
1 

 

 

 

School of Computer Science and Informatics  

Cardiff University 

CM3203 – One Semester Individual Project (40 Credits)  
2016 – 2017 

 

 

 

Forensic Image Processing – Bruises 

Author: Kai Wa Chan (C1531993) 

Supervisor: Paul L Rosin 

Moderator: David Marshall 

  



2 

 

1. Abstract 
 

To identify a biter of a bite mark and measure the dimension of a bruise from evidential 

image are the complex and difficult tasks in forensic science because of the nature of a 

bruise and the subjectivity of human. This project aims to use image processing 

technique to automatically match the bite mark to the corresponding dentition cast and 

measure the dimension of bruises. 

Automatic, consistent and identical computer method to perform matching and 

measuring for bruise is highly recommend to support legal system in terms of analysis 

and interpretation of bruise evidence to protect vulnerable victims of violent crimes. 

This report covers the details of experimented methods including the results, benefits, 

failures as well as the improvements to support the development of computer based 

forensic operation. 

  



3 

 

2. Acknowledgement 
I would like to give my special thanks to my Professors, Paul Rosin and David Marshal 

as well as Dr Xianfang Sun for their advice and supervision during this project. But 

also, another huge thank you to Mr. Sam Evans for making this project happen.  

  



4 

 

Contents 

1. Abstract ................................................................................................................... 2 

2. Acknowledgement .................................................................................................. 3 

3. Introduction ............................................................................................................ 5 

3.1 Goals................................................................................................................ 6 

3.2 Project Structure .............................................................................................. 6 

4. Background ............................................................................................................. 7 

4.1 Common Used Algorithms ............................................................................. 8 

5. Data Description ................................................................................................... 11 

6. Dentition Cast Extraction ..................................................................................... 13 

6.1 MSER – Blob Detection ................................................................................ 13 

6.2 Colour/Intensity Segmentation: .................................................................... 16 

7. Skin Extraction ..................................................................................................... 21 

7.1 HSV & YCbCr Colour Thresholding ............................................................ 22 

7.2 Probability Density Function ........................................................................ 25 

7.3 Quadratic Discriminant Analysis (1)............................................................. 28 

7.4 Quadratic Discriminant Analysis (2)............................................................. 32 

7.5 K-Means Clustering ...................................................................................... 36 

7.6 Summary of Skin Detection .......................................................................... 40 

8. Draw Bruise Window ........................................................................................... 41 

8.1 Circle feature based drawing ......................................................................... 41 

9. Features Extraction ............................................................................................... 47 

9.1 SIFT ............................................................................................................... 47 

10. Feature Matching .............................................................................................. 50 

11. Bruise Segmentation and Dimension Measurement ......................................... 51 

11.1 Colour Quantisation & Region Growing ...................................................... 52 

11.2 Central Weighting & Thresholding on Saturation ........................................ 60 

11.3 Lighting Correction with Fourier Transform ................................................ 65 

11.4 Summary of Bruise Segmentation and Dimension Measurement ................ 66 

12. Future Work ...................................................................................................... 67 

13. Conclusion ........................................................................................................ 69 

14. Reflection .......................................................................................................... 70 

15. Reference .......................................................................................................... 72 

 

  



5 

 

3. Introduction 
One of the most important aspects of criminal justice is forensic science or the practice 

of scientifically examining physical evidence collected from the scene of a crime or a 

person of interest in a crime. Many people consider forensic science as the application 

of science to law enforcement. If there are no known witnesses to a crime, sometimes 

forensic evidence is all the prosecutors can work with. This evidence is commonly used 

in court to put offenders behind bars and to set innocent people free.  

In this project, the evidence, bruises including bite mark is studied. The bruise is usually 

cast by violence. According to Refuge [1], the world’s first safe house for women and 

children escaping domestic violence, it is reported that 1 in 4 women in England and 

Wales will experience domestic violence in their lifetimes and 8% will suffer domestic 

violence in any given year (Crime Survey of England and Wales, 2013/14). And every 

minute police in the UK receive a domestic assistance call – yet only 35% of domestic 

violence incidents are reported to the police (Stanko, 2000 & Home Office, 2002). Also, 

20% of children in the UK have been exposed to domestic abuse (Radford et al. NSPCC, 

2011). 62% of the children in households where domestic violence is happening are 

also directly harmed (SafeLives, 2015). Those crimes are not usually seen by any 

witnesses, but in some cases, bruises are the only available evidence. Therefore, the 

interpretation of the evidence plays an important role in criminal justice. 

The evidence is captured by 5 groups of operators which are police forensic 

photographers, clinical (hospital) photographers, scene of crime officers, forensic 

expert (forensic Odontologists and pathologists) and clinicians (paediatrician) 

commonly using digital-single-lens-reflex (DSLR) or single-lens-reflex (SLR) camera 

equipped with a range of lenses and separate flash system. 

After evidence capturing, the image is ready to be analysed. Not only observation on 

the image itself, forensic operators also use some photo editing software tools such as 

Photoshop®  to extract features from evidential image or enhance contrast of images 

manually [2]. For bite mark analysis, the dentition cast of potential biter is also involved 

in the investigation. However, the extraction and judgment involve many human 

procedures, which also means errors and subjectivity. As evidence using in court, errors 

and subjectivity are the main factors to reduce the evidential value in the litigation. 

Therefore, using image processing technique to automatically collect, analyse and 

match characteristics from the forensic image is desired. It could provide consistent and 

identical forensic operation. Also, computers may power up the observation of the 

bruise and eliminate human errors and subjectivity. it maintains the evidential value of 

the image to provide sufficient proof to put offenders behind bars, to set innocent people 

free and protect victims more effectively. 

  



6 

 

3.1 Goals 

Create automatic, consistent and identical computer methods to perform bite mark and 

dentition cast matching and measuring bruise are the two goals of this project. 

Bite mark analysis is the interpretation and comparison of two pieces of evidence, 

namely, the photographic record of the bite mark and the dental casts of suspect biter. 

There are two well recognized physical comparison methods, Feature-based Analysis 

and Superimposition-based Analysis. Both methods require some features including 

class and individual characteristics which could be found from the bite mark in the skin 

and the dentition cast. Class characteristic includes the shapes, sizes and arches of the 

teeth of the maxillary and mandibular anterior dentitions. Individual characteristics are 

related to the distinctive features of the incisors and canines of anterior dentitions such 

as displacement, rotation and incisal edges. However, those characteristics may be 

difficult to be observed by human due to the nature of a bruise including the leakage 

and spread of the blood. [3] 

Moreover, collecting bruise characteristics such as the dimension is another huge 

challenge. Because of the colour difference of a bruise, it is hard to draw a standard to 

explicitly define bruise boundary on the skin. Different sensitivity of colour vision of 

humans is also a factor in causing subjectivity to define boundary of a bruise. Not only 

boundary, there is not a standard method to measure the bruise’s dimension because of 

arbitrary shapes of bruises. Therefore, different forensic operators may have an unequal 

method to collect the dimension of a bruise. 

 

3.2 Project Structure 

Before identifying which cast causes the bite mark and measure the dimension of a 

bruise, there are some pre-processing procedures are required. This project could be 

roughly broken down into 3 main sections including Pre-processing, Features 

Extraction and Features Matching. 

In general, a forensic image contains three components evidence (bruise/cast), a 

measurement tool and arbitrary background. A series of pre-processes are required to 

remove unrelated areas to let algorithms focus on features from the evidence 

(bruise/cast) directly rather than another unrelated object. The pre-processing should 

extract the evidence components by removing unrelated components in the image. After 

that, extracting features from the bruise and dentition cast could be performed. Finally, 

a feature of the matching algorithm could be designed.  

 

  
Dentition Cast 

Extraction 
Skin 

Detection 

Bruise 
Window 
Drawing 

Bruise & Dentition Cast 
Feature Extraction 

Bruise Segmentation 
Dimension Measurement 

Feature 
Matching 

Pre-processing 

Feature 

Extraction 



7 

 

4. Background 
A bruise is blood leakage into tissues under the skin and causes the black-and-blue 

colour. As bruises (contusions) heal, they often turn colours, including purplish black, 

reddish blue, or yellowish green. Sometimes the area of the bruise spreads down the 

body in the direction of gravity. The bruises to be analysed in this project could be 

categorised into two groups which are bite mark and general bruise. Both the bruises 

share the same nature [4]. There are not many image processing literature for human 

bruise image produced by digital-single-lens-reflex (DSLR) or single-lens-reflex (SLR) 

camera. The researches [5] related to bruise analysis are majority based on 

hyperspectral images. However, using image processing techniques in medical fields is 

not a new idea. There have been some of the researches describing how image 

processing could identify analysis and measuring medical objects like detecting lung 

cancer on CT image [6], determining arthritis on MRI image [7] and classifying skin 

lesion [8]. Those techniques such as segmentation, feature extraction, matching and 

recognition may be still useful for processing the bruise image.  

Several methods are experimented to reach the objective in each section. Then, one of 

the methods is suggested which solves the problem or perform better. 

