted that airing times aren’t always supported. 

The above APIs all have their advantages and disadvantages; it would be desirable to use all of them 

to create tailor made information in my solution. The final data source I have discovered is 

Metabroadcast’s API, it accesses data from multiple sources and stores it in a convenient, flexible and 

highly accessible format which allows for developers to take advantage of otherwise hard to access 

data. Sources include the BBC, Press Association, UK Channel Lineups, Wikipedia and TheTVDB.com 



James Carter CM2303 6th May 2016 
 

Page 11 
 

There are many levels of customisation using Metabroadcast’s API including retrieving TV schedules 

for many UK channels with optional time constraints, i.e. shows between a given set of time points. 

The API also allows for retrieving other information about shows including description, episode 

number, release date, synopses, encoding, episode image, certificate rating and much more. The only 

limitation this API has is the lack of real support for actors/actresses. The system requirements will be 

adjusted to accommodate. 

Metabroadcast’s API appears to be an ideal core data source to aid development of my solution as it 

will provide both basic EPG functionality as well as extended information. In order to gain access to 

the API, I must sign up for an API Key. Metabroadcast allows users to sign up using Twitter, Github or 

Google. I have selected Google as I use Google Drive to store project documents. 

 

  



James Carter CM2303 6th May 2016 
 

Page 12 
 

Available IDEs 
There are many IDEs that help developers to develop software quickly and effectively. Android 

requires the use of Java to develop applications, because of this, generic Java IDEs can be used for 

Android development. However, Android extends Java and includes XML files for GUI design.  

The most common IDE for Android development was Eclipse with the Android Development Tools 

plugin. This set up was directly supported and encouraged by Google until 2013 when they released 

their own IDE called Android Studio (Android Studio 2016). Android Studio is the official IDE for 

Android development, it includes coding templates to aid development as well as a layout editor that 

supports drag and drop editing of the GUI, a very useful feature to help provide optimal HCI goals. As 

Android Studio is Google’s official IDE, it uses Java for native development, a familiar programing 

language to myself with support for XML/JSON parsing that is required to process TV data. It also 

provides a facility to produce multiple versions of an application, useful for updating and debugging. 

Android Studio features device emulation, this means that the software can be tested on an emulated 

device straight from the computer without the need for a physical device. 

Another IDE to aid Android development is Xamarin.Android (Xamarin.com 2016). This IDE allows 

developers to produce packages in C# by bringing Android’s Java API to the C# language. It also allows 

developers to call existing Java code without the need to convert it into C#. This IDE would be very 

useful if C# was a language I was familiar with, however, I am more familiar with Java. 

Kivy is a possible library to use for developing my solution (Kivy.org 2016). It is an open source cross 

platform library that allows the production of Android applications using the Python programming 

language. It carries the obvious advantage of Python’s simplicity and ease of use, however, it doesn’t 

feature a GUI editor like Android Studio does. I also feel that this IDE would not encourage my project 

aims of learning to develop traditional Android applications. 

Yet another IDE that can aid in Android development is IntelliJ IDEA (JetBrains 2016). This IDE aims to 

provide intelligent and automatic coding assistance; this includes code completion based only on what 

is expected in the current scope, version control and even an Android GUI editor (similar to Android 

Studio). IntelliJ IDEA also supports JavaScript, HTML and CSS which may provide useful in Android 

development. 

Overall, I believe Android Studio will provide me with the best IDE to use as it is Google’s official IDE 

and comes with a lot of support. Android Studio is also commonly used in examples and tutorials so 

will be ideal as an IDE for me to learn Android development with.  

 

 GUI Editor Language Version Control 

Android Studio  Java  

Kivy  Python  

Xamarin.Android  C#  

IntelliJ IDEA  Java  

Figure 2: Comparison of IDE options 

  



James Carter CM2303 6th May 2016 
 

Page 13 
 

Android Version 
 

As technology has progressed, there have been many versions of Android released to support new 

features and devices. Google decided to give each version of Android a name and an API level. Android 

studio summarises each version from version 2.3 (API 10) up to the latest 6.0 (API 23) to help the 

developer select what minimum version to support.  

 

Figure 3: Android Summary from Android Studio 

As this a non-profit project, appealing to a large market share is not a high priority. However, following 

basic Human Computer Interaction goals is an essential requirement, it is important to ensure good 

interface design is achievable. Android version 5.0 (API 21) saw the introduction of material design, a 

lightweight and minimalist visual language that enables developers to create consistent designs across 

multiple devices and screen sizes. This ‘flat’ design is now a commonly accepted design concept that 

many users are used to. 

 As Android Studio has a GUI editor, it would be preferable to support API 21 and up to enable the use 

of material design. Selecting API 21 still yields an ever increasing device target of 35.4% (February 

2016) and with manufacturers constantly aiming to support the latest version of Android, I feel this is 

a good level to support the application if I were to release it on Google’s Play Store. 

  



James Carter CM2303 6th May 2016 
 

Page 14 
 

Specification 

Approach 
I have decided to follow the classic waterfall model given it is what I feel most comfortable with, and 

as this project already contains a lot of personal learning goals, I feel it is wise to stick to a development 

model that wouldn’t interfere with the learning process. Another reason why I felt this model was 

most appropriate was the fact that this project requires an initial plan, outlining the process and 

setting out some initial project aims and objectives that would later come to form system 

requirements.  

Other development models such as Agile are iterative, meaning that requirements are liable to be 

changed, including the implementation, design and all other key areas of the system. As my project 

has clear system requirements set by myself that do not depend on an external client who may want 

to change them, there is no requirement to need to change development once requirements have 

been set. 

The waterfall model also clearly outlines traditional software development into five main categories: 

1. Requirements 

2. Design 

3. Implementation 

4. Testing 

5. Maintenance 

This meant that I could create a detailed Gantt chart to aid development, helping me to keep on track 

and outline each stage of development complete with sub-goals at each stage. Having a structured 

work plan is essential to maintaining pace and producing quality software. 

  



James Carter CM2303 6th May 2016 
 

Page 15 
 

System Requirements 
Following the project aims and objectives I have outlined the requirements of the system in order to 

be deemed a success. Each requirement has a priority with ‘Must Have’ requirements having the 

highest and ‘Could Have’ having the lowest. Categorising system requirements enables the 

developer(s) to identify sub-goals which helps with planning the implementation. Understanding what 

is required for the system to be a success is essential if a quality solution is to be implemented. 

Should the requirements change later in the project, having categorised requirements helps minimise 

the impact changes have, a critical factor when developing a system for a real-life client.  

Must Have 

Should Have 

Req 
ID 

Requirement Description 

201 A way for users to search for a TV 
program 

The user should be able to type in a search query 
and select a program from the results. 

202 A way for users to select data 
sources to fetch information from 

The user should be able to enable and disable the 
various data sources used to fetch the information, 
i.e. TheTVDB API  

203 A built-in user guide The system should have a comprehensive guide to 
aid both basic and expert users 

Figure 5: Table of Should Have requirements 

Figure 4: Table of Must Have requirements 

Req 
ID 

Requirement Description 

101 Method to access information of 
TV programs 

The system must be able to access information for 
TV programs. This must include: 

 Episode Name 
 Description 
 Date Aired 
 Series Name 

102 Method to process information 
into human-readable form 

Information from Req 101 must be parsed and 
processed into a human-readable format 

103 A Graphical User Interface  The GUI must follow basic Human Computer 
Interaction goals to ensure ease of use 

104 A way for users to select a TV 
program 

The user must be able to select TV programs from 
a suitable list/box 

105 A method to display information 
on selected TV program 

Using human-readable information from Req 102, 
the system must display this information to the 
user  

106 A way for users to browse TV 
programs 

The user must be able to browse TV shows much 
like a traditional Electronic Program Guide 

107 Android support The system must be deployed on Android  



James Carter CM2303 6th May 2016 
 

Page 16 
 

Could Have 

Req 
ID 

Requirement Description 

301 A way for users to bookmark a 
program 

The user could ‘favourite’ a particular program in 
order to bookmark it, making it easier for the user 
to access the program again 

302 A way for users to set reminders The user could set a reminder for a particular show 
to remind them when it starts 

Figure 6: Table of Could Have requirements 

  



James Carter CM2303 6th May 2016 
 

Page 17 
 

Non-functional Requirements 
 

It is important that the system adheres to basic non-functional requirements as system requirements 

do not cover these principles that are followed by nearly all professional software developers. 

Following the table below will ensure the system will be of high quality throughout.  

Requirement Description Measurement Criteria 

Usability The system must be easy to use Users should be able to use the 
system with minimal guidance 
from external sources such as 
other users 
 

Intuitive GUI 

Reliability The system must run with zero 
errors or bugs 

The system should pass all test 
cases 

The system should run on 
multiple Android devices 

Maintainability The system must be easy to 
change and maintain 

The system should be easy to 
modify to maintain its 
functionality throughout its 
lifetime 

Comment all code 

Code easily accessible 

Performance The system must perform 
efficiently  

System should work in real-time 
with little to no loading times 

Scalability The system must continue to 
function as its scale increases 

Adding more channels to the 
EPG should have no ill-effects on 
the system 

Robustness The system must be able to 
recover from errors 

System design incorporates 
error handling throughout 

Security The system must be able to store 
user information (if any) securely  

System should store sensitive 
data with password protection 

Flexibility  The system must allow for the 
change of functionality without 
damaging the system 

System should be modular 
allowing updates to have no 
effect on other areas of the 
system 

Figure 7: Table of Non-functional requirements  



James Carter CM2303 6th May 2016 
 

Page 18 
 

Risk Assessment 
As this is a large project, it is useful to assess any possible risks that may have a negative impact on 
progress. It is important to consider different forms of risks and how best to reduce the impact and 
likelihood of these risks occurring. Figure 8 shows various risks I have assessed and how I plan to 
reduce them. 

Category Potential Risk Risk-management Technique to Use 

Timing Underestimating time 
needed for the project or 
parts of the project 

I will follow the work plan and Gantt chart 
proposed in my Initial plan 

Human 

Resources 

Illness may delay progress Ensure work plan is followed at all times to 

minimise impact of illness. 

 

Liaise with supervisor to ensure illness is 

known 

Human 

Resources 

Technical ability may be 

inadequate to fulfil a 

requirement 

Scope of project is confirmed as adequate 

for course by Supervisor 

Make use of resources available for 

Android development 

Requirements During the course of the 
project the requirements 
may change 

Ensure final Aims & Objectives are 

completed and confirmed with supervisor 

before implementation 

Any subsequent changes can be absorbed 

in the 1-week buffer (16/03-25/03) 

Productivity Procrastination due to length 
of project  

Follow Gantt Chart in order to maintain 
pace. Many sub-goals each week make 
the workload evident from the start and 
ensures I am aware of what is needed to 
be done each week 
 

Technical System may not be 

thoroughly tested resulting 

in errors and requirements 

not being fulfilled 

Create an in depth test plan for each 

requirement 

 

Carry out tests when each requirement has 

been implemented, fix any errors where 

necessary 

Figure 8: Table of Risk Assessment 

  



James Carter CM2303 6th May 2016 
 

Page 19 
 

Design 
During the design stage of any software development, it is important to undertake various methods 

to fully design and understand the way in which the system will work both systematically and 

functionally. I have designed a Use Case diagram to help visualise how each feature works and how 

the user interacts with them in order to achieve their induvial system requirements, this also 

includes how different features interact with each other.  