Section Objective Methods 

Pre-processing  Dentition cast extraction 1. MSRE 

1. Colour & Intensity Segmentation 

Skin Extraction HSV & YCbCr Colour Thresholding 

Probability Density Function 

Quadratic Discriminant Analysis (1) (2) 

K-Means Clustering 

Draw Bruise window Hough Circle 

Features 

Extraction 

Bruise features Extraction SIFT  

Bruise Segmentation and 

Dimension Measurement 

1. Colour Quantisation & Region Growing  

2. Thresholding & Central Weighting 

3. Lighting Correction with Fourier Transform 

Dentition cast features SIFT 

Features 

Matching 

  

Common Used 

Algorithms 

Fundamental image 

processing techniques 

1. Gaussian Smoothing/Blurring  

2. Contour Finding/Filling 

3. Morphological Transformations 

Highlights are the final selected method to address corresponding objective 

 

  



8 

 

4.1 Common Used Algorithms 
4.1.1 Gaussian Smoothing/Blurring  

Gaussian Smoothing/Blurring is a popular image processing technique to reduce details 

of an image, which involves an image, two 1D Gaussian kernels and two convolution 

processes (vertical and horizontal). It is a low-pass filter, attenuating high frequency 

signals. 

A 1D Gaussian kernel is defined as   

It looks like 

 

The Gaussian outputs a `weighted average' of each pixel's neighbourhood, with the 

average weighted more towards the value of the central pixels. The weighting could be 

defined by sigma. Sigma and kernel size are the factors to control the level of blurring 

or smoothing. In general, larger sigma and kernel achieve higher blurring level.  

 

4.1.2 Contour Finding/Filling 

Contour finding is border following algorithm which is proposed for topological 

analysis of digitized binary images in 1985. The definition of border following 

algorithm is given by [9] “determines the surroundness relations among the borders of 

a binary image. Since the outer borders and the hole borders have a one-to-one 

correspondence to the connected components of l-pixels and to the holes, respectively, 

the proposed algorithm yields a representation of a binary image, from which one can 

extract some sort of features without reconstructing the image”. And contour filling is 

just a filling operation after finding, where the pixels inside borders are filled. 

From non-technical speaking, a contour can be explained simply as a 

curve joining all the continuous points (along the boundary), having 

same colour or intensity. For example, consider the image on the right.  

 

  

https://en.wikipedia.org/wiki/Low-pass_filter


9 

 

4.1.3 Morphological Transformations 

Morphological transformations are some simple operations based on the image shape. 

It is normally performed on binary images (Mask). By default, white pixel is foreground 

and black pixel is background. There are required two inputs, one is the original binary 

image, second one is called structuring element/kernel which decides the nature of 

operation. In this project the kernel size I use is Ellipse, which could produce more 

smooth result compare to other kernels.  

A 5x5 ellipse kernel: 

[0, 0, 1, 0, 0], 

[1, 1, 1, 1, 1], 

[1, 1, 1, 1, 1], 

[1, 1, 1, 1, 1], 

[0, 0, 1, 0, 0] 

  

In this project, 4 morphological operations are used frequently to remove noise. These 

are Erosion, Dilation, Opening and Closing. 

The idea of Erosion is to erode away the boundaries of foreground object. During the 

process in OpenCV. The kernel slides through the image (as in 2D convolution). A 

pixel in the original image (either 1 or 0) will be considered 1 only if all the pixels under 

the kernel is 1, otherwise it is eroded (made to zero). On the other hand, Dilation is the 

exact opposite of Erosion. The level of Erosion and Dilation can be controlled by kernel 

size and the number of times of the 2D convolution. 

Opening is another name of Erosion followed by Dilation. Erosion removes white 

noises, but it also shrinks the object. So we dilate it. Since noise is gone, they won’t 

come back, but our object area increases. Closing is reverse of Opening, Dilation 

followed by Erosion. 

There are some examples obtained from OpenCV to show the effect of the 

tansformations [10]. 

Transformation Orginal Image After 

Transformation 

Usage 

Erosion 

  

Removing small white 

noises (as we have seen 

in colorspace chapter), 

detach two connected 

objects etc. 



10 

 

Dilation 

  

Increase the white 

region in the image or 

size of foreground 

object increases. 

Openning 

  

Closing small holes 

outside the foreground 

objects 

Closing 

  

Closing small holes 

inside the foreground 

objects 

 

 

  



11 

 

5. Data Description 
There are four data sets {1, 2, 3, 4} provided for this project at different time during the 

project schedule. All the datasets are given by Cardiff School of Dentistry and Cardiff 

School of Medicine.  

Dataset1 image set doesn’t fully fulfil the forensic science photography standard (e.g. 

IM1, IM2, IM3). It is because the images may not include the measurement tool and 

may be cropped. The 16 images include both general bruise and bite mark on human 

skin. The purpose of this Dataset is for initial project discussion. Dataset 1 is majority 

used for testing basic skin detection algorithms at the beginning of the project while 

waiting for targeted Datasets. 

(IM1, IM2, IM3) 

 
 

Datasets 2 to 4 are professional forensic photographs which fulfil the standard of 

forensic photographical protocols such as measurement tool, camera and lighting 

setting.  

Dataset 2 contains 5 forensic images of bite mark on human arm in different 

backgrounds (e.g. IM4, IM5) and 14 sets of corresponding and potential dentition cast 

in lab environment (e.g. IM6, IM7). Each set of dentition cast consists of 3 images, 

which are the label, upper and lower cast. Also, a Control Set is attached, which 

contains 30 sets of professional photographs of bite mark on wax in the same lab 

environment (e.g. IM8) and 30 sets dentition casts with the same setting. The Control 

Set is not used in this project. The usage of this set is to match the dentition cast and 

bite-mark. 

(IM4, IM5) 

 

(IM5, IM6, IM7) 



12 

 

 

Data Set 3 contains 45 forensic photographs of general bruise on several human body 

parts in different backgrounds (e.g. IM8, IM9). Also, distinctly there are 3 purple dots 

made by marker on every image in this Dataset. This set is used to test algorithm to 

measure the dimensions of the bruise. 

(IM8, IM9) 

 

Data Set 4 contains fourteen images (e.g. IM10, IM11, IM12) which are similar as Data 

Set 3, except the 3 purple dots. This set also corresponds to a list of bruise measurement 

which is produced by forensic operators. This set is used to test algorithm to measure 

the dimensions of the bruise. 

 (IM10, IM11, IM12) 

  

Data Sets 3 and 4 are majority used as bruises feature extraction. 

  



13 

 

6. Dentition Cast Extraction 
The objective of this stage is to extract the dentition cast area, then we can extract 

features in the further process. 

6.1 MSER – Blob Detection 

From our observation, the cast is a huge blob in the middle of the image. It is believed 

that the blob detection method could extract the cast region. 

The first approach is MSER which stands for “Maximally Stable Extremal Regions”, 

which is a common technique to detect blobs in computer vision. In general speaking, 

a MSER output is a stable connected component combined by number of co-variant 

regions of some grey-level sets of the image. 

6.1.1 Method 

MSER extraction implements following steps: 

1. Sweep threshold of intensity from black to white, performing a simple 

luminance thresholding of the image as shown below: 

 [11] 

2. Extract connected components 

3. Find a threshold when an extremal region is “Maximally Stable” 

In the above example, the cores of the sun flowers are MSER, because they are extrema 

and achieve “stable” properties. Over a large range of thresholds, extremal regions 

occur when the set is closed under continuous (and thus projective) transformation of 

image coordinates. And maximally stable region is defined as the regions whose 

support is nearly the same over a range of thresholds and is invariance to affine 

transformation of image intensities. [11] 

  



14 

 

6.1.2 Implementation 

The implementation is defined in: DentitionCast.py 

Function: MSER(im) 

im: input image with default data type. (2D numpy array with BGR colour 

space) 

Function returns a copy of the input image using same format with MSER output drawn 

1) Create MSER detector given parameter 

2) Obtain the MSER regions using detector.detect function  

3) For each MSER region, approximate a convex hull using convexHull function 

4) Copy the input image as Copy 

5) Draw all the hulls on Copy 

6) And return the Copy 

OpenCV has defined the implementation which also support users’ parameters 

including size pruning, region variation and diversity, threshold step and margin of edge.  

At the beginning of the attempt. Only the values for area pruning are modified. The 

‘min’ and ‘max’ area are set to be ‘100000’ and ‘5000000’ to ignore too small and too 

big areas. Other parameters are set as default. 

MaxVariation prune the area have similar size to its children with the default value 

of 0.25. 

MinDiversity traces back to cut off MSER with diversity < min_diversity and with 

a default value of 0.2. 

MaxEvolution is used for colour image, the evolution steps and a default value of 200. 

AreaThreshold is the area threshold to cause re-initialize with a default value of 1.01. 

MinMargin ignore too small margin and the default value is 0.003. 

Test Program: TestMSER.py 

  



15 

 

6.1.3 Results and Evaluation 

The first attempt is to input original image which contains high level details to MSER. 

It is expected that many regions are found because of the details (IM13). There is also 

some missing detection (IM14).  

(IM13, IM14) 

 

As you can see, the inside regions are detected. And if the details of the image is needed 

to be reduced, then blurring operation for the image will be useful.  

Therefore, Gaussian Blur is applied. IM15 is the output after applying Gaussian Blur 

with Size 21x21 kernel with sigma 9. IM16 is the output after blurring with size 51x51 

kernel with sigma 15 are experimented. And there is still some miss detected and over 

detected results (IM17, IM18) 

(IM15, IM16) 

 

(IM17, IM18) 

 
Although blurring operation helps to reduce the number of MSER, the operation doesn’t 

help to detect the cast or reducing over selecting problem. To correct this algorithm, it 

is possible to try out some parameters such as “Evolution Steps” and “Area Threshold” 

values to control the thresholding results during the threshold sweeping process. The 

overall result is that 4 images miss detected and 3 images are over detected out of 26 

images. While turning the thresholding, colour/intensity segmentation approach is 

introduced.  