A Use Case does not describe how the system will actually achieve their given requirements so 

pseudo code will be used to describe exactly how the system is planned to function from a code 

perspective. Pseudo code provides an invaluable way to demonstrate the logic behind a given 

feature. The original designer can use it to quickly develop the underpinning algorithms without 

having to directly implement it using a specific language; ultimately this saves a lot of time and does 

not require any coding knowledge as such. However, time does have to be taken to then adapt this 

pseudo code to fit in with the boundaries of a coding language. Pseudo code benefits from the fact it 

can be used as a way to demonstrate how an idea or feature will work to someone else. For 

example, if working in a development team, pseudo code can be used to quickly describe how a 

system requirement will be implemented; alternatively, it can be used to describe complex 

algorithms and ideas to stakeholders and clients who may not be technically-minded. 

To be able to fully evaluate the success of the finished project, test measures need to be put into 

place to test against each system requirement. I have decided to create test cases to test each 

functionality to ensure they are successful. Testing is also very important to ensure any bugs are 

discovered that may have gone unnoticed under normal use. 

As my system will have a GUI, it is as equally important to design the way in which it looks and 

navigates. I have decided to create hand drawn designs initially to get an idea of how the system will 

look. These will then be converted to a computerised wireframe design and then finally produced 

into a final version using Android Studio. The benefit of creating hand drawn designs is that they are 

quicker to produce. This allows for rapid prototyping of the GUI without the need to conform to set 

standards from Android Studio’s IDE. However, this also means that it may not be accurate as it does 

not conform to these standards. Creating a wireframe design aims to bridge that gulf by producing 

more accurate designs that conform to these standards. Wireframe designs take longer to produce 

but are of better quality, to the extent that they could be used to demonstrate a design to any 

potential stakeholders or clients. The final Android design can then be implemented, fully 

demonstrating how the system will look. I will include the final design within the implementation 

section to save repeating the same images. 

 



James Carter CM2303 6th May 2016 
 

Page 20 
 

Use Case 

 Figure 9: Use Case 



James Carter CM2303 6th May 2016 
 

Page 21 
 

Primary Use Cases 

Use Case Search TV Show 

Actors User (initiator) 

Type Primary 

Description The user clicks the Search TV Show button on the main screen of 
the system.  
The user then types in a search query and hits submit. 
This returns the results as a list. 

 

Use Case Browse Electronic Program Guide 

Actors User (initiator) 

Type Primary 

Description The user clicks the Electronic Program Guide button on the main 
screen of the system.  
The class returns the schedules for all channels as a 2D list. 

  

Use Case Browse Favourites 

Actors User (initiator) 

Type Primary 

Description The user clicks the Browse Favourites button on the main screen of 
the system.  
Any favourite shows will be displayed here. 

  

Use Case View Settings 

Actors User (initiator) 

Type Primary 

Description The user clicks the Settings button on the main screen of the 
system.  
All settings are visible here. 
 

Figure 10: Primary Use Cases 

  



James Carter CM2303 6th May 2016 
 

Page 22 
 

Secondary Use Cases 

Use Case View TV Show Information 

Actors User 

Type Secondary 

Included in Browse Favourites, Search TV Show, Browse EPG 

Description The user can view information on a selected TV show, this includes 
the title, description and image. 

 

Use Case Favourite Show 

Actors User  

Type Secondary 

Extends View TV Show Information 

Description The user can favourite a selected TV show. 

  

Use Case View Episode Information 

Actors User  

Type Secondary 

Included in Browse EPG 

Description The user can view information on a selected TV episode, this 
includes the title, description and image. 

  

Use Case Set Reminder 

Actors User  

Type Secondary 

Extends View Episode Information 

Description The user can set a reminder for a selected TV episode. 
 

  

Use Case Change Data Sources 

Actors User  

Type Secondary 

Extends View Settings 

Description The user can change the data sources for the API. 
 

  

Use Case Remove Reminder 

Actors User  

Type Secondary 

Extends View Settings 

Description The user can remove a reminder for a selected TV episode. 
 

Figure 11: Secondary Use Cases 

  



James Carter CM2303 6th May 2016 
 

Page 23 
 

Test Cases 
Testing is critical to ensure the system runs as it should. Although we can debug while coding, not all bugs will be found by using this method alone. It is 

important that the system is tested thoroughly to discover any underlying bugs that may go unnoticed during normal use. This system will also have a GUI 

which involves human input, therefore, this must also be tested thoroughly. The tables below outline all of the tests I plan to carry out on the system.  If the 

test fails, adequate adjustments will be made and the system will be retested until all tests pass. 

Test ID Req ID Scenario Test Steps Expected Result 

001 101 
Data can be 
retrieved 

Temporarily print result of JSON 
requests 

JSON object will be printed for each request made 

002 101 Failed JSON request 
Temporarily edit request to return 
an error 

JSON exception should be caught without crashing system 

003 102 Parse JSON object 
Temporarily print result of parsing 
JSON requests 

Information such as Episode Name, Series Name will be printed 

004 102 
Parse incompatible 
JSON object 

Pass a random JSON object into 
parser 

JSON exception should be caught without crashing system 

005 

103 Test GUI 

Click ‘Search TV shows’ Search TV shows activity starts 

006 Click ‘Electronic Program Guide’ EPG activity starts 

007 Click ‘Settings’ Settings activity starts 

008 

101 
102 
103 
104 
105 
201 

Test TV show search 

Type in ‘Dr’ in search box List of results will appear 

Click ‘Doctor Who’ from results Display Series activity starts with Dr Who as the series 

Wait for Display Series to load Information for Dr Who will load and be displayed 

  Figure 12: Table of Test Cases 



James Carter CM2303 6th May 2016 
 

Page 24 
 

 

Test ID Req ID Scenario Test Steps Expected Result 

009 

101 
102 
103 
104 
105 
106 

Test Electronic 
Program Guide 
functionality 

Click ‘Electronic Program Guide’ EPG activity starts 

Select channel (BBC 1) from drop 
down list 

Loading animation starts 

Data is loaded and displayed  

Loading animation stops 

Click ‘Episode Info’ button 
Display Show activity starts with selected show 

Episode information is displayed 

Click ‘Series Info’ button 

Display Series activity starts with selected series 

Series information is displayed 

Click ‘Stream’ button 
External link for the selected channel (BBC 1) will open using the 
device’s default browser  

Select ’24’ from the time limit drop 
down list 

A toast notification will alert the user it has been changed 

Pull down on the list view, invoking 
a refresh 

Loading animation starts 

Data is loaded and displayed for next 24 hours 

Loading animation stops 

010 107 
Test application runs 
on Android 

Use emulator to run application 
(Version 5.0) Application will compile and run  
Use my LG G3 (Version 6.1.1) 

Figure 13: Table of Test Cases 

  



James Carter CM2303 6th May 2016 
 

Page 25 
 

Test ID Req ID Scenario Test Steps Expected Result 

011 202 

Test data sources can be 
changed 

Click ‘Settings’ from main menu Settings activity will open 

 
Select only Press Association from 
checkboxes 

Toast will appear listing the sources currently selected 

Global API link will change to only include data from Press 
Association 

012 
 

203 
202 

Test built-in user guide 
works 
Test data sources can be 
changed 

Start application 

Main menu will appear 

Welcome popup will appear with descriptions for Search TV and 
EPG 

Click ‘Search TV Shows’ 
Search TV shows activity starts 

Search bar will have a tooltip describing what it does 

Click ‘Electronic Program Guide’ 
Click ‘Settings’ from main menu 

EPG activity starts 

Channel and Time drop down lists labeled with self-explanatory 
labels will appear 

Self-explanatory icons appear for Episode & Series information 
Icon appears for Stream 

Settings activity will open 

Figure 14: Table of Test Cases 



James Carter CM2303 6th May 2016 
 

Page 26 
 

Test ID Req ID Scenario Test Steps Expected Result 

013 301 
Test bookmark 
functionality 

Access Display Series activity either 
via EPG or Search TV Shows 

Display Series activity starts 

Click ‘Bookmark’ button 
Series ID is saved to the device 

Toast alerts user that the series has been added to favourites 

Click ‘Favourites’ button from main 
menu 

List of favourites will load showing series just added 

014 302 
Test reminder 
functionality 

Click ‘Electronic Program Guide’ EPG activity starts 

Click ‘Reminder’ for the first show in 
the list  

Toast alerts user that the show is already airing 

Click ’Reminder’ for the second show 
Toast alerts user that a reminder has been set for the time that the 
show will air 

A notification is displayed when the show is about to air 
Figure 15: Table of Test Cases 



James Carter CM2303 6th May 2016 
 

Page 27 
 

Pseudo Code 
This is the first time I have attempted to create a fully functional Android application. A lot of my 

efforts have gone into learning and understanding how Android works and how it extends the 

standard Java language. Therefore, it is important to fully understand what is logically required for 

each system requirement before attempting to implement it for Android. 

API Access 
Firstly, it is essential that the system can send and receive an API call to Metabroadcast. This method 

should return a custom class derived from the results from the API call. 

JSON Parsing 
Once the API request has been received successfully, the results need to be parsed into a data 

structure that allows for easy use of information. For this, a custom Show class will be used. This 

enables the system to have a consistent method to represent a TV show throughout the system; 

especially useful when displaying information onscreen. 

  

APICall (String URL)   //This method sends an HTTP Request with the supplied URL 

 Create HTTP Client with URL 

      URL = checkPrefs(URL)   //This method is linked to the settings section  

  Send HTTP Request 

  Receive JSONObject     //The result from the API is a JSON Object  

  For each Show in JSONObject    //Iterate each Show in the results 

     New Show = Show(JSONObject[i])   //Parse JSON into a custom class 

  Return Shows      //Return the list of Show classes 

 

 

  

Show (JSONObject Results)   //This class parses the resulting JSON Object into a class 

String title, description, ID,   //Each Show object contains these variables and more 

episode_number, series_number 

String start_time, end_time 

For each object in Results   //Add each individual result from the JSON Object 

   title = object.title 

  description = object.description 

  ID = object.ID 

  episode_number = object.episode_number 

  series_number = object.series_number 

    … 

  … 

 

 

  



James Carter CM2303 6th May 2016 
 

Page 28 
 

Search TV Shows 
Now that there are methods to make an API call and return a Show class, it is necessary to receive 

user input to create the query the API call contains. For this, a searchShows method will be used to 

take the user’s input and return a list of results to select from. 

 

Series Information 
Now that the user has a list of shows to select, it is necessary upon selecting a show to fetch and 

display information it to the user. Selecting a show will be handled by Android’s onClickListener: 

Once the show’s ID has been fetched, it needs to be used to make a new API call to receive information 

about it. This will be achieved by using a method called displaySeries which takes the show’s ID and 

outputs the relevant information. 

  

searchShows ()     //This method lets users search shows using a query 

String query = user input //fetch query from a text box user types in 

String URL = www.metabroadcast.co.uk/query //Build the URL with the query 

Results = APICall(URL)   //Run the query and return the list of Shows found 

  For each Show in Results  //Iterate through each show 

  Add Results[i] to ListView  //Add the Show to the on screen list 

 

  

displaySeries (Show.ID)     //This class displays information about a specific show 

String URL = www.metabroadcast.co.uk/show=Show.ID //Build a query using the show’s ID 

Result = APICall(URL)  //Pass it through APICall and return the one result  

For each item in Result  //For each piece of info in the Show Class  

  Display Result.description  //Display it on the screen (Title, Description, Image etc.) 

  Display Result.title 

 

  

onClickListener ()  

Get Show.ID from List  //Get the ID for the selected show 

displaySeries(Show.ID)  //and pass it to displaySeries 

 

  

http://www.metabroadcast.co.uk/query
http://www.metabroadcast.co.uk/show=Show.ID


James Carter CM2303 6th May 2016 
 

Page 29 
 

Episode Information  
Once the user selects an episode to view information for, it’s necessary to make a new API call to 

receive information about it. This will be achieved using a method called displayEpisode which takes 

the show’s Episode ID and outputs the relevant information. 

 

Electronic Program Guide 
Another requirement of the system is to provide the user with an EPG similar to that of a TV. 

Now that there is a list of shows for each channel it’s necessary for the user to be able to interact with 

the results. The user must be able to view information about that series and individual episode. 

Therefore, the activity that shows the EPG should also have an onClickListener for series information, 

identical to display series information  and one for episode information that takes the ID of the 

Episode: 

  

mainEPG ()     //This method fetches and displays shows that are on 

For each Channel in Channels  //Do this for each channel there is 

    String URL = www.metabroadcast.co.uk/schedule=channel  //Build a schedule query 

    Results = APICall(URL)     //Pass it through APICall and return the shows  

    For each item in Results    //For each Show in the schedule 

        Add Result[i] to list of Shows   //Add it to the on screen list 

 

 

  

onClickListener ()  

Get Show.EpisodeID from List   //Get the ID for the selected episode 

displayEpisode(Show.EpisodeID)  //and pass it to displaySeries 

 

  

displayEpisode (Show.EpisodeID) //This class displays information about a specific episode 

String URL = Episodewww.metabroadcast.co.uk/episode=Show.ID  

Result = APICall(URL)  //Pass it through APICall and return the one result  

For each item in Result  //For each piece of info in the Show Class  

  Display Result.description  //Display it on the screen (Title, Description, Image etc.) 

  Display Result.title 

 

  

http://www.metabroadcast.co.uk/schedule
http://www.metabroadcast.co.uk/episode=Show.ID


James Carter CM2303 6th May 2016 
 

Page 30 
 

Favourites 
Users should be able to favourite a TV show when using the system. This option will be available on 

the displaySeries screen by using a start icon. This can be seen in the design here. Favouriting a show 

will be achieved using an onClickListener: 

Once the ID has been fetched, it is passed to addFavourite. I plan to save a txt file with the ID and 

Name of shows that the user adds as favourites: 

When the user wishes to view their favourites from the home menu, a method will load the 

favourite.txt file from the device and display the name of each show in the list. 

Once the favourites have been displayed, the user should be able to select the show to view 

information about it; another onClickListener identical to display series information will be used. Also, 

the user should be able to remove a show, this will be achieved with a deleteFavourite method 

accessed with a button as in the design: 

Settings 
In order to enable users to select which data sources to access data from, a simple setting page will 

allow them to select and deselect individual data sources. This can be implemented using Android’s 

native preferences handler. When the APICall method is called, it could open this preference file and 

adjust the URL accordingly to add or remove data sources: 

 

onClickListener ()  

Get Show.ID & Name from List   //Get the ID for the selected show 

addFavourite(Show.ID, Name)   //and pass it to addFavourite 

 

  

addFavourite (Show.ID, Name)  

Load favourite.txt      //Load the favourite txt file 

add Show.ID & Name to favourite.txt   //Add the ID and name to the list  

Write to file favourite.txt     //Save file  

 

  

viewFavourites ()  

Load favourite.txt      //Load the favourite txt file 

For each Show in file     //Iterate the file for each show 

  Add Show.Name to the list   //Add the name of the show to the on screen list 

  

 

  

deleteFavourite (Name)  

Load favourite.txt      //Load the favourite txt file 

If file has Name     //If the show exists in the file 

  remove Show.ID & Name from file  //Remove the ID and name from the list  

Write to file favourite.txt     //Save file  

 

  

checkPrefs (URL)  

Load preferences      //Load the preferences file 

For each selected data source    //For every data source selected 

  URL + data source    //Include it in the URL 

Return URL      //Return the URL 

 

  



James Carter CM2303 6th May 2016 
 

Page 31 
 

Reminder 
To allow users to set a reminder for a given show. An alarm feature needs to be implemented. Android 

has its own native AlarmManager object (Google2 2016) that can be used. The device can then be 

woken from a sleeping state to alert the user of an alarm. My system can take advantage of this to 

alert the user when a TV show is on. 

 

 

 

  

setReminder (Show ID, Show Time)  

Set alarm at Show Time with Show ID   //Set the alarm and save the ID to the alarm 

  

alarm ()       //Called when alarm goes off 

Show notification with Show ID    //Show the notification and show name 

  

cancelAlarm ()       //Called to cancel alarm 

Select reminder from list in settings  

    

  



James Carter CM2303 6th May 2016 
 

Page 32 
 

Hand-drawn Designs 
In order to ensure usability, it is important to make the system as user-friendly as possible. Therefore, 

I have started to design the GUI from hand-drawn designs. This method is ideal for rapid prototyping 

as they are quick to create. However, hand-drawn designs do little to represent limitations in Android’s 

native GUI elements such as buttons, checkboxes and textboxes so it is important to further develop 

these designs into computerised versions. 

Above are the initial designs for the main screen, search TV shows and display TV show information. I 

have tried to keep the design as clean and simple as possible following Nielsen’s Ten Usability 

Heuristics (Nielsen 1995); mainly of aesthetic and minimalist design, meaning the system should not 

contain any information that is irrelevant or unnecessary and consistency and standards, meaning the 

system should have a consistent design and a consistent use of language.  

This is the design for the EPG. Again, following 

a minimalist approach I have included 

everything that a regular EPG includes. Each 

channel has its own row with shows in each 

column relative to the table header containing 

the time that the shows are on for. Clicking on 

a TV show would then open the show episode 

information page.  

Figure 19: Hand-drawn Main Screen Figure 18: Hand-drawn Search TV Shows Figure 17: Hand-drawn Show TV Information 

Figure 16: Hand-drawn EPG 



James Carter CM2303 6th May 2016 
 

Page 33 
 

 

Above are the initial designs for episode information, favourites and settings. Following a similar 

layout to the rest of the system, I aim to make it as easy to use as possible by using self-explanatory 

labels and buttons and using titles to describe what that section does. 

Figure 22: Hand-drawn Favourites Figure 20: Hand-drawn Settings Figure 21: Hand-drawn Episode Information 



James Carter CM2303 6th May 2016 
 

Page 34 
 

Wireframe Design 
After producing initial designs, I used an online tool called proto.io (proto.io 2016) to create wireframe 

designs that follow android’s UI more closely. As I am a keen user of Android, the designs did not have 

to be altered much being familiar with the layout of Android applications in general.   

Figure 28: Wireframe Main Screen Figure 25: Wireframe Search TV Shows Figure 26: Wireframe Search TV Shows 

Figure 24: Wireframe Series Information Figure 23: Wireframe Episode 
Information 

Figure 27: Wireframe Favourites 



James Carter CM2303 6th May 2016 
 

Page 35 
 

The only two major changes to the design have been to the settings and EPG. Realising that users may 

want to have multiple reminders set, only being able to clear all of them using one button was a bad 

design flaw. Instead, I have decided that there will be a list, similar to that of the favourites feature. 

The list will have a cross icon to allow users to individually delete reminders.  

The EPG has had a drastic change in design. The main reason why I decided to do this was the fact that 

implementing a classic EPG design would require implementing a complex dynamically rendered 

nested table in which each TV show took up a custom width based on its duration. As I felt the time 

needed to invest in learning how to code that feature I decided it would be best to focus on ensuring 

the data could be retrieved in the first place. The EPG now has a row for each TV show that displayed 

the time, title and buttons to relevant tasks that extend it

 

Figure 29: Wireframe Settings Figure 30: Wireframe EPG 



James Carter CM2303 6th May 2016 
 

Page 36 
 

Branding 

Icon 
In most smartphone applications, users expect a high-quality design as much as solid functionality. 

Therefore, it is important to consider the brand the system will convey to its users. A consistent 

approach to the theme will help users build a familiarity to the system and its brand. Another method 

to give the system a unique brand is to have an icon. This icon will be the image the user sees on their 

phone along with the description. In Figure 31, it is clear, without needing to read the label which 

application serves as an email client. These simple and self-

explanatory icons subliminally define a standard amongst new 

and experienced users alike. By default, most Android 

smartphones do not come with any pre-installed TV related 

applications and as the system is geared towards TV it makes 

sense to create a logo that resembles a TV. A simple TV logo 

would help users instantly understand the purpose of that 

application in their app drawer, perfect if they are watching TV 

at the same time of wanting to use the system. Android 

currently uses its own material theme, based on simplicity and 

flat icons.  

After browsing the Google Play Store, it is apparent that there is 

a huge variance in applications related to TV; there is also a 

noticeable difference in their icons. Even in Figure 32 all of the 

icons for the ten applications listed are all unique enough to tell 

apart. Despite their differences, most of the icons do a good 

enough job of representing their respective app’s purpose. 

 

Design 

 

 

 

 

 

 

The design for the system’s icon aims to follow the material theme of Android to help it integrate with 

the look of the device’s user interface. A simple TV with a phone inside suggests the paralleled use of 

the two devices. The icon is also unique such that if a user has other TV applications installed that their 

icons do not clash.  