16 

 

6.2 Colour/Intensity Segmentation: 

As my observation, the environment setting in the cast images is highly similar 

including lighting, the colour and the position of the ruler and background. The only 

main difference is that there are two types of the casts, yellow and white coloured casts. 

 

It is impossible to extract it directly using colour thresholding due to the colour 

difference, but both colours have a common property which is strong intensity value 

comparing to the background. It means intensity thresholding could extract the cast 

from the background. However, be aware that the ruler has strong intensity as well 

except that the ruler has a unique white colour. Therefore, it is possible to delete the top 

and the regions of the ruler by colour and coordination information first. Where finally, 

the cast could be extracted by intensity thresholding. 

6.2.1 Method 

Colour segmentation to extract ruler area for each image: Steps 1 to 5 

1. Thresholding the image by RGB colour range from [150,150,150] to 

[255,255,255]. 

The result is represented in binary image where pixels from the range on the 

image turns white. Otherwise, the pixels turn black.  

2. Perform dilation and contour filling method  

Step 3 and 4 extends the white area in the binary image which helps to connect 

the fragmented white areas by minimizing the back-measurement line. 

3. Find the 2 largest areas which indicate that the left and right sides of the ruler 

The reason of finding the largest 2 areas is that the areas in the binary image may be 

fragmented. This is the result after steps 1 to 4. Blue colour represents the 1st largest 

area and red represents the 2nd largest area. 

 

However, sometimes the areas are merged where the largest area contains both left and 

right sides like the image at the left. Therefore, comparing the size of the 1st and 2nd 

largest areas are necessary. A condition is set to decide to split the 1st area or not. If the 

1st biggest area is bigger than the 2nd biggest area*3, it means that the 1st biggest area 

contains both sizes.  



17 

 

4. Polygon drawing to cover the unwanted areas 

Based on the left and right areas, the coordinates could be organized by searching 2 

points. 

The first point is left bottom point (lb) in the left-side ruler, which is (0, max(y))  

The second point is the right bottom point (rb) in the right-side ruler is (max(x), max(y))  

There are also 4 fixed points: 

left top corner (lt) - (0,0) 

right top corner (rt) - (0, image_width) 

2 points at the top middle of the image (tm1, tm2) - (image_width/2, 0), (image_width/2, 

90) 

The points in the cast image: 

lt tm1 rt 

 tm2  

   

   

lb  rb 

   

 

There are total 6 points of coordinates now. We can draw 2 polygons to cover the left 

and right top regions. Left polygon is connected by lt-tm1-tm2-lb-lt. Right polygon is 

connected by tm1-rt-rb-tm2-tm1. The following examples are the output after step 4. 

 
 

After removing the ruler, the image is converted to greyscale. And an attempt is made 

to extract the cast by thresholding.  

  



18 

 

 

5. Thresholding by intensity between 100 and 255 

6. Remove noise by morphometric opening  

The following images show the result after step 6. 

 

As you may see, the right hand side image is broken. It is believed that the broken parts 

are shadows of the teeth or the ruler where there are low intensity areas in the cast. The 

parts are not kept by thresholding. 

7. Approximate a single convex hull to connect the broken areas 

Ideally, the cast is surrounded by a convex curve. Therefore, using 

general drawing algorithm like Ramer–Douglas–Peucker is not idea 

because it doesn’t maintain the convexity of the shape. It is recommend 

to use convex hull approximation [21] which checks the convexity 

defection of a curve and correct it. Considering a simple explanation, 

convex curves are always bulged out or at-least flat. Like the example at 

right hand side from OpenCV tutorial [12]. 

The “bulged in” areas (Red Circled areas) could be fixed by convex hull 

drawing. 

 

  



19 

 

6.2.2 Implemntation 

The implementation is defined in: DentitionCast.py 

Function: RemoveRuler(im, lower, upper, hShift, vShift) 

im: original image with default data type 

hShift: offset of point tm1 and tm2 

vShift: offset of point tm2 

Function returns a binary image. Element with zero value means the pixel is unwanted 

(ruler). 

1) Generate a mask, Mask where non-zeros coordinates indicate the pixel in input 

image is in range using inRange function 

2) Apply contour filling and dilate to Mask using findContours, drawContours and 

morphologyEx function  

3) Obtain contours using findContours function 

4) Compute the size of each contour using contourArea function 

5) Sort the contours by size 

6) Select the first and second largest contours as l1 and l2 

7) If size of l1 is smaller than size l2*3 

a. Select all the points (x,y) in l1 which x value is equal to or less than 

image width/2 

b. Select all the points (x,y) in l1 which x value is equal to or greater than 

image width/2 

8) Find two points (x,y) in l1 and l2 where they are maximum y value 

9) Check the points x value and decide they belong to left or right side of an image 

10) Create a mask, Result with all zeros 

11) Draw left and right filled polygons to 255 on Result using fillConvexPoly 

function 

12) Invert Result and return it 

Test program: TestCastRulerRemove.py 

Function: LocalizeCast(im, dilationKsize, dilationIteration) 

im: input image without ruler region  

dilationKsize: the kernel size of dilation operation and the default is 11. 

dilationIteration: the iteration times for dilation and default is 4. 

Function returns a binary image. Element with zero value, which means the pixel is 

unwanted. 

1) Convert input image to grey scale using cvtColour function 

2) Generate a mask, Mask where non-zeros coordinates indicate the pixel in input 

image is in range using inRange function 

3) Apply contour filling and morphometric opening to Mask 

4) Obtain contours using findContours function 

5) If number of contours is more than two. Concatenate all contour to one contour 



20 

 

6) Generate points of convex hull to the found contours using convexHull function 

7) Create a mask, Result with all zeros  

8) Draw the filled convex hull on the Result using drawContours function 

9) Apply dilation with given kernel size and iteration to Result 

10) Return Result 

Test program: TestCastExtraction.py 

6.2.3 Result and Evaluation 

24 out of 26 casts are successfully segmented, which means that the cast is the only 

object in the image. 

 

 There are two special casts which are originally not convex shaped. 

 
The correction is not implemented. It is believed that based on this result, colour 

thresholding could be re-applied to extract the background area. Then using some 

bitwise operations to deselect the background areas. Keeping the background is also 

one of the options. It is because the background might not have much features, or the 

features which do not corresponsd to the bruise features. 

Overall, this algorithm combining colour and intensity segmention is success to extract 

the dentition cast from the image. It is fairly simple and efficient than MSER approach 

because  using a single threshold has basically selected the majority aparts of the cast. 

  



21 

 

7. Skin Extraction 
The objective of skin extraction is to reduce the unrelated areas for feature extraction 

algorithms in the next few steps. It aims to remove background areas for the images in 

Dataset 2.  

As you may see, colour may be a simple and efficient way to differentiate skin and 

background. Therefore, the colour-based approach is the first attempt such as colour 

thresholding. Technically speaking, the algorithm identifies the pixel if it is skin or not.  

Colour space is an elaboration of the coordinate system and sub-space. Each colour in 

the system is represented by a single dot. To visualize the concept, skin pixels and 

background pixels may stand on different positions on different coordination (colour 

space). We may have different ways to segment the pixels. For example, there are three 

images cropped from the data set randomly and pixels are plotted into HSV and YCbCr 

colour space and rescale to the same range. 

Colour on Scatter  Red Green Blue 

Image 

   
HSV Colour Space  

 
YCbCr Colour Space 

 
As you can see, the distance between groups blue and red in HSV colour space is more 

obvious than YCrCb. Therefore, thresholding different colour space may be useful. 



22 

 

7.1 HSV & YCbCr Colour Thresholding 

HSV is one of the most intuitive colour space. It is useful to perform segmentation. 

HSV stands for Hue, Saturation and Value Channel. Also, low level skin detection 

performed by YCbCr colour space has several successful cases in image processing 

community [13]. Therefore, YCbCr is also a potential method to segment skin pixel. 

The HSV, YCbCr colour pickers can represent as follow. 

 [14]  [15] 

 

7.1.1 Method 

To maintain the majority skin areas to be classified, lower and upper bound are defined 

as follow based on numerous attempts. 

1. HSV colour space: Pixels from [0, 10, 60] to [20, 150, 255]  

2. YCbCr colour space: Pixels from [0,133,77] to [255,173,127] 

3. Morphometric closing [10] and contour filling [9] for the result 

 

7.1.2 Implementation 

The implementation is defined in: Skin.py 

Function: SkinThresholdingV2(im) 

im: input image with default data type 

Function returns a binary image. Element with non-zero value means the pixel is skin. 

1) Convert input image to HSV space using cvtColor function 

2) Geneate a mask hsvResult using inRange function 

3) Convert input image to YCrCb space using cvtColor function 

4) Geneate a mask yccResult using inRange function 

5) Apply morphmetic closing, contour finding/filling to the masks 

6) Combine hsvResult and yccResult using bitewise_and opertation 

7) Return combined result 

Colour conversion is performed using OpenCV function cvtColor(im, flag). flag for 

BGR to HSV is COLOR_BGR2HSV, BGR to YCrCb is COLOR_BGR2YCR_CB. For HSV in OpenCV, 

Hue range is 0 to 179. 