I created the intial design by hand and used it to produce an initial digital design using software called 

Inkscape (Inkscape 2016). However, as Android supports screens of varying resolutions and densities 

it is important to create a set of icons to accommodate them all. I utilised an open source program 

called Android Asset Studio (Nurik 2016) which allowed me to upload my icon and generate a 

compressed folder with icons ready to import into the Android Studio project. The tool also offered 

customisation to help the icon follow Google’s Material theme. 

Figure 31: Sample icons from Android 
Studio's Emulator App Drawer 

Figure 32: Sample of TV related apps 
(Play.google.com5, 2016) 

Figure 33: Icon design development 



James Carter CM2303 6th May 2016 
 

Page 37 
 

Name 
Another important method for promoting the system’s brand is the name. The name of the system 

should be self-explanatory with the aim that a potential user should be able to understand the 

system’s purpose by its name alone. For that reason, I have decided to call the system ‘TV Companion’.  

Figure 34 demonstrates TV Companion’s appearance on the home screen of a generic Android 

device. The minimalist style helps it blend in with the rest of the screen and promotes an elegant 

professional brand. 

 

  

Figure 34: Home screen from Android Studio's Emulator App 
Drawer 



James Carter CM2303 6th May 2016 
 

Page 38 
 

Implementation 

Android Application 
When implementing the solution using Android Studio, adaptations had to be made to the original 

pseudo code design. As Android extends the Java library, a large amount of work has been made to 

extend my knowledge from Java to Android.  

API 
The Metabroadcast API provides a Java based client to directly query the API server. However, this 

client has no documentation, has infrequent updates and has changed considerably since its release 

meaning there is no relevant information available. Instead of spending time trying to understand a 

bespoke Java client for a single API, I felt it would be more beneficial to my learning to learn a more 

generic, HTTP API approach where the skillset gained can be transferred to other projects calling for 

the use of an API. 

The API works by sending a simple URL request in a specific format. If the request is successful, a JSON 

object will always be returned. This is useful as the system can be developed to solely deal with JSON 

objects rather than a mixture of objects and arrays. 

The structure for a URL request is as follows: 

Base URL: https://atalas.metabroadcast.com 

 

 For schedules:  /Schedules/CHANNEL ID.json?from=START TIME&to=END TIME 

 For content: /content/ID.json?type=item 

 For queries /content.json?limit=20&annotations=description&q=QUERY 

 

End URL:  &source=SOURCES&key=UNIQUE API KEY 

An example of the URL used to fetch schedules for a channel with an ID of ID: 

https://atlas.metabroadcast.com/4/schedules/"+ID+".json?from=now&to=now.plus."+unti

l+"h&source=pressassociation.com&annotations=channel&key= 

 

The resulting response contains all the information from the request. Each JSON Object is formatted 

in the same way for each type of request making parsing very simple to achieve: 

Queries return a JSON Object containing an array of results which contains a JSON Object each where 

the ID and title can be retrieved and displayed as a list of results. When a user selects a result, the ID 

can simply be used in a content API request. 

Content returns a JSON Object containing JSON Objects for each piece of information. This information 

is consistent for each TV show or film making parsing simple.  

Schedule returns a JSON Object containing an array of JSON Objects for each TV show that is being 

aired. This information also includes the start and end time for its scheduled airtime on that given 

channel.  

It has also been noted that changing the source section in the URL has no effect on the results 

returned. Therefore, I feel that requirement 202, a way for users to select data sources, should be 



James Carter CM2303 6th May 2016 
 

Page 39 
 

categorised as a ‘Could Have’ requirement as the scope of the project does not cover the time required 

to research into changing data sources. 

Asynchronous HTTP Client 
In order for my system to make an HTTP request, Android enforces all networking tasks to be 

performed in a separate thread to the main UI thread. This ensures the GUI doesn’t freeze while a 

network task is running and also prevents timeouts from stopping the user from interacting with their 

device. 

Originally I had researched and discovered Google’s Volley (Google 2016), an HTTP library that allows 

for Android apps to make HTTP requests in the background. However, I was having difficulty 

understanding how to extract the results from the request thread into the main UI thread in order to 

display the results on screen. The documentation for Volley proved to be difficult to understand and 

lacked examples relevant to my situation. This became a major limitation to the development of my 

solution as I was unable to use the API call results in the main UI thread. 

To get around this, I utilized James Smith’s Android Asynchronous HTTP Client (Smith 2016). This 

library allows HTTP requests to be made outside of the system’s main UI thread without the need to 

manually program an HTTP client. I adapted this library to suit the needs of the Metabroadcast API by 

including methods for each type of API request. 

Method Parameters 

getContentSearch String Query RequestListener listener 
 

    String ApiURL = 

"content.json?limit=20&annotations=description&q="+Query+"&key="; 

    System.out.println(ApiURL); 

 

    JSONRequest.get(ApiURL, null, new JsonHttpResponseHandler() { 

        @Override 

        public void onSuccess(int statusCode, Header[] headers, JSONObject 

response) { 

            listener.onSuccess(statusCode, headers, response); 

        } 

    }); 

 

getContentSearch is responsible for building a query to fetch a JSON object containing all of the 

results from the query inputted by the user. In order to make the request, JSONRequest is used, a 

method from the Android Asynchronous HTTP Client library. JSONRequest’s onSuccess method is 

then overridden to be able to take control of the returned results.  

 

 

 

 

 

 

 



James Carter CM2303 6th May 2016 
 

Page 40 
 

Method Parameters 

getContent String ID RequestListener listener 

 
String ApiURL = 

"content/"+ID+".json?type=item&source=pressassociation.com&limit=2&offset=0&annot

ations=brand_summary,broadcasts,channel,description,images,people&key="; 

    System.out.println(ApiURL); 

    JSONRequest.get(ApiURL, null, new JsonHttpResponseHandler() { 

        @Override 

        public void onSuccess(int statusCode, Header[] headers, JSONObject 

response) { 

 

            obj = response; 

            listener.onSuccess(statusCode, headers, response); 

 

        } 

 

    }); 

 

} 

 

getContent is responsible for building a query to fetch a JSON object containing the information for a 

given unique ID. As per Metabroadcast’s API, the ID used in this query can be from either a series or 

an individual episode from a series, this saves any duplicate code being used as this method works 

for both. 

  



James Carter CM2303 6th May 2016 
 

Page 41 
 

Show Class 
As every show follows a similar format, I decided to use a custom Show object to best represent the 

data instead of working from the JSON Object directly within the EPG and displayEpisode sections of 

the system. By using a custom object, the data can be accessed and modified in any way I choose to 

without having a direct impact on the rest of the system. For example, if I wanted to format the series 

title to include the episode name I could do so from within the Show class. Attempting to do this sort 

of operation within the JSON Object is not best practice and ultimately creates limitations to the 

system should anything need to change. 

As the airing times are in GMT and it is currently GMT+1, the times were an hour behind. To remedy 

this problem, I implemented a formatTime method in the Show class to convert the airing time String 

into the correct format and time. The input String is formatted “2014-09-26T14:45:00.000Z” so the 

time section is extracted and a SimpleDateFormat is applied and cast to a Date datatype. To increment 

the time by an hour, a Calendar is created and the time added to it; Calendar has a method to add an 

hour. The Calendar returns the new time and is returned. 

I decided not to use this class to represent data with displaySeries as the data used in this method is 

slightly different from an ‘Episode’ object returned from the API. As the data is not accessed anywhere 

else, it is a simple case of retrieving a single JSON Object and displaying the data.  

Please see the source for Show.java here. 

  



James Carter CM2303 6th May 2016 
 

Page 42 
 

Home Screen 

The home screen follows the same design set out throughout the design stage. The buttons are all 

self-explanatory, aiming to achieve learnability and usability. They are also of a uniform size to comply 

with a consistent theme throughout. 

The code works by simply creating a new intent upon the onClick method of the button. Favourites 

extends that by featuring a check to see if the user has any saved favourites. If they do not, the button 

does not do anything and displays a toast alerting them of the lack of favourites: 

  

public void favourites(View view){ 

 

    SharedPreferences preferences = 

getSharedPreferences("com.example.c1319936.tv

companion", 0); 

    if(preferences.contains("Favs")){ 

        Intent i = new Intent(this, 

Favourites.class); 

        startActivity(i); 

    } 

    else { 

        Toast.makeText(this, "You have no 

favourites", Toast.LENGTH_SHORT).show(); 

    } 

 

 

} 

 

Figure 35: Main Screen 



James Carter CM2303 6th May 2016 
 

Page 43 
 

Search TV Shows 
The search for TV shows section incorporates a self-explanatory search bar which the user can type a 

query. Upon completing the query, an API call is made with the query text and results are returned on 

the same screen using a custom List View. Clicking one of these shows will open display series. 

Populating the ListView with results is achieved by using an Array Adapter; this works by mapping an 

ArrayList of results to ListView elements. An onClickListener is then responsible for retrieving the ID 

of the selected show that the user clicks on. This ID is then sent over to displaySeries within an intent 

extra:

  

ListView.setOnItemClickListener(new AdapterView.OnItemClickListener() { 

    public void onItemClick(AdapterView<?> adapter, View v, int position, long 

id) { 

 

        //fetch the show name and ID at the current position 

        String selectedFromList = (String) 

(ListView.getItemAtPosition(position)); 

        String ID = (String)(resultID.get(position)); 

 

        //new intent to displaySeries 

        Intent i = new Intent(searchShows.this, displaySeries.class); 

        //add the show ID to the intent 

        i.putExtra("show", ID); 

        //send the intent 

        startActivity(i); 

    } 

}); 

 

Figure 36: Search TV Shows 



James Carter CM2303 6th May 2016 
 

Page 44 
 

Displaying Series Information  
In order to work with the results, a listener is implemented in the class that made the original HTTP 

request. This means that when the request has been successfully returned, the main UI thread can 

use the data to populate onscreen objects. 

An example of how this is used in the main thread can be demonstrated in the displaySeries class.  

Method 

displaySeries 
Content.getContent(ID, new RequestListener() { 

    @Override 

    public void onSuccess(int statusCode, Header[] headers, JSONObject response) 

{ 

 

        try { 

          //populate variables with series information 

          title = response.getJSONObject("brand").getString("title"); 

          type = response.getJSONObject("brand").getString("specialization"); 

          description = response.getJSONObject("brand").getString("description"); 

 

            try { 

                imageURL = 

response.getJSONObject("brand").getJSONArray("images").getJSONObject(0).getString

("uri"); 

            } catch (JSONException e) { 

                imageURL = "null"; 

            } 

 

            //if there is no value retrieved for specialization 

            if (type.equals("null")) { 

                //then set type to empty 

                type = ""; 

            } 

 

            //if there is a URL for an image for the episode 

            if (!imageURL.equals("null")) { 

                //then use loadImageAsync task to add image to an Image View 

                ImageView imgView = (ImageView) findViewById(R.id.imageView); 

                new loadImageAsync(imageURL, imgView).execute(); 

            } 

 

            //if there is a description 

            if (!description.equals("null")) { 

                //then add the description 

                TextView txtDesc = (TextView) findViewById(R.id.textDescription); 

                txtDesc.setText(description); 

            } 

 

            //if there is a title 

            if (!title.equals("null")) { 

                //set a title TextView to hold the title of the series 

                TextView txtTitle = (TextView) findViewById(R.id.textTitle); 

                txtTitle.setText(title); 

            } 

        } catch (JSONException e) { 

            e.printStackTrace(); 

        } 

 

    } 

 

}); 

 

 



James Carter CM2303 6th May 2016 
 

Page 45 
 

The onSuccess method is overridden in the main thread, allowing me to populate TextViews and an 

ImageView with the relevant information. I have ensured that appropriate error checking is in place 

to prevent any results that do not contain certain information from causing JSONObject null pointer 

errors resulting in the system crashing. 

The display series section can be opened from either search shows or by clicking the series information 

button from the EPG. This page follows a simple layout to show the title, image and description of the 

show itself. The quality of the description is dependent on the returned results from the API. Clicking 

the favourite icon will add the show to the user’s favourites list.  

  

Figure 37: Series Information 



James Carter CM2303 6th May 2016 
 

Page 46 
 

Displaying Episode Information 
Displaying information for individual episodes follows much the same approach using an episode ID 

instead of a series ID. As the data follows the same format as the EPG, we can take advantage of the 

Show object to represent the data. In order to display the correct  

The display episode is similar to display series. It includes the title, image, description and adds the 

series/episode numbers and time due to be broadcast. The minimalist design aims to make it easier 

for the user to read the information displayed to them. The image is used to pad out the screen and 

break up the text. 

  

Figure 38: Episode Information 



James Carter CM2303 6th May 2016 
 

Page 47 
 

Electronic Program Guide 
The EPG formed the most difficult section to implement as it requires multiple queries to made that 

depend on the results of an initial query. I attempted to use the same Android Asynchronous HTTP 

Client used previously in getContent and getContentSearch; however, as the data has to be used 

within onSuccess, it is impossible to create a For loop within the method as onSuccess has already 

been overridden. Results from the first query would not be returned in time for them to be used in 

queries that depend on them. This was a limitation of the library and the way I had set it up.  

To solve this problem, I researched Google’s documentation on Android and implemented an 

AsyncTask (Google2 2016). An AsyncTask enables the system to perform background operations and 

return the results to the UI thread, similar to overriding onSuccess. The AsyncTask wraps a Google 

Volley JSON Object Request which is then called from within a thread separate to the UI thread. Once 

the initial schedule results have been returned, an array of threads equal to the number of results is 

created and iterated through within the initial thread, returning the results for each scheduled show. 

The results are added to an array of Show objects which are then passed to displayEPG which runs in 

the UI thread to display the results. See the full code here. 

Another unexpected change had to be made regarding the airing times for shows. The initial schedule 

query contains the airing times for each show. When running each separate query, the airing times 

can be different causing incorrect airing times to be displayed. To remedy this, I fetched the correct 

times from the initial query and append them to the query results for each show. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 39: Flow Diagram for EPG 



James Carter CM2303 6th May 2016 
 

Page 48 
 

The EPG is by far the busiest screen for users. Aiming to adhere to a minimalist design I have ensured 

each show is laid out in the same manner, again, with self-explanatory buttons. I incorporated the use 

of icons for the information sections to save room. The channel and time selection drop down lists are 

labeled accordingly to allow users to instantly understand what each do.  

Feedback is given in the form of onscreen toasts to tell the user if the time limit has changed as well 

as a refresh icon when data is being loaded. 

The drop down list is dynamically generated by using my custom APIDict object. This object works by 

using a LinkedHashMap that links a key-value pair. The key is the name of the channel i.e. ITV and 

the value is the unique API ID for the channel. When the user clicks on the channel, mainEPG uses 

APIDict’s getChannel method to return the ID. Adding channels to this object is extremely simple, all 

one needs to do is add a line of code adding the ID and name of the channel. 

I have also implemented a new ‘Stream’ feature which when the user clicks, opens up the 

appropriated streaming website for the channel i.e. ITV player. As this was an unplanned feature, I 

simply appended the link to the unique ID within APIDict and modified the return methods to only 

return the first four characters as the unique ID is of that size. Although this is not the most elegant 

way, it saved time by avoiding a redesign of representing shows and their unique ID. 

Figure 40: EPG 



James Carter CM2303 6th May 2016 
 

Page 49 
 

Favourites 
Favouriting a show has been adapted to take advantage of Android’s native Shared Preferences 

feature. Every application on a given device has its own Shared Preferences file which can be opened, 

edited and saved within the code. This feature is extremely useful as there is no need to implement a 

bespoke file reader and writer.  

When the user runs the displaySeries task, if there is a shared preferences file it is opened, if not then 

a new one is made. When the user clicks the favourite button, a method loads the preferences and 

extracts the set of data that holds the list and casts it to an ArrayList. From there, the new show is 

added to the ArrayList, cast back to a set and saved to the preferences file.  

When the user runs the favourites task, the preferences files is loaded, cast to an ArrayList and a 

custom Adapter is used to add the title of each show to a ListView. An example of a favourites list can 

be found in Figure 41. A check is made in the main menu to see if a preferences file exists. If it isn’t, 

the favourites button is disabled until the user adds a show to their favourites. 

The favourites section follows the same layout set in the design stage. I have added a text box with 

instructions to help users understand how to interact with the data displayed on screen. The user can 

click on the show and display series will load, showing information about the show; they can also click 

on the cross icon to remove the show from their list 

 

Figure 41: Favourites 



James Carter CM2303 6th May 2016 
 

Page 50 
 

Settings 
Although settings haven’t been implemented, the GUI for it has been created ready for its 

implementation. A text box briefly explains what the check would boxes do. I removed the reminders 

ListView as it hasn’t been implemented and leaving the object empty caused the system to crash on 

compile.

Figure 42: Settings 



James Carter CM2303 6th May 2016 
 

Page 51 
 

Class Diagram 
This is the UML Class Diagram of the final system. This diagram gives an overall view of the system and how each class interacts with each other. From this 

view it is clear mainEPG uses a ScheduleThread in order to achieve nested threaded retrieval of the schedule, a novel feature of the system. It also helps to 

visualise how the RequestListener is used to interface with HTTP requests in order to override the onSuccess method.

Figure 43: UML Class Diagram of Final System 



James Carter CM2303 6th May 2016 
 

Page 52 
 

Testing 

Test Cases 
After implementation, I proceeded to test the system against the test cases set out in the design stage. 

Test ID Req ID Scenario Test Steps Expected Result Actual Result Pass/
Fail 

001 101 
Data can be 
retrieved 

Temporarily print result of 
JSON requests 

JSON object will be printed for each 
request made 

System successfully printed JSON 
Object (See Image 1) 

Pass 

002 101 
Failed JSON 
request 

Temporarily edit request to 
return an error 

JSON exception should be caught 
without crashing system 

System crashes (See Image 2) Fail 

003 102 
Parse JSON 
object 

Temporarily print result of 
parsing JSON requests 

Information such as Episode Name, 
Series Name will be printed 

System successfully printed 
Name, ID and Series ID during 
parsing in Show Class  
(See Image 3) 

Pass 

004 102 
Parse 
incompatible 
JSON object 

Pass a random JSON object 
into parser 

JSON exception should be caught 
without crashing system 

System crashes with a similar 
output as Test 002 

Fail 
 

005 

103 Test GUI 

Click ‘Search TV shows’ Search TV shows activity starts 
Successfully navigates to 
searchShows 

Pass 

006 
Click ‘Electronic Program 
Guide’ 

EPG activity starts 
Successfully navigates to 
mainEPG 

Pass 

007 Click ‘Settings’ Settings activity starts Successfully navigates to settings Pass 

008 

101 
102 
103 
104 
105 
201 

Test TV 
show search 

Type in ‘Dr’ in search box List of results will appear 
System displays results 
(See Image 4) 

Pass 

Click ‘Doctor Who’ from 
results 

Display Series activity starts with Dr 
Who as the series 

System successfully navigates to 
displaySeries, loads and displays 
information for ‘Doctor Who’  
(See image 5) 

Pass 

Wait for Display Series to load 
Information for Dr Who will load and 
be displayed 

Pass 

  Figure 44: Table of Test Cases 



James Carter CM2303 6th May 2016 
 

Page 53 
 

 

Test 
ID 

Req ID Scenario Test Steps Expected Result Actual Result Pass/Fail 

009 

101 
102 
103 
104 
105 
106 

Test 
Electronic 
Program 
Guide 
functionality 

Click ‘Electronic Program 
Guide’ 

EPG activity starts EPG activity starts 
Pass 

Select channel (BBC 1) from 
drop down list 

Loading animation starts Loading animation starts Pass 

Data is loaded and displayed  
Data is loaded and displayed 
(See Image 6) 

Loading animation stops Loading animation stops 

Click ‘Episode Info’ button 
Display Show activity starts with 
selected show 

Display Show activity starts 
with selected show 

Pass 

Episode information is displayed (See image 7) Pass 

Click ‘Series Info’ button 

Display Series activity starts with 
selected series 

Display Series activity starts 
with selected series 

Pass 

Series information is displayed 
(See image 8) Pass 

Click ‘Stream’ button 
External link for the selected channel 
(BBC 1) will open using the device’s 
default browser  

Link opens successfully using 
device’s default browser 

Pass 

Select ’24’ from the time 
limit drop down list 

A toast notification will alert the user it 
has been changed 

A toast notification will alert 
the user it has been changed 

Pass 

Pull down on the list view, 
invoking a refresh 

Loading animation starts Loading animation starts Pass 

Data is loaded and displayed for next 
24 hours 

Data is loaded and displayed for 
next 24 hours 

Pass 

Loading animation stops Loading animation stops Pass 

010 107 

Test 
application 
runs on 
Android 

Use emulator to run 
application (Version 5.0) 

Application will compile and run  

Application compiles and runs Pass 

Use my LG G3 (Version 
6.1.1) 

Application compiles and runs Pass 

Figure 45: Table of Test Cases 

  



James Carter CM2303 6th May 2016 
 

Page 54 
 

Test 
ID 

Req ID Scenario Test Steps Expected Result Actual Result Pass/Fail 

011 202 
Test data 
sources can be 
changed 

Click ‘Settings’ from main 
menu 

Settings activity will open 
Settings activity opens (See 
here) 

Pass 

Select only Press Association 
from checkboxes 

Toast will appear listing the sources 
currently selected 

Settings have not been 
implemented 

Fail 

Global API link will change to only 
include data from Press Association 

Fail 

012 203 
Test built-in 
user guide 
works 

Start application 

Main menu will appear Main menu appears Pass 

Welcome popup will appear with 
descriptions for Search TV and EPG 

The menu shows self-
explanatory buttons and a 
welcome notice at the top 

Pass 

Click ‘Search TV Shows’ 
Search TV shows activity starts Search TV shows activity starts Pass 