Test Program: TestSkinThresholdingV2.py 

 

  



23 

 

7.1.3 Result & Evaluation: 

 HSV YCbCr 

1 

  
The results are fairly samilar in this particilar image 

2 

  
In this image, HSV colour space could recognize the ruler, sofa and hairs are not 

skin. However, the cloth is identified as skin area. 

Interestingly, YCbCr only identifies the cloth which is not skin area. 

3 

  
Two results are similar. Both results could recongize the ruler as skin HSV result 

is a bit more noise than YCbCr.  

4 

  



24 

 

5 

  
Results are similar as well. 

 

To evaluate the result, it is defined that if the algorithm could only keep the front ground 

skin and bruise area. Result 1 and 5 are assessed as acceptable. 

In image 2 3 4, some of the background areas colour are quite similar as skin colour. 

Current naïve method is not sensitive enough to identify them. We can conclude that 

both colour segmentations do not produce false negative and contribute significant true 

positive. It is beneficial that combine both the results by merging 2 masks using bitwise 

operations. E.g. image 2 to maximize non-skin areas. 

 

Moreover, the ruler in some of the images are segmented as skin area. This problem 

could be fixed based on the success in segmentation of dentition cast. We can use RGB 

colour space to segment the partial ruler areas to contribute better true negative result. 

Finding ruler is one of the next step in this project. Therefore, in current stage, we leave 

the result as above and we go ahead to experiment more sensitive algorithms.  



25 

 

7.2 Probability Density Function  

Based on the result from Colour Thresholding, we assume that skin and background 

colours are normally distributed. We could try to re-estimate the skin pixels by using 

the same single image as data by probability density function to filter out the less likely 

skin pixels. 

The probability density function for multi-dimensional normal distribution is [16]: 

  
where μ is the mean, Σ the covariance matrix, and k is the dimension of the space where 

x takes values. 

7.2.1 Method 

For each image based on result of Colour Thresholding: 

1. Select the pixels where labelled as skin by Colour Thresholding 

2. Skin pixels are rearranged to matrix format to calculate mean and covariance 

matrix  

 

n pixels Hue Saturation Value 

P1 H1 S1 V1 

… … … … 

Pn Hn Sn Vn 

 

The set of n observations (pixels), measuring 3 variables (colour channels), can 

be described by its mean vector and variance-covariance matrix. 

 Size Formula 

Mean Vector 1x3  �̅� =  [
1

𝑛
∑ (𝐻𝑖)      𝑛

𝑖=0

1

𝑛
∑ (𝑆𝑖)      𝑛

𝑖=0

1

𝑛
∑ (𝑉𝑖)𝑛

𝑖=0  ]  

covariance 

matrix 

3x3 𝐶𝑜 =
1

𝑛−1
 ∑ (𝑃𝑖 −  �̅�)(𝑃𝑖 − �̅�)′

𝑛

𝑖=0
  

 

3. Compute probability density function, f(image_pixels) 

4. Compute the mean and standard deviation of probabilities of the skin pixels 

5. Select the pixels with probability P 

Mean – Sigma *nS <= P <= Mean + Sigma*nS 

7.2.2 Implementation 

The implementation is defined in: Skin.py 

Function: PDF(im, nSigma, colourFlag): 

im: input image with default data type 

Function returns a binary image. Element with non-zero value means the pixel is skin. 

1) Geneate a mask, Skin Mask using SkinThresholdingV2 function  

2) Convert input image to other colour space given by third agument using cvtColor 

function 

3) Apply Skin Mask to input image 

--PDF-- 



26 

 

4) From input image, obtain all the pixels where marked as non-zero in Skin Mask 

5) Reshape the pixel as data fromat 

6) Compute mean vector 

7) Compute covarate matrix using calcCovarrMatrix function 

8) Compute the probability of all pixels using multivariate_normal.pdf function 

9) Select all the probabilities where the coordiate is marked as skin in Skin Mask 

10) Compute the standard divation of data from step 9 

11) Create a mask, Result where the probability is within range mean - 

sigma*nSigma   to mean + sigma*nSigma  

12) Combine Result and Skin Mask using bitwise_and operation  

13) Return result 

Test program: TestQuadraticClassifierLocal.py  

7.2.3 Result and Evaluation: 

HSV 

 Sigma = 1.75 Sigma = 2 Colour Thresholding 

1 

   
2 

   
3 

   
4 

   



27 

 

5 

   
 

This algorithm doesn’t achieve our objective to eliminate non-skin pixels. From 

mathematical point of view, PDF successfully removes the outliers. However, the 

outliers are the skin pixels on the middle of the arms and foreground ruler rather than 

the background pixels.  

We can look back to the Colour Thresholding results, majority pixels which are labelled 

as skin generally have less intensity except the skin pixels on middle of the arms.  

 

 [17] 

The reason of those pixels having stronger intensity is that the camera flash or light 

setting. When the light source hits on a bended surface, it produces some shading effects. 

The points on surface with same normal direction with the light source generates 

stronger intensity. When it is converted to HSV space, we can see whiter colour (it 

shows lower saturation). Therefore, skin pixels on middle of the arms are eliminated as 

outliers. 

Using more information such as the background data may be helpful to classifier the 

pixels more accurately. 

 

  



28 

 

7.3 Quadratic Discriminant Analysis (1) 

To improve the skin detection result, quadratic discriminant analysis is used. It is 

similar as PDA, except that QDA also takes background pixels into consideration to 

generate the likelihood ratio of each pixel. Then using a threshold to filter the result. It 

may reduce the likelihood of the non-skin pixel by contributing how the pixel is likely 

to background. It may produce better result. 

 [18] 

while class y1 is skin, y0 is background. 

 are the mean vectors of two classes. 

 are the variance-covariance matrices of two classes 

t is a likelihood threshold 

7.3.1 Method 

For each image based on result of Colour Thresholding: 

1. Separate the pixels where are labelled as skin and background into two classes 

2. For each class of pixels is rearranged to matrix format to calculate mean and 

covariance matrix. The details of calculation of mean and covariance are same 

as PDA 

3. Computer the likelihood ratio for all pixels in the image 

4. Compute the likelihood threshold  

- Likelihood threshold t = Mean + nS * Standard Deviation. 

- Mean is an average likelihood value of the likelihood of the skin pixels 

which are labelled by colour thresholding method.  

- Standard Deviation only takes the likelihood of skin pixels. 

- nS is the number of SD for manipulating the strictness to filter the outliers 

5. Apply thresholding 

 

  



29 

 

7.3.2 Implementation 

The implementation is defined in: Skin.py 

LocalQC(im, nSigma, colourFlag) 

im: input image with default data type 

Function returns a binary image. Element with non-zero value means the pixel is skin. 

1) Geneate a mask, Skin Mask using SkinThresholdingV2 function  

2) Convert input image to other colour space given by third agument using 

cvtColor function 

3) Apply Skin Mask to input image 

4) From input image, obtain all the pixels where marked as non-zero in Skin Mask 

5) Reshape the pixel as data fromat 

6) Compute mean vector 

7) Compute covarate matrix using calcCovarrMatrix function 

8) Compute the probability of all pixels using multivariate_normal.pdf function 

9) Select all the probabilities where the coordiate is marked as skin in Skin Mask 

10) Compute the standard divation of data from step 9 

11) Repeate step 4 but using pixels marked as zero, non skin 

12) Compute the Likelihood ratio using two sets of probability 

13) Generate a mask Result where the probability is within range mean - 

sigma*nSigma   to mean + sigma*nSigma  

14) Combine Result and Skin Mask using bitwise_and operation  

15) Return result 

Test program: TestQuadraticClassifierLocal.py  



30 

 

7.3.3 Result and Evaluation: 

HSV 

 QDA(1) nSigma = 1 QDA(1) nSigma = 1.25 PDA nSigma = 2 Colour Thresholding 

1 

    
 Results are not much difference since Colour Thresholding Result has been quite good. 

2 

    
 QDA (1) perofrms better to remove the sofa brown colour compare to PDA method 

3 

    
 QDA perofrms better to remove the sofa brown colour compare to PDA method 



31 

 

4 

    
 QDA removes a large amount of skin area. The likelyhood value the upper background is higher than the middle of the skin. 

5 

    
 QDA removes a bit of skin area on the edge. 

While increase the likelihood threshold to Mean + Sigma*1.5 such that no skin area is filtered out, but those images have no difference 

comparing to Colour Thresholding results. Running this algorithm on YCrCb colour space produce same result.  

For Image 2, QDA (1) removed more brown colour pixels on the sofa instead of bright skin pixels, because this algorithm takes more 

information (background pixel) in the consideration. The bright part of sofa brown colour is also similar to the dark part of the sofa. 

Therefore, it becomes less likely to skin pixel. 

For image 3, values of “Value” channel in HSV of the pixels on the ruler is lower than skin pixels. Those pixels become an outlier. 

However, for image 4, the centre skin pixels have a lower saturation value by shading effect. It is very unlikely to become skin pixels.  

It is because the likelihood ratio is still so close when it comes to similar background and skin pixels. To address this problem, we may 

provide more training samples from another dataset to increase accuracy. 

QDA (1) and PDA don’t perform better than Colour Thresholding due to the false negative result.  



32 

 

7.4 Quadratic Discriminant Analysis (2) 

From machine learnings point of view, more data could achieve better prediction, 

because of training data coverage. And QDA (2) estimates the skin area using external 

skin and background data obtained from another dataset for quadratic discriminant 

analysis to compute how likely the pixel is skin and apply some threshold to filter out 

the less likely pixels. The test dataset is same as the Local QDA, Dataset2.  

7.4.1 Method 

Two classes of training data are cropped manually from images in Dataset 1. There are 

32 background images and 39 skin images. Background images contain rulers and 

arbitrary background areas. Skin images contain normal skin, bruise and joint skin area. 

There are several training examples. 

Background Training Data Skin Training Data 

 

 
 

 

 
 

The method is basically same as QDA (1) except the data to computer mean and 

covariate matrix are from Dataset 2 in QDA (2). 

  



33 

 

7.4.2 Implementation 

The implementation is defined in: Skin.py 

Function 

generateQuadraticClassifierParameters(colorSpaceName, imageBG, 
imageSkin) 

colorSpaceName is String input including “hsv”, “rgb”, “ycc” 

imageBG and imageSkin are list type variable, each position stores an image (default 

image data type) of background and skin. 

Function is void type; no value is returned. The function creates two pickle files called 

skincolorSpaceNameData.pickle and bgcolorSpaceNameData.pickle in the working 

directory. They contain the covariate matrix and mean vector of their own class. 

The program firstly loops through an image list. During the iteration, image is converted 

to given colour space and rearrange the pixels into specific format like PDF. After the 

iterative process, same command is used to generate mean vector and covariate matrix. 

The variables are then written into corresponding .pickle file by pickle.dump([co, 
mean], f). this process is executed 2 times for 2 lists. 

QuadraticClassifierClassify(img, skMean, skCov, bgMean, bgCov, 
nSigma, colourFlag) 

This function performs same as LocalQC, except that the mean vector and covariate 

matrix is provided by user in the argument.  

Test program: TestQuadraticClassifier.py 

  



34 

 

7.4.3 Result and Evaluation 

 t = Mean + Sigma*1.25 t = Mean + Sigma*2 Colour Thresholding 

1 

   
2 

   
 The bruise area is classifiied as outlier 

3 

   
4 

   
 Result of image 3 and 4 have no difference 

5 

   
 Some of the dark skin areas are classified as non-skin 

Using external training data produces worse result than using local data. Theoretically, 

using more data should produce better result in machine learning technique because of 

better coverage of samples. However, in this experiment, it shows that using local data 

has better result than using more external amount of training data.  

It is because our training data only takes a narrow part of skin colour spectrum as 

learning process, as we have got some skin images from only few patients which may 



35 

 

not cover the skin colour of targeted dataset. Especially, there is no dark bruise training 

examples like testing image 2 in the training Dataset. It results that the bruise pixels in 

testing image 2 are more likely as background like dark background example even loose 

threshold is applied. Background’s training examples are not diverse enough. “Training” 

data used in QDA (1) is directly from the testing image. Therefore, it provides better 

performance. QDA (2) method is still not ideal. 

  



36 

 

7.5 K-Means Clustering 

As limited training data is provided, I go back to focus on local data. Colour 

Quantization is the process of reducing number of colours in an image [9]. It may be 

useful to extract part of the area where they have similar pixels like skin layer. This is 

an example for colour quantization which reduces the number of colours to four.  

 

The theory behind it is k-means clustering [19]. In technical speaking, k-means 

clustering partition n pixels into k clusters. Each pixel belongs to the cluster with the 

nearest mean, serving as a prototype of the cluster. Here is an example from OpenCV 

[20] when k = 2 with data in 2-dimensional space. 

 

 

The 2 squares show the position of 2 clusters such that sum of distances between test 

data and their corresponding centroids are minimum. 

When it is applied to bruise image, the ideal case is that the skin pixels will be clustered 

together. Based on the clustering result, skin segmentation may be performed to extract 

the skin region only. Moreover, when more clusters are used, the skin layers with 

different shading effect may be segmented. 

  



37 

 

7.5.1 Method 

Before we start this algorithm, we need to specify: 

1. Define number of cluster k 

We run k = {2, 3, 4} on RGB, HSV, YCrCb colour space to see if background, ruler, 

skin or even lighting layer could be segmented.  

2. Specify termination criteria 

The algorithm is terminated when the maximum number of iterations or the desired 

accuracy is achieved. The accuracy is specified as criteria.epsilon. As soon 

as each of the cluster centres moves by less than criteria.epsilon on some 

iteration, the algorithm stops. In this experiment, max iteration is set to be 10 and 

epsilon is set to be 1.0 (1 pixel). 

3. Select how initial centres are taken 

Random initial centres in each attempt is set. 

 

7.5.2 Implementation 

The implementation is defined in: Skin.py 

Function: kMeansClustering(img, k) 

img: input image with default data type with user defined colour space 

k: number of cluster 

Function returns quantised image. 

The implementation references the OpenCV tutorial [19]. 

Test program: TestSkinCluster.py 

 



38 

 

7.5.3 Result & Evaluation 

 Original Image (HSV) K = 2 K = 3 K = 4 

1 

    
2 

    
3 

    



39 

 

4 

    

5 

    
RGB and YCrCb produces similar result. 

K = 4 provides most reasonable result. In general results are a bit better than Colour Thresholding, because of the completeness. The edge 

and area are more smooth. For image 2, sofa colour is still clustered to skin pixels. For Image 3 this algorithm segments shading effect of 

the skin. It may be useful for bruise feature extraction to deal with shading effect. However, the time complexity of K-means clustering is 

at least O(nPixels*k*Iteration). It takes long time to compute all 5 images. It is not a time efficient algorithm.  

 

 

 



40 

 

7.6 Summary of Skin Detection 

Apart from the above solution, SVM classification is also implmented. SVM can 

perform non-linear separation by maximising soft margin, where decision boundary is 

defined by limited number of support vectors. There are quite a lot colour classification 

done by SVM [21] [22]. However, the implementation doesn’t work as usual. The 

classification turns all the pixels to same label. 

To sum up, Colour Thresholding approach is the best performed so far because of low 

false negative and the speed. 

The main problem of the skin detection on our targeted images is that some of the non-

skin pixels are highly similar to actual skin pixels. Classification using local or external 

colour data is not sufficient. Local data could not separate similar pixels. Our external 

dataset as training data covers too narrow spectrum. 

To solve these problems, there are some other protential solutions. It may be possible 

that to use pre-trained classifier from other research institution, which combines 

multiple colour models and covers a wide spectrum of skin colour by a huge amount of 

training data. However, it may not able to cope with classifier bruises.  

Apart from colour classification, some of the skin detections consider texture to give a 

better and more efficient recognition accuracy of skin textures. There is a study [23]  

shows that using feed forward neural networks to classify input textures images to be 

skin or non skin textures. 

Nowadays, deep learning becomes one of the dominant technique in image processing 

community. Skin detection is not an exception. There is a study [24] shows that their 

deep learning skin detection method performs better compared to other methods such 

as rule-based, Gaussian model and feedforward neural network.  

Skin detection is one of the deep topics in image processing. There are lots of other 

issues related to skin detection which are to be tackled including diversities of skin 

colour, scars, birthmark, freckles and hair to affect skin colour. Using basic and simple 

algorithms could not address these problems. However, the images provided for bit 

mark matching are white and clean skin type. A few of images for mearsureing 

dimension contain scar and hair. Due to time limitation, the proposed improvements 

and solutions could not be taken. Althought my skin detection algorithm is not perfect, 

it is still accpetable for this project scope. In the coming task, a bruise window will be 

drawn to cover more background areas including the ruler. Also, feature matching is 

tolerable for some of the unrelated features. Therefore my skin detection method is 

sufficient to support the furthur operation of this project. 

 

  



41 

 

8. Draw Bruise Window 

8.1 Circle feature based drawing 

The bruise area is only a part of the skin. It is important to minimize the area to avoid 

extract loads of unnecessary features when doing feature extraction from the image. 

Therefore, boundary for skin area where only contains the bruise is important. The ruler 

is a good indication for bruise location on skin. Moreover, all circles at the corners of 

the ruler are important to be included in the image according to forensic odontology 

photography guidance [3]. The three circles become a main feature to draw a bruise 

window. To simplify this problem, it is assumed that the bite mark or the bruise is 

smaller than 6cm x 6cm. Meanwhile, the shortest distance between the circles are longer 

than 7 cm, which should cover all the bruise based on the assumption of dimension of 

a bruise. 

 
The unique white colour is reasonably easy to be extracted which produce a binary 

image where ruler white area is white and lines on ruler and background are black. Also, 

there are three obvious circles (targeted circles) on the ruler’s corner which indicate 3 

points of a square window. Therefore, Colour Thresholding and Hough Circle 

Transform should be useful to find out the coordinate of the window.  

 

8.1.1 Method 

1. Gaussian Smoothing 

2. Apply RGB Thresholding range from [180,180,180] to [255,255,255]  

In the binary image, white represents the white coloured ruler areas and black 

represents others including the measurement lines on the ruler. 

3. Erode the binary image to thicken all the black feature lines 

4. Canny Edge Detection to create edge image of the binary image and gradients 

of the edges  

1) Gaussian Smoothing 

2) Use Sobel Edge Detector to find out gradient strength and direction of edges 

3) Non-maximum Suppression  

The edge image is scanned along the image gradient direction, and if pixels 

are not part of the local maxima they are set to zero. This has the effect of 

supressing all image information that is not part of local maxima.  