Search bar will have a tooltip 
describing what it does 

‘Search for a TV show’ appears 
as a tooltip  

Pass 

Click ‘Electronic Program 
Guide’ 

EPG activity starts EPG activity starts Pass 

Channel and Time drop down lists 
labeled with self-explanatory labels 
will appear 

The two lists appear Pass 

Self-explanatory icons appear for 
Episode & Series information 
Icon appears for Stream 

Icons appear with labels  Pass 

Figure 46: Table of Test Cases 



James Carter CM2303 6th May 2016 
 

Page 55 
 

Test 
ID 

Req 
ID 

Scenario Test Steps Expected Result Actual Result Pass/Fail 

013 301 
Test bookmark 
functionality 

Access Display Series activity either via EPG or Search TV 
Shows 

Display Series activity 
starts 

Display Series activity 
starts 

Pass 

Click ‘Bookmark’ button 

Series ID is saved to 
the device 

The series ID and 
name is saved to the 
device 

Pass 

Toast alerts user that 
the series has been 
added to favourites 

A toast alerts the user 
of the show being 
saved to favourites 

Pass 

Click ‘Favourites’ button from main menu 
List of favourites will 
load showing series 
just added 

This list loads 
correctly, clicking it 
will load Display Series 

Pass 

014 302 
Test reminder 
functionality 

Click ‘Electronic Program Guide’ EPG activity starts EPG activity starts Pass 

Click ‘Reminder’ for the first show in the list  
Toast alerts user that 
the show is already 
airing 

This has not been 
implemented 

Fail 

Click ’Reminder’ for the second show 

Toast alerts user that 
a reminder has been 
set for the time that 
the show will air 

Fail 

A notification is 
displayed when the 
show is about to air 

Fail 

Figure 47: Table of Test Cases



James Carter CM2303 6th May 2016 
 

Page 56 
 

Questionnaires 
Understanding how users feel about the application is very important in evaluating the success of the 

project. I made a simple survey using https://www.surveymonkey.com, a convenient tool to create 

and anaylse questionnaires. The questions I chose to ask were solely based around the usage of the 

application as I wanted to understand how different users rate the ease of us.  

Question Purpose 
Have you ever used an application to view TV 
information? 

This question is used to ascertain whether 
or not the user has ever tried a similar 
application. If they have previous 
experience they may find it easier to use 

Describe your level of experience using a 
smartphone 

This question is used to understand the 
experience level of the user. If the user is 
inexperienced in general, they may find the 
system harder to use 

Were you able to search for a TV show? 

These questions aim to understand if the 
user can use the features of the system. If 
they can use the features, this can be used 
to suggest the project has been a success. 

Were you able to favourite a TV show? 

Were you able to browse the Electronic Program 
Guide? 

Were you able to remove a favourite show? 

Were you able to view information for a selected 
show? 

How easy was the application to use? (0 Impossible 
- 5 Extremely easy) 

This questions aims to understand how the 
user felt the system was to use. The higher 
the better. 

Figure 48: Table to summarise choice of questions 

Results 

Six people managed to carry out the questionnaire. Although a small sample size, the people included 

my Mother (IT & Basic Skills Teacher), my Father (Bought his first smartphone this year), my partner 

(An average smartphone user), my friend (An average smartphone user), a peer in university 

(Considered advanced smartphone users) and a colleague in work (An average smartphone user). 

The variance in people helps give me an understanding of how different people use and feel about the 

application I have produced. The results are as follows: 

Have you ever used an application to view TV 
information? 

Yes 1 

No 5 

Unsurprisingly, not many people have actively used a similar application to view TV information. 

 

Describe your level of experience using a 
smartphone 

Advanced 1 

Intermediate 3 

Beginner 2 

The majority of people stated they were intermediate users. This was my target audience set out from 

the start. Having two beginners helps me understand whether at their level that my application is still 

easy to use 

 

Were you able to search for a TV show? Yes 6 

https://www.surveymonkey.com/


James Carter CM2303 6th May 2016 
 

Page 57 
 

No 0 

All users were able to search for a TV show, suggesting that the feature is very easy to use. 

 

Were you able to favourite a TV show? Yes 6 

No 0 

All users were able to favourite a TV show, suggesting that the feature is very easy to use. 

 

Were you able to browse the Electronic Program 
Guide? 

Yes 6 

No 0 

All users were able to browse the Electronic Program Guide, suggesting that the feature is very easy 

to use. 

 

Were you able to remove a favourite show? Yes 5 

No 1 

Only one user was unable to remove a favourite show. The user, surprisingly, claimed to be 

intermediate. Upon further questioning, the user didn’t read the small instructions on the favourite 

screen so didn’t understand that the cross was responsible for removing a show from their favourites. 

 

Were you able to view information for a selected 
show? 

Yes 6 

No 0 

All users were able to view information for a TV show, suggesting that the feature is very easy to use. 

 

How easy was the application to use? (0 Impossible 
- 5 Extremely easy) 

0 0 

1 0 

2 0 

3 2 

4 1 

5 3 

50% of users agreed that the application was extremely easy to use with the others ranging from 3/5 

and 4/5. Overall, it is safe to say that users did not find the system difficult to use. 

 

  



James Carter CM2303 6th May 2016 
 

Page 58 
 

Test Report 
Overall, the system runs very well. There are no bugs related to the flow of the GUI, each button 

correctly goes to the expected activity. The application runs on all devices tested with no compilation 

problems at all. The questionnaires have helped prove that the system is easy to navigate and use 

with 50% of users asked stating it was extremely easy to use. The GUI proved to be mostly self-

explanatory. 

Searching for TV shows does not cause any errors, nor does browsing the EPG. The main system 

requirements have no errors. 

Favouriting works flawlessly using Android’s native Shared Preferences. Testing shows that the show 

is saved and can be accessed even after closing the application. Favourite shows can also be deleted 

with no errors. Toasts are used to alert the user when they have added a favourite, removed a 

favourite and if they try to access favourites without any, a toast to tell them they have no favourites. 

However, there are some errors within the system; Parsing JSON Objects that are formatted 

incorrectly it will crash the system. As this is extremely unlikely to happen, given that the API returns 

all results in the same format, it does not have a detrimental effect on the system. Similarly, if the API 

URL is incorrect, the exception is caught but crashes the system as it still tries to parse an empty JSON 

Object. This bug does not have a severe impact on the system as the API calls are hard coded into the 

system. There may be a vulnerability in the system if the API call times out due to lack of internet 

connectivity. This would render the system useless without internet access. 

The settings feature has not been implemented, this means that clicking on the data sources through 

the GUI has no effect on the system. Although this does not have a severe impact on the system, it 

still failed the test case set out for it. Similarly, the reminder feature has not been implemented 

resulting in failed test cases for that feature too.  



James Carter CM2303 6th May 2016 
 

Page 59 
 

Results and Evaluation 
 

In order to evaluate whether the project has been a success, it is necessary to compare the finished 

solution against the system requirements. Of course, the more system requirements achieved results 

in the project being more successful. As system requirements were categorised into three levels of 

priority, in order for the project to be successful all of the ‘Must Have’ requirements need to be 

implemented. ‘Should Have’ requirements are necessary to gauge how successful the project is and 

‘Could Have’ requirements can be used to assess how the project has exceeded the requirements to 

be considered a success.  

Requirement 101, a method to access information of TV programs has been achieved; The system can 

access the Metabroadcast API and retrieve information. Requirement 102, to be able to process this 

information has been achieved too. The system has a completely functional GUI that aims to follow 

basic Human Computer Interaction goals that were set out right at the beginning during the hand-

drawn design stage, fulfilling requirement 103. Users are able to select a TV program from either the 

EPG or from the list produced when searching for a TV show, fulfilling requirements 104, 106 and 201. 

Selecting a TV show then results in the user being able to view information for that specific show, 

fulfilling requirement 105.  Finally, the system compiles and runs on Android, as proven during testing. 

The system allows users to search for TV shows, fulfilling requirement 201. The system also aims to 

provide a built-in user guide by using self-explanatory icons, buttons and titles; some more advanced 

features of the system include a text box to describe how to use them such as the favourites section. 

As I could not conclude as to why changing data sources in the API URL made no difference to results, 

I focussed my efforts on implementing requirement 302, allowing users to favourite a TV show. It 

should also be noted that I introduced a new feature, allowing users to click-through to an external 

link to stream the selected TV channel. 

Considering non-functional requirements is important in evaluating the system’s overall success too. 

The questionnaires and testing suggest that usability has been achieved as users find it easy to use 

with minimal guidance. Reliability is partially achieved as the system runs error free in normal usage 

and runs on Android but can still crash due the lack of error handling; This means that robustness has 

not been fully achieved. The system, I feel, is easy to change if necessary, the code is commented 

thoroughly throughout with every line described to allow myself or someone else to understand and 

change, fulfilling maintainability. Performance has been achieved too, with the only loading necessary 

being when the EPG fetches information using nested threads; this loading cannot be improved and 

is dependent on the internet connection and speed of the device. Security is a negligible requirement 

as the system stores no personal information at all. Similar to maintainability, flexibility has been 

achieved by means of well-documented code and a modular design has been incorporated. For 

example, changing the EPG section of code would have zero effect on the other functionality. 

 

  



James Carter CM2303 6th May 2016 
 

Page 60 
 

Future Work 
 

In this section, I will outline future plans to enhance the application.  

Firstly, I would ensure an appropriate error handler is implemented to handle all API requests. This 

error handler would catch any exceptions and save them as a log to the device without crashing the 

system. The method that called the API call would then receive a callback notifying it that the request 

had failed and would simply terminate the operation, having no effect on the UI thread. I would also 

aim to dynamically provide error messages to the user should they require them, including a 

mandatory error message if there is no internet connectivity. These additions would ensure the 

system does not crash under any circumstances. 

Secondly, I would implement the reminder feature. This would work by using Android’s native Alarm 

feature. The user would simply click on a button and the start time would be added to the alarm. 

When the alarm is activated, a notification would appear on the user’s status bar, this can be set to 

permanent until the user clicks on it, opening the application. Depending on the timescale given, I 

would aim to add extra functionality to this feature by allowing the user to select exactly when the 

reminder would be set to go off.  

I would implement the settings feature too. However, from my testing, I have noticed that changing 

data sources using Metabroadcast’s API has no effect on the results returned as they default the 

results to the Press Association unless the API key is upgraded or enrolled on other third-party data 

providers. During my implementation I noticed that changing the data sources in the API URL made 

no difference in the results returned so did not improve the system in any way. In future works, I 

would attempt to research into the effects of this feature and to see if it improves the quality of the 

system.  