 

 

  



42 

 

4) Hysteresis range between 30 and 90 [25] 

Hysteresis counters streaking by setting an upper and lower edge value limit. 

Considering a line segment, if a value lies above the upper threshold limit it 

is immediately accepted. If the value lies below the low threshold it is 

immediately rejected. Points which lie between the two limits are accepted 

if they are connected to pixels which exhibit strong response. The likelihood 

of streaking is reduced drastically since the line segment points must 

fluctuate above the upper limit and below the lower limit for streaking to 

occur. Canny recommends the ratio of high to low limit be in the range two 

or three to one, based on predicted signal-to-noise ratios. 

5. Circle Detection  

1) Find gradient pairs which the two direction of gradient vectors have nearly 

180 degrees’ difference by sorting the gradient [26] 

2) Check the distance of two points of the pairs if they are in the range of the 

expected 2*radius. We set the valid radius between 120 and 480-pixel unit  

3) Record the midpoint of the gradient pairs and its radius in the accumulator 

if they are in range 

4) Filter the low response centre in accumulator. Low response is set to be 20 

times. 

5) Merge the closed centre if 2 centres are closer than 250  

6) Return centre and radius corresponding to the larger accumulator values, 

will be returned first. 

The 3 targeted circles do not always have strongest response in the accumulation 

space because of the weak gradient. Also, some false circles are also detected. 

We need more steps to locate the targeted circles at the corners of the ruler. The 

following image show the failure. Red circles are the three most accumulated 

circles. 

 
6. Find Circles at corners  

1) Draw a non-rotated bounding box for all circles & split the bounding box 

into 4 equal sub-boxes 

By my observation, the false circles are always found on the measurement lines. 

If a bounding box is divided into 4 equal sized square sub-boxes, there should 

be an invalid sub-box which contains fewer circle centres. Then the three 

targeted circles could be identified in other three sub-boxes. Each valid sub-box 

should have one targeted circle. 



43 

 

2) Find targeted circle in a sub-box 

All the centres of the circle are labelled to a sub-box by polygon inside test. 

Each centre of targeted circle in a sub-box should be the closest to the 

corresponding corner of the bounding box. After that we have three targeted 

centres in three sub-boxes. 

 
7. Draw window 

Now, there are three valid sub-boxes, each of which has a centre of the targeted 

circle. Drawing a square window requires 2 locations, left top (P1x, P1y) and right 

bottom (P2x, P2y) points. The ruler is not always placed to show us that 2 points. 

So, there are 4 possible cases. The black square in the 2x2 grid indicates an invalid 

sub-box.  

Case 1: 

P1x = x value of the centre in grid 3 

P1y = y value of the centre in grid 2 

P2 = the centre in grid 4 

 

1 2 

3 4 

Case 2:  

P1 = the centre in grid 1 

P2 = the centre in grid 4 

 

 

1 2 

3 4 

Case 3: 

Same as case 2 

 

1 2 

3 4 

Case 4: 

P1 = the centre in grid 1 

P2x = x value of the centre in grid 2 

P2y = y value of the centre in grid 3 

 

1 2 

3 4 

  



44 

 

8.1.3 Implementation 

The implementation is defined in: Skin.py 

Function: 

setUpWindow(im) 

im: input image with default data type 

Function returns a binary image. Element with zero value means the pixel is outside of 

the window. 

1) Generate a mask, Ruler Mask where non-zero elements are in range 

2) Extend zero region using Erode function 

3) Retrieve circles found from Ruler Mask using HoughCircles function 

HoughCircles(mask, cv.CV_HOUGH_GRADIENT, dp=1, minDist=250, 

param1=90, param2=20, minRadius=120, maxRadius=440) 

4) Create an array Temporary Space with all zero elements 

5) Draw all the circles in the Temporary Space using circle function 

6) Find all the coordinate with non-zero elements from Temporary Space using 

findNonZero function 

7) Apply bounding box to all the circles using boundingRect function 

8) Retrieve the bounding box coordinate, width and height 

9) Compute all the sub-boxes’ coordinate, width and height 

10) Create a 2-dimension list where the row indicates a sub-box 

Sub-box/list index 0 to 3. Sub-box 0 is top left, 1 is top right, 2 is bottom left 

and 3 is bottom right. 

11) For each circle 

a. Test the centre in which sub-boxes using pointPolygonTest function 

b. Put it into corresponding list 

c. Count which list has the fewest centres 

12) For each list, find out the nearest point to the given corner point using Euclidean 

distance 

13) Create an empty mask, Window Mask with all zeros  

14) Based on three cases uses different points to draw a rectangle on Window Mask 

using rectangle function 

15) Repeat step1 to obtain a new Ruler Mask 

16) Extend the non-zero elements using dilation function 

17) Invert Ruler Mask 

18) Combine Ruler Mask and Window Mask using bitwise_and function 

19) Return combined mask 

 

Test program: TestBruiseWIndow.py 

  



45 

 

8.1.4 Result & Evaluation 

For Dataset 2, all the targeted circles in the images could be located. 

 

 
The advantage of using circle rather than only thresholding result is that the capability 

to cope with white background. Imagine the image has some white background. Then 

a bounding box is drawn on the thresholding result directly. The bounding box may be 

much bigger than the ruler area. During the process of circle finding, the white 

background will be ignored to avoid the oversized window, because arbitrary white 

background may not contain edge and circle features.  

In addition, I also received Dataset 3 and 4 after this algorithm was finished. However, 

the colour of the measurement lines on ruler are faded, the targeted circles are not fully 

or are not included in some of the images. This algorithm still produces fair results. 

There are 65 images in total. 53 results have reasonable window which covers majority 

areas outside the ruler and not covers the bruise, even the targeted circles are not in 

some of the images or white background.  

  
 

12 images are failed to draw a valid bruise window. Where 7 of them have no complete 

targeted circles in the image, which results in small window to cover the big part of the 

bruise. The ruler in 1 of them could not provide a threshold due to unusual colour of 

light. 4 of them with unusual illumination, the line of a circle is detected as the ruler 

because of strong intensity.  



46 

 

To address unusual illumination problems, I have tried skip the first step to not perform 

a Gaussian smoothing which ensures that the detail is kept. However, it produces more 

worse results for other images. The targeted circle is broken down into multiple circles. 

Also, a lot of false circles on the edge of the ruler not only on the measurement lines. 

Another method of avoiding using the circle feature on the ruler with unusual 

illumination is using the same method like extracting the ruler in dentition cast images 

and check the shape including symmetricity, regularity and size, but it may not be 

capable for white background. 

Therefore, that 3 images with unusual illumination are not solved due to time limitation. 

Overall, this algorithm could draw a bruise window to minimize the unrelated area. 

  



47 

 

9. Features Extraction 
From machine aspect, object matching or mapping is based on image local features. For 

any object in an image, interest point on the object can be extracted to provide a "feature 

description" of the object. The feature description may be the orientation of edges, 

corner. 

9.1 SIFT 

SIFT, Scale-invariant Feature Transform is one of the most common used method to 

perform features finding. It is robust to support changes in location, scale and rotation, 

illumination, small changes of viewpoint, noise, blur. It basically records multi-scale 

blobs as key points and their spatial gradient distribution as description. This is one of 

the example from NASA Mars Rover images [27]. SIFT matching is used to recognize 

a location from different point of views. The coloured squares and circles are the key 

points. 

 
9.1.1 Method 

1. Combine skin extraction & bruise window result 
2. Convert image to grayscale 
3. SIFT Features 

1) Key point detection 
Using Different of Gaussian to detect extrema in different scale space. The 

extremas are the blobs at characteristic scale. Low contrast candidate points and 

edge response points along an edge are discarded.  

2) Compute the dominant orientation of each key point 

In region around the key point, the gradients in Gaussian-blurred image are 

computed. Based on the result, we can generate an orientation histogram and 

apply weighted gradient magnitude and smoothing to histogram to find out the 

peak response bin as dominant orientation. 

4. Draw circle on location of key point and the circle size is based on scale space 



48 

 

9.1.2 Implementation 

The implementation is defined in: TestSIFT.py 

Note that, SIFT in OpenCV version 3 is removed from default package. SIFT is packed 

into the opencv_contrib package. The opencv_contrib packages contains 

implementations of algorithms that are either patented or in experimental development. 

It is recommended to down grade to OpenCV version 2 or install external packages 

following OpenCV community guidance. 

For OpenCV2 users, using SIFT() function to create object then using detect(greyImage) 

function to obtain all the key points. 

 

9.1.3 Result and Evaluation 

The display result is cropped manually. 

1 

 

2 

 
3 

 

4 

 
5 

 

6  

There are only one or two feature points on the bruise. It is because the bruise has no 

edges, corners features. Blob detection using Difference of Gaussian could not find any 

extrema. Therefore, SIFT is not able to extract any features from the given bruise. 



49 

 

For the dentition cast features. There are some of the detected features with orientation 

on the edge of the teeth. However, bruise features are not found. 

 

  



50 

 

10. Feature Matching 
Due to lack of features from the bruise, currently there is no way to match the feature. 

From the initial plan, if features were found. Feature matching could be performed. The 

following example shows that how to use feature to match object. 

 [28] 

 

 
Let say the bite mark is more obvious like the picture above, which contains edges or 

lines. Using features found from dentition cast could be possible to perform matching 

by RANSAC method, where Random sample consensus (RANSAC) is that to find a 

good subset of these matches that provides a consistent transformation such as an affine 

transformation. It would finally output the number of matched features, or how likely 

the feature is matched. 