I would make tweaks to the GUI to allow for easier navigation between screens. For example, now 

that I understand Android Layout Resources, I would like to be more ambitious with the GUI using 

custom icons and buttons. I would also like to like to adjust the way in which search TV shows looks 

as I feel it looks a little empty when the user first opens the screen before typing in a query. 

I would also like to explore other APIs as my priority at the start of this project was to find a single 

suitable API for the scope of the project. Now that I have gained a wealth of experience working with 

Android Studio, Google’s Volley and JSON Objects, I would be very keen to apply this newly found 

knowledge to other APIs to extract even more information. 

  



James Carter CM2303 6th May 2016 
 

Page 61 
 

Conclusions 
 

The main objective of this project was to produce a TV companion application for Android and this 

has been achieved. TV Companion is a success; The project has fulfilled all of the ‘Must Have’ and 

‘Should Have’ requirements and has extended partially into ‘Could Have’ requirements with the 

bookmark and streaming feature. The application enables users to select, browse and search for TV 

shows and to view information about them. This has been achieved by successfully using a third-party 

API, something that I have personally wanted to achieve while in university.  

I feel that the overall process has been successful too, I followed my work plan to the best of my 

abilities and although I did not meet face-to-face with my supervisor weekly, we liaised frequently via 

email; I continuously reported my progress with him and delivered the second milestone of 

demonstrating a functioning application. I feel that my illness, although unsubstantial, pushed 

progress back by around ten days towards the start of the project. Thankfully, I managed the impact 

of that risk by planning a buffer period in the centre of the project to allow myself to catch up if needed 

and it paid off greatly.  

The level of success could have been increased by implementing all system requirements and ensuring 

robustness through implementing better error-handling. However, I have identified these factors in 

future works and given more time, I would be able to successfully implemented these improvements. 

Given the maintainability of my project, I confidently feel anyone with similar coding experience as 

myself would be successfully able to continue working on this project. Scalability is achievable too, 

adding channels requires adding a line of code per channel.  

   



James Carter CM2303 6th May 2016 
 

Page 62 
 

Reflection on Learning 
 

Having completed this project, I have learned to understand the level of work necessary to undertake 

in order to produce a piece of quality software. During the course of the project I have learned how 

to program using Java for Android with Android Studio IDE, something I set out to do from the start of 

my degree. I have really enjoyed learning how to develop a mobile application for the first time and it 

has helped direct me towards my career goal of becoming a mobile software developer.  

I feel that working on such a large project alone has improved my self-motivation more so than any 

other module during my time at Cardiff University. I have had to work with my own work plan and 

Gantt chart which has really helped me understand how time management plays a huge part in the 

success of a project. Feedback for my initial plan suggested that I was too meticulous in planning my 

Gantt chart, with the benefit of hindsight, I can understand this comment; I fell behind due to illness 

and felt that due to my meticulous planning, I was falling rapidly behind as I hadn’t finished work in 

the time I set. In reality, I was still on course and really became my own worst enemy.  

The project has not been without its failures; I have spent countless days trying to implement certain 

aspects of my project, namely the EPG. Trying to learn a new language on the fly while implementing 

complex code proved to be a huge personal challenge, one that I am proud to say I have achieved. I 

feel that the whole project has enabled me to dramatically improve my ability to self-learn, to be able 

to research without the need of a structured lecture or module. At first, the thought of working alone 

on such a large project was both exciting and daunting. I had a vague idea of how the system would 

work, that an API would be used and a Java based language to display the data. But I had no idea how 

different Android is to normal Java. The challenge to learn a completely new way of programming with 

Java after only covering Java for two years has been hugely rewarding. My understanding of Java has 

improved greatly and I feel that it will definitely help me in the future, both professionally and as a 

hobby. 

On reflection, I feel I attempted to implement the code solution too early, before fully understanding 

what was required to fulfil the system requirements. Because of that, I wasted time having to go back 

on my work to adapt it to the final needs of the system. Although this didn’t cause me any great delay, 

I feel If I were to code another application I would definitely aim to identify my personal limitations 

and opportunities for development before attempting to implement any code solution. I feel that 

more time should have been spent producing simple Android examples just to show proof of concept. 

For example, the EPG required using a ListView, an object that I was familiar with, but not to the extent 

where I would have been able to dynamically populate it with any data, let alone a complex custom 

Show object. Undoubtedly, I achieved this goal but I feel my methods were not best practise and if I 

were to do it again, I would take a more academic approach by going through examples provided by 

Google’s Java documentation so that I could work with the objects better. 

  



James Carter CM2303 6th May 2016 
 

Page 63 
 

Table of Abbreviations 
 

 

 

EPG Electronic Program Guide 

IDE Integrated Development Environment 

API  Application Program Interface 

JSON JavaScript Object Notation 

XML Extensible Markup Language 

XMLTV Extensible Markup Language Television 

GUI Graphical User Interface  

HCI Human Computer Interaction 



James Carter CM2303 6th May 2016 
 

Page 64 
 

Appendices 

Images 

 

Image 1: System output of JSON Results 

 

Image 2: System output of JSON crash 



James Carter CM2303 6th May 2016 
 

Page 65 
 

 

Image 3: System output of parsed JSON Object 

  



James Carter CM2303 6th May 2016 
 

Page 66 
 

  

Image 4: Results from entering 'Dr' Image 5: Information displayed after clicking 'Doctor Who' 



James Carter CM2303 6th May 2016 
 

Page 67 
 

 

Image 7: EPG data for BBC 1 

  

Image 6: Results after clicking Episode Info 



James Carter CM2303 6th May 2016 
 

Page 68 
 

 

  

Image 8: Results after clicking Information Info 



James Carter CM2303 6th May 2016 
 

Page 69 
 

Code 

Show.java 
 

package com.example.c1319936.tvcompanion; 

 

import org.json.JSONException; 

import org.json.JSONObject; 

 

import java.text.ParseException; 

import java.text.SimpleDateFormat; 

import java.util.Calendar; 

import java.util.Date; 

 

/** 

 * Created by James on 27/03/2016. 

 * This class is used to hold related information for a given Episode/Show 

 */ 

class Show { 

    String title; 

    String ID; 

    String imgURL; 

    String description; 

    String type; 

    String series; 

    String seriesID; 

    String startTime; 

    String endTime; 

    String episode_number; 

    String series_number; 

 

    Show(JSONObject response, String startTime, String endTime){ 

        try{ 

 

            this.episode_number = "null"; 

            this.series_number = "null"; 

 

            if(response.has("film")){ 

 

                this.type = "film"; 

            } 

            else if ( 



James Carter CM2303 6th May 2016 
 

Page 70 
 

 

                response.has("episode")){type= "episode"; 

                this.episode_number = response.getJSONObject(type).getString("episode_number"); 

                this.series_number = response.getJSONObject(type).getString("series_number"); 

 

            } 

            else{type ="item";} 

 

            JSONObject data = response.getJSONObject(type); 

 

 

            this.ID = data.getString("id"); 

 

            try{ 

            this.seriesID = data.getJSONObject("container").getString("id");} 

            catch(JSONException e){ 

                this.seriesID = ID; 

            } 

 

            if(!startTime.equals("")) { 

                this.startTime = formatTime(startTime); 

                this.endTime = formatTime(endTime); 

            } 

 

            this.title = data.getJSONObject("display_title").getString("title"); 

 

 

            this.description = data.getString("description"); 

 

 

            try { 

                this.series = data.getJSONObject("series").getString("id"); 

            } catch (JSONException e) { 

                this.series = "null"; 

            } 

            try { 

                this.imgURL = data.getJSONArray("images").getJSONObject(0).getString("uri"); 

            } catch (JSONException e) { 

                this.imgURL = "null"; 

            } 

 

        } 

        catch(JSONException e){ 

            e.printStackTrace(); 



James Carter CM2303 6th May 2016 
 

Page 71 
 

        } 

 

        System.out.println("Name: "+title+" ID: "+ID+ " Series ID: "+ seriesID); 

    } 

 

    /* 

    * Metabraodcast uses a String for their transmission time (Very annoying) 

    * it is formatted as "2014-09-26T14:45:00.000Z" 

    * in order to use this date, it would be useful to convert it into a Java friendly entity 

    * setTime does this by taking the raw String and outputting a simple String formatted as "HH:mm" (22:00) 

    */ 

    private String formatTime(String strDate){ 

 

        //Set the output 

        String output = null; 

        //First let's cut the useless information (everything bar the time portion) 

        String input = strDate.substring(11, 16); 

        //An empty date variable is used (explained below) 

        Date date; 

        //Now let's setup a simple date format 

        SimpleDateFormat df = new SimpleDateFormat("HH:mm"); 

 

 

        try { 

            //Parse the time, creating a date variable 

            //(This has a side effect of creating a fully formatted date including Day, Month etc) 

            date = df.parse(input); 

            //Format this date to only show the time 

            output =  df.format(date); 

 

            //As we are currently in GMT+1, we need to add an hour to our time 

            //TODO convert this section to dynamically change time according to timezone 

            //Create a calendar to achieve this 

            Calendar cal = Calendar.getInstance(); 

            //Add our date variable 

            cal.setTime(date); 

            //Increment the calendar by an hour 

            cal.add(Calendar.HOUR, 1); 

            //Return our date 

            date = cal.getTime(); 

            cal.clear(); 

            //Reapply our date format 

            output = df.format(date); 

        } catch (ParseException e) { 



James Carter CM2303 6th May 2016 
 

Page 72 
 

            e.printStackTrace(); 

        } 

 

        //Return our new time! 

        return output; 

    } 

     

 

    public void setTime (String startTime, String endTime){ 

 

        this.startTime = startTime; 

        this.endTime = endTime; 

 

    } 

 

} 

 

  



James Carter CM2303 6th May 2016 
 

Page 73 
 

mainEPG.java 
public void loadEPG( final String chan, final String until) { 

 

    //empty the Shows Array List 

    shows.clear(); 

 

    //create a new thread as we want this process to happen seperate to the UI thread 

    Thread t = new Thread(new Runnable() { 

        @Override 

        public void run() { 

 

            //create an empty response to hold our results 

            JSONObject response = null; 

            //create a new instance of my custom ScheduleThread that extends AsyncTask 

            ScheduleThread scheduleThread = new ScheduleThread(chan, until); 

 

            //size of results set to zero 

            int size = 0; 

            //variables to get around incorrect times between queries of the API 

            String startTime = null; 

            String endTime = null; 

 

            try { 

                //execute the schedule thread 

                response = scheduleThread.execute().get(); 

                try { 

                    //try to fetch the size of the results 

                    size = response.getJSONObject("schedule").getJSONArray("entries").length(); 

 

                } catch (JSONException e) { 

                    e.printStackTrace(); 

                } 

 