However, the feature is not found from the given bite mark. No match could be 

performed.  

   



51 

 

11. Bruise Segmentation and Dimension Measurement 
In this section, it is aimed to segment the bruise from the skin. After the segmentation, 

the boundary of a bruise could be defined. Then, a minimum bounding box is drawn on 

the bruise and measure its dimension in pixel units. Pixel unit could be converted to 

centimetre after further process. Also, it is assumed that every bruise image only 

contains a single bruise.  

For the segmentation, colour quantisation, thresholding with central weighting region 

growing methods are experimented and evaluated.  

For dimension measurement, minimum-perimeter bounding box is used to define the 

dimension. Minimum bounding box means an oriented minimum bounding box 

(OMBB) which is the smallest-area enclosing rectangle of a polygon has a side collinear 

with one of the edges of its convex hull.  

  [29] 

It provides a consistent and identical method to define the dimension of a set of points. 

It is significant to eliminate the human subjectivity from forensic science point of view. 

Bruise images are different in terms of the shading effect which is mentioned in colour 

thresholding section or noise level including skin detection failure. An image with less 

shading effect and noise is more easy to segment. Therefore, the initial stage, some of 

the “easy” images are selected to be processed. 

The following images are examples of few noise and less shading effect images. They 

are selected to study for our initial algorithm.  

 
 



52 

 

11.1 Colour Quantisation & Region Growing 

Colour Quantisation would be useful to classifier skin and bruise pixels in 3-

dimensional colour space. The cut off is dynamic, especially the classification of faded 

bruise area depends on both bruise itself and the skin which results a fair classification. 

Moreover, there are still some pixels with shading effect on the skin which are classified 

as bruise. They need to be segmented by location information given that a bruise region 

is always located near the middle of the image. It may be possible to select bruise pixels 

which are nearer to image centre as seeds to grow the bruise region. 

11.1.1 Method 

1. Using thresholding to remove purple dots and mole. 

2. Colour Quantisation in HSV and RGB space 

The process is same as K-Means Clustering in Skin Extraction section. This time 

we use k = 3. They are bruise, skin and the black pixels. The map of labels is also 

stored as grey image. In the result of Colour Quantisation, you can assume that one 

colour belongs to one label. Also, we need to find out which label belongs to bruise 

by computing mean intensity of pixels grouped by labels. The ascending order of 

mean intensity should be background, bruise and skin. It is because of the nature of 

bruise. 

 

 
 

3. Seed selection for region growing 

If you look at the quantisation result detailly, you may see there are some noise that 

the bruise labels are distributed on different part of skin. If a seed in the noise area 

is selected, the seed cannot grow and the result will be failed. 

 



53 

 

As bruise region is always located close to the middle of the image, seed selection 

starts from near centre of an image. Initially, a circle with radius 50-pixel unit is 

drawn in the centre of image to indicate seed searching area. Then, all the bruise 

labels inside the search area become potential seeds. If there are less than 500 seeds, 

the searching area is extended by radius +50 and check the number of bruise labels, 

till the there is more than 500 potential seeds in the searching area or the searching 

area is bigger than the skin area. This step could avoid getting noise labels. 

They are examples that bruise labels in searching area are blue coloured. 

 
10 actual seeds are randomly selected from the potential seed pool to grow region 

independently. If the seed grows less than 2500 pixels, result will be rejected. 

Random seed selection is better than distance based selection because random 

selection may avoid choosing the fragmented labels which cannot grow. 

 

4. Region growing 

Growing the seed is simple, just check its 8 directions to see if any neighbour pixels 

have same label, then neighbour become a seed as well till all the seed cannot grow. 

This example shows that the middle is seed which has label 0 and grows to a 

neighbour with same label. 

1 1 0 

1 0 2 

1 2 2 

5. Combine results 

Combine those results from 10 seeds (or less) to avoid getting result of using 

fragmented seed. 

 
6. Minimum bounding box 

 

  



54 

 

11.1.2 Implementation 

The implementation is defined in: TestKmeansRegionGrowing.py 

1) Read images from directory 

2) For each image 

--Pre-processing-- 

a) Apply skin detection on image -> skinMask function 

b) Generate Window Mask using setUpWindow function 

c) Generate Dot Mask using RemovePurpleDot function 

d) Generate birthMask using RemoveBirthMark function 

e) Combine 4 masks to Window Mask  

f) Generate Window Image by applying Window Mask to the image  

--Colour Quantisation-- 

g) Convert Window Image to HSV space 

h) Generate Cluster Image, Label Map using K-means clustering to Window 

Image 

Each value in Cluster Image is the colour corresponding to the cluster. Each 

value in Label Map is the corresponding label. 

i) Convert Window Image to Grey Scale 

j) Compute mean intensity of Window Image where the pixels grouped by labels 

k) Find the medium intensity and corresponding label 

--Region Growing-- 

l) Generate a mask, Flag Map where non-zero element indicates bruise label 

m) While loop: 

i) Set radius = 50 

ii) Create a mask, Circle Mask with a filled circle with initial radius in centre 

iii) Apply Circle Mask to Flag Map 

iv) Store all the coordinates of non-zero elements of Flag Map to Point 

Candidates 

v) If size of Point Candidates >= 500 break the loop. Otherwise, radius + 50 

n) For 10 times: 

i) Repeat step l and invert it to Mask Grow  

ii) Extend the 4 borders from 4 sides by 1 pixel from Mask Grow for region 

growing function  

In OpenCV the mask with non-zero indicates a border than the seed cannot 

grow. And border + 1 is requirement for the method. 

iii) Use a random index to select a Seed from Point Candidates 

iv) Region growing using floodFill function given 

v) Append the result to a list  

o) Use bitwise or operation to combine all results in the list 

p) Store all the non-zero  

q) Coordinates in Bruise Mask to Cnt 

r) Find minimum bounding box given Cnt using minAreaRect, BoxPoints function 

s) Draw the box on original input image using drawContours function 



55 

 

t) Draw the text of the box dimension on original input image using putText 

function 

u) Write output image using imwrite function 

11.1.3 Result and Evaluation 

 

 

 
While using HSV and RGB colour space, 7 of 53 results show that the algorithm works. 

All that 7 images are only contain clear and obvious bruise as well as less and 

segmented shading effect. For these 7 images, this algorithm successfully labelled 

bruise plus shading areas as a group and skin as another group. Also, region growing 

can select the bruise area rather than shading area. Minimum bounding box estimation 

could produce the dimension of the bruise in pixel unit. 

However, there are other problems such that the segmentation fails when the bruise and 

shading areas are connected, because the seeds grow all the connected neighbours like 

the following example. 



56 

 

 
Therefore, re-classification is performed again based on the result above to see if 

shading and bruise could be segmented. And here is the result. 

 
As you can see the bruise is segmented into two layers, the darkest part and the faded 

part. And the shading is segmented as well. Ultimately, clustering cannot segment 

bruise and shading.  

Label counting method is also considered. For example, there is a bruise image. The 

bruise labels are vertically and holistically accumulated column by column and row by 

row. The accumulated series is plotted on 2D space, x and y axis represent the 

row/column index and number of bruise labels accumulated respectively. Left image 

indicates bruise image where red is the bruise labels. The right plot is the vertical 

accumulation result. 

 
As you may see, a bell shape curve is in the plot. The minimum extrema are the clear 

cut off point of the object. However, the bruise in life is not always circular as the above 

example. To smooth the accumulation series, a Gaussian weighting may be useful to 

generate bell shaped like curve to find out the potential cut off given that the bruise is 

always in centre of image.  

Let’s say the below example is after a perfect Gaussian weighting and smoothing for 

vertical accumulation which flattened all the shading votes. As you can see the outer 

peaks are also part of the bruise. Minimum extrema are not able to identify the cut off 

in this situation. 



57 

 

 
If the small peaks are ignored, the bruise will be cut. If the peaks are selected, for some 

shading connected image, the bruise will be over selected. There is a problem to how 

to segment the bruise and shading area.  



58 

 

Moreover, the colour quantisation clusters the skin and bruise pixels as a group, when 

it comes to the situations that the shading pixels are much darker than the bruise or the 

bruise is not too obvious. It means the distance of skin and bruise pixels are closer than 

the distance of shading and bruise pixels. The following examples show that strong 

shading effect on the right side. 

 

This method is arguable that from forensic science point of view, although this method 

successfully draws bounding box on the bruise. The size of a bruise especially 

classification of the faded bruis pixels in k-means clustering highly depends on the 

amount of and the level of the shading effect. To explain this conecept a diagram is 

produced. There are 3 small images cropped from example image in HSV colour 

scheme. And plot it in the 3-dimentional space. 

Example image Bruise Shading area Skin 

    
 Red dots Green dots Blue dots 

  
(Same plot with views from two angles) 

When k = 2, 2 clusters will be roughly located in inside of green group and between 

blue and red groups. It reuslts that bruise and skin become a group.  

Imagine 2 cases. First case is that there only few green dots (less shading area). The 

seoncd case is that there are more few green dots (but not many as the above example). 



59 

 

For case 1, the bruise cluster is shifted to more central to the red group comparing to 

case 2. It results more “marginal”/”faded” bruise pixels will be classified in case 1 

which is more reasonable from scentific aspest.  