            } catch (InterruptedException e) { 

                e.printStackTrace(); 

            } catch (ExecutionException e) { 

                e.printStackTrace(); 

            } 

 

            //now make an Array of threads equal to the size of the results 

            Thread[] threads = new Thread[size]; 

 

            //for every entry returned in the schedule 



James Carter CM2303 6th May 2016 
 

Page 74 
 

            for (int i = 0; i<size;i++) { 

 

                //set an ID for the episode 

                String ID = null; 

                try { 

                    //fetch the ID 

                    ID = 

response.getJSONObject("schedule").getJSONArray("entries").getJSONObject(i).getJSONObject("item").getString("id"); 

                    //fetch the start and end times from the schedule JSON object 

                    startTime = 

response.getJSONObject("schedule").getJSONArray("entries").getJSONObject(i).getJSONObject("broadcast").getString("transmission_ti

me"); 

                    endTime = 

response.getJSONObject("schedule").getJSONArray("entries").getJSONObject(i).getJSONObject("broadcast").getString("transmission_en

d_time"); 

                } catch (JSONException e) { 

                    e.printStackTrace(); 

                } 

 

                //use final variables to enable use of variables within inner class 

                final String finalID = ID; 

                final String finalStartTime = startTime; 

                final String finalEndTime = endTime; 

 

                //create a new Thread at index i of the list 

                threads[i] = new Thread(new Runnable() { 

                    @Override 

                    public void run() { 

 

                        //create an empty response to hold our results 

                        JSONObject JSONObject = null; 

                        //create a new Schedule Thread passing the ID of the episode 

                        ScheduleThread threadA = new ScheduleThread(finalID); 

 

                        try { 

 

                            //try to execute the thread 

                            JSONObject = threadA.execute().get(); 

 

                            //System.out.println(JSONObject); USE FOR TEST 001 

 

                            //add the JSON Object result to the list of Shows with the original 

                            //times found in the initial query (API returns broadcast times in a peculiar order otherwise) 

                            shows.add(new Show(JSONObject, finalStartTime, finalEndTime)); 



James Carter CM2303 6th May 2016 
 

Page 75 
 

                        } catch (InterruptedException e) { 

                            e.printStackTrace(); 

                        } catch (ExecutionException e) { 

                            e.printStackTrace(); 

                        } 

                    } 

                }); 

 

                //start the thread 

                threads[i].start(); 

                try { 

                    //join the thread, meaning nothing else will run until that thread is done 

                    threads[i].join(); 

                } catch (InterruptedException e) { 

                    e.printStackTrace(); 

                } 

            } 

 

            //now that the Shows Array List is full of results we need to show them 

            //this code has to be run on the UI thread 

            runOnUiThread(new Runnable() { 

                @Override 

                public void run() { 

                    //display the shows 

                    displayEPG(shows); 

                } 

            }); 

 

        } 

    }); 

 

    //start the original thread that encompasses this 

    t.start(); 

 

} 

 

 

//my custom ScheduleThread class 

protected class ScheduleThread extends AsyncTask<Void, Void, JSONObject>{ 

 

    //ID needed to add to query 

    final String ID; 

    //URL to hold the query url 

    String url; 



James Carter CM2303 6th May 2016 
 

Page 76 
 

 

    //constructor that takes channel and until, this is used for the first query to fetch episode ID's that are scheduled on that 

channel 

    public ScheduleThread(String channel, String until){ 

        //convert the channel name to its unique ID 

        this.ID = dict.getChannel(channel); 

        //add the channel ID and until variables to the query url 

        this.url 

="https://atlas.metabroadcast.com/4/schedules/"+ID+".json?from=now&to=now.plus."+until+"h&source=pressassociation.com&annotations

=channel&key=c1e92985ec124202b7f07140bcde6e3f"; 

    } 

    //constructor that takes just the eiposde ID, this is used for the queries to fetch actuall information for each episode 

    public ScheduleThread(String ID){ 

        //set the ID 

        this.ID = ID; 

        //add the episode ID to the query 

        this.url 

="https://atlas.metabroadcast.com/4/content/"+ID+".json?type=item&source=pressassociation.com&limit=2&offset=0&annotations=brand_

summary,broadcasts,channel,description,images,people&key=c1e92985ec124202b7f07140bcde6e3f"; 

    } 

 

    @Override 

    protected JSONObject doInBackground(Void... params) { 

        //in the background thread, make a new Volley Future Request 

        RequestFuture<JSONObject> future = RequestFuture.newFuture(); 

        //add the url to the request 

        JsonObjectRequest request = new JsonObjectRequest(url, null, future, future); 

        //add request to the 'queue' 

        myQueue.add(request); 

 

        try { 

            //request the query to run, giving 10 seconds to timeout 

            return future.get(10, TimeUnit.SECONDS); 

        } catch (InterruptedException e) { 

            e.printStackTrace(); 

        } catch (ExecutionException e) { 

 

            e.printStackTrace(); 

        } catch (TimeoutException e) { 

            e.printStackTrace(); 

        } 

        return null; 

    } 

}  



James Carter CM2303 6th May 2016 
 

Page 77 
 

Questionnaires 

 



James Carter CM2303 6th May 2016 
 

Page 78 
 

 



James Carter CM2303 6th May 2016 
 

Page 79 
 



James Carter CM2303 6th May 2016 
 

Page 80 
 



James Carter CM2303 6th May 2016 
 

Page 81 
 

 



James Carter CM2303 6th May 2016 
 

Page 82 
 

  



James Carter CM2303 6th May 2016 
 

Page 83 
 

References 
 

Media.ofcom.org.uk, 2015. The UK is now a smartphone society [Online]. Available at: 

http://media.ofcom.org.uk/news/2015/cmr-uk-2015/ 

[Accessed: 29 January 2016]. 

Laura Zain, A. 2015. Over a quarter of UK smartphone users use their phones while watching TV 

[Online]. Available at: https://www.comscore.com/Insights/Data-Mine/Over-a-quarter-of-UK-

smartphone-users-use-their-phones-while-watching-TV  

[Accessed: 29 January 2016]. 

Atlas.metabroadcast.com, 2016. api documentation - atlas [Online]. Available at: 

http://atlas.metabroadcast.com/api-docs/ 

[Accessed: 1 February 2016]. 

Developer.bbc.co.uk, 2016. BBC Developer Portal | Programmes API [Online]. Available at: 

https://developer.bbc.co.uk/content/programmes-api 

[Accessed: 1 February 2016]. 

Digiguide.tv, 2016. Digiguide.tv API Documentation [Online]. Available at: 

https://digiguide.tv/api/documentation/default.asp 

[Accessed: 1 February 2016]. 

Play.google.com1, 2016.  Available at: 

https://play.google.com/store/apps/details?id=uk.co.freeview.android 

[Accessed: 1 February 2016]. 

Play.google.com2, 2016.  Available at: 

https://play.google.com/store/apps/details?id=com.lifefoc.uktvlistings  

[Accessed: 1 February 2016]. 

Play.google.com3, 2016.  Available at:  

https://play.google.com/store/apps/details?id=com.feertech.android.tvguide  

[Accessed: 1 February 2016]. 

Play.google.com4. (2016). [online] Available at:  

https://play.google.com/store/apps/details?id=com.typing4me.tvguide.UK&hl=en  

[Accessed 1 February 2016]. 

http://media.ofcom.org.uk/news/2015/cmr-uk-2015/
https://www.comscore.com/Insights/Data-Mine/Over-a-quarter-of-UK-smartphone-users-use-their-phones-while-watching-TV
https://www.comscore.com/Insights/Data-Mine/Over-a-quarter-of-UK-smartphone-users-use-their-phones-while-watching-TV
http://atlas.metabroadcast.com/api-docs/
https://developer.bbc.co.uk/content/programmes-api
https://digiguide.tv/api/documentation/default.asp
https://play.google.com/store/apps/details?id=uk.co.freeview.android
https://play.google.com/store/apps/details?id=com.lifefoc.uktvlistings
https://play.google.com/store/apps/details?id=com.feertech.android.tvguide
https://play.google.com/store/apps/details?id=com.typing4me.tvguide.UK&hl=en


James Carter CM2303 6th May 2016 
 

Page 84 
 

Play.google.com5 (2016). [online] Available at:   

https://play.google.com/store/search?q=TV%20Guide&c=apps&hl=en 

[Accessed 1 Feb. 2016]. 

Android Studio, 2016. Android Studio Overview | Android Developers [Online]. Available at:  

http://developer.android.com/tools/studio/index.html  

[Accessed: 2 February 2016]. 

Thetvdb.com, 2016. Programmers API - TvDBwiki [Online]. Available at:  

http://thetvdb.com/wiki/index.php?title=Programmers_API  

[Accessed: 2 February 2016]. 

Nielsen, J. 2016. 10 Heuristics for User Interface Design: Article by J Nielsen [Online]. Available at:  

https://www.nngroup.com/articles/ten-usability-heuristics/ 

[Accessed: 9 February]. 

Inkscape 2016. Home | Inkscape [Online]. Available at:  

https://inkscape.org/en/ 

[Accessed: 9 February 2016]. 

Nurik, R. 2016. Android Asset Studio - Icon Generator - Launcher icons [Online]. Available at:  

http://romannurik.github.io/AndroidAssetStudio/icons-launcher.html 

[Accessed: 9 February 2016]. 

Proto.io 2016. Proto.io - Prototypes that feel real [Online]. Available at:  

https://proto.io/ 

[Accessed 11 February 2016]. 

Google 2016. Sending a Simple Request | Android Developers [Online]. Available at:  

http://developer.android.com/training/volley/simple.html 

[Accessed: 27 February 2016]. 

Smith, J. 2016. Android Asynchronous Http Client [Online]. Available at:  

http://loopj.com/android-async-http/ 

 [Accessed: 27 February 2016]. 

 

Google2 2016. AlarmManager | Android Developers [Online]. Available at:  

http://developer.android.com/reference/android/app/AlarmManager.html 

[Accessed: 28 February 2016]. 

https://play.google.com/store/search?q=TV%20Guide&c=apps&hl=en
http://developer.android.com/tools/studio/index.html
http://thetvdb.com/wiki/index.php?title=Programmers_API
https://www.nngroup.com/articles/ten-usability-heuristics/
https://inkscape.org/en/
http://romannurik.github.io/AndroidAssetStudio/icons-launcher.html
https://proto.io/
http://developer.android.com/training/volley/simple.html
http://loopj.com/android-async-http/
http://developer.android.com/reference/android/app/AlarmManager.html


James Carter CM2303 6th May 2016 
 

Page 85 
 

Google3 2016. AsyncTask | Android Developers [Online]. Available at:  

http://developer.android.com/reference/android/os/AsyncTask.html 

[Accessed: 11 March 2016]. 

 

http://developer.android.com/reference/android/os/AsyncTask.html