This algorithm is passively affected by the level of shading. Therefore, it is considered 

to experiment on some other methods to suppress the effect of shading. The next 

algorithms are required to add some methods to increase the chance that the bruise to 

be selected or reduce the chance that the shading to be selected. 

 

 

  



60 

 

11.2 Central Weighting & Thresholding on Saturation 

In this section, central weighting is given to the bruise image to avoid domination of 

shading area. In HSV colour space, Saturation is one of the main components to 

segment skin and bruise/shading. The following example images shows the saturation 

response of an image. 

  
Although the saturation between bruise and shading are similar, the saturation can be 

decreased from centre such that, the centre area takes the more weight compare to the 

far location by applying a grid with weighting, shading in the edge become less 

response in terms of saturation compare to the bruise.  

11.2.1 Method 

1. Generate a grid with weighting 

Generate a Gaussian kernel with sigma 6 and size N*N where N is max of the image 

width or height. And crop it to image size. Then rescale all the values in range from 

0.6 to 1. 

2. Apply the weighting to the saturation of the image 

Left image is before weighting, right image is after weighting 

 
3. Choosing Threshold 

It is reasonable that the maximum response from the saturation channel is the 

darkest part of a bruise. A lower bound is required. Initially threshold t = max * 

0.85 is set. If less than 5000 pixels are selected, a new threshold t = t*0.9 will be 

applied till more than 50000 pixels are selected. It ensures that the selected pixels 

are not only arbitrary extrema. Images from left to right are original, k-means, 

saturation after central weighting, and the threshold result. 

 
  



61 

 

4. Morphometric Closing  

Closing with 9x9 kernel is applied to connect near pixels to ensure the thresholding 

result is not over dispersed. 

 
5. Region Growing to remove unconnected region and noise 

6. Minimum bounding box 

  



62 

 

11.2.2 Implementation 

The implementation is defined in: TestCentralSaturation.py 

1) Read images from directory 

2) For each image 

--Pre-process-- 

Same processes as Colour Quantisation implementation a to f 

--Central Weighting-- 

a) Convert Window Image to HSV space 

b) Obtain Satiation Image by keeping Saturation Channel from Window Image 

c) Obtain Gaussian Weighting Kernel using GetCentralPriorKernel function 

d) Rescale the values of Weighting Kernel from 0.6 to 1 

e) Update Saturation Image by applying Weighting Kernel 

--Thresholding-- 

f) Find the max saturation value and set threshold t = max*0.85 

g) Generate a mask, Result where non-zero pixels indicate the coordinate that 

value is > t in Saturation Image 

h) While loop 

i) Count the number of non-zero elements in Result 

ii) If the number is small than 50000, set t = t*0.9 and repeat step m 

i) Apply morphometric closing to Result using morphologyEx function 

--Region Growing-- 

Same processes as Colour Quantisation implementation l to t 

Function GetCentralPriorKernel(imSize, sigma) 

imSize is [imHeight imWidth] like array. Sigma is value for Gaussian Distribution 

Function returns Gaussian kernel with same size as imSize 

1) kSize = max(imSize) 

2) Generate 2-dimentional Gaussian Kernel with size kSize*kSize using two 1-

dimentional Gaussian kernels 

3) If the height and width of 2d Gaussian Kernel and imSize are not equal 

a. If kSize > imWidth 

i. Compute the offset for unwanted part of the kernel by (kSize – 

imWidth)/2 

ii. Select all the row from kernel with column index between offset 

to ksize – offset 

b. Else 

i. Compute the offset for unwanted part of the kernel by (kSize – 

imHeight)/2 

ii. Select all the column from kernel with row index between offset 

to kSize – offset 

Return cropped kernel  



63 

 

11.2.3 Result & Evaluation 

8 out of 51 results are acceptable as my observation.   

 
The weight may be incorrect for some images. The first reason is that the weight is not 

based on any features or environment from the image itself. If image contains a big 

blob of bruise, the response of the far bruise area will be decreased. The size of a bruise 

becomes smaller.  The left to right image shows HSV original bruise, Saturation before 

weighting, Saturation after weighting, and the result. 

 
Although the bruise is always close to the image centre, there are some cases that the 

response of the main part of the bruise is decreased. Then the response of non-bruise 

pixel in centre is increased. The area of a bruise becomes over estimated. The left to 

right image shows HSV original bruise, saturation before weighting, saturation after 

weighting, and the result. 



64 

 

 
Also, there are some ambiguous situations. From my personal observation, I do not 

discover the bruise on the unweighted image. After the weighting, a slightly bright blob 

appears. It is not convincible to say the blob is made my weighting or the original bruise 

itself. 

 
 

The current threshold selection is another problem. Threshold will get relaxed when the 

number of pixels in result is smaller than 50000. These criteria control the size of the 

detected bruise incorrectly. When there is a big and partially faded bruise, the faded 

part will not be included. Because the initial threshold may already contain more than 

50000 pixels, algorithm then stops.  

If the threshold is determined by checking the size growth of centre blob, it may over 

select the bruise area. After apply centre weighting, the saturation response decreases 

from centre, lower the threshold will include more pixels where just far from centre.  

Apart from the above thresholding approach, k-means 1D clustering and Otsu’s 

thresholding are also experimented, but they perform badly. The idea of Otsu’s 

thresholding is to look for two peaks then approximately take a value in the middle of 

those peaks as threshold value. However, the bruise response on saturation or Grey 

Intensity are not strong as to be segmented. The following example shows the Greyscale 

and saturation of an original obvious dark bruise without shading effect and its 

histogram. 

 

  

  
 



65 

 

11.3 Lighting Correction with Fourier Transform 

When the flash light hits on the blended surface, some of the surface received less 

amount of light. The area becomes dark where colour is similar to the bruise. Especially, 

the cylinder shape like limbs. Lighting artifact attenuation could be approixmated and 

corrected. 

 
To flatten the lighting effect, the image can be converted to grey scale where the pixel 

value is presented as intensity. The dark pixel contains low intensity. Then the intensity 

is accumulated row by row horizontally and column by column vertically to form two 

signals. It is then normalised by dividing its highest value. After doing so, we would 

use the Fourier transform to obtain magnitude information to decide which direction 

such as vertical or horizontal to be correct.  

The idea of Fourier Transform is that any digital signal can be decomposed into purely 

sinusoidal components. [30] 

 [30] 

For the left image, the signal accumulated horizontally will form an up-side-down 

cosine-like curve which indicates the lighting effect. And the signal accumulated 

vertically will form relatively flat with small peaks shape. After nomalisation, they are 

passed to Fourier Transform. The strongest magnitude in low-frequency range could be 

found in the signal with lighting effect. The up-side-down cosine shape signal is 

contributed by the dominant peak in low-frequency range in Fourier Space. Then the 

direction of lighting effect to be corrected is identified. 

Based on the accumulation signal S, some weighting could be assigned to grey scale 

image from the same direction to flatten the lighting difference. S is upside down cosine 

like cuve. The new intensity is estimated as I = Iold  * 1 + ( 1 – S(n) + c) where c is a 

constant to control the level of correction.  



66 

 

The following example shows that the intensity is accumulated column by column 

horiztonally. Then using linear weighting to correct the lighting on greyscale image 

[31].  

Original Image  Corrected Image 

 

 

 
The intensity of a row Flattened Linear signal S The intensity of a row after 

correction 

   
 

Due to the time limitation, the above method has not been implemented. However, this 

current method could only deal with the limbs which are similar to cylinder. There are 

number of bruises on other body part like face and back which are bulged in on the skin 

surface rather than cylinder like. 

 

 

 

11.4 Summary of Bruise Segmentation and Dimension Measurement 

K-means clustering method seems to be most reasonable in the terms of personal 

observation. However, it is highly affected by the shading area. Also, segmentation 

method is not working to segment bruise and shading area. Lighting effect is also a 

major factor to block the bruise extraction or turns the bruise invisible in saturation 

channel. 

  



67 

 

12. Future Work 
Dentition cast extraction: 

There are still two non-convex shape casts which the backgrounds have not fully 

removed. It may be useful to reapply colour segmentation method to eliminate the 

background. 

Skin detection: 

Although the current thresholding skin detection method is acceptable under this 

project scope, it is still recommended to use the state of art skin detection algorithm to 

achieve a better result. It is because the future datasets may potentially contain more 

challenging backgrounds or ambiguous object behind. Therefore, it is beneficial to 

enhance the skin detection performance to eliminate non-skin areas as many as possible. 

Since neutral network and deep learning techniques on skin detection has performed 

much better than simple thresholding solutions, it may be useful to build from the 

recommendation rather than experimenting new methods.  

Bruise window drawing: 

There are some drawing failures due to ruler circle feature is not included or only 

partially included. Although including the ruler circle feature in the forensic images is 

recommended, there are some forensic images do not contain the or partially contain 

the feature only. It may be necessary to create non-circle feature based drawing method 

to cope minority cases.  

Be aware that an assumption is defined in this project which the bruise could be 

bounded by the circles, but the real-life bruise does not always fit into this assumption. 

If the project scope is extended, this algorithm must be re-designed.  

Features Extraction: 

The current received dataset is challenging, due to no features on the bruise at all. 

However, image processing technique is still useful for bit mark feature extraction. 

According to the Forensic Science International Journal, there are still a lot of bite mark 

matching problems that have not been scientifically or equally solved, in which contains 

a lot of obvious line/edge features of teeth on the skin. It is useful lower the difficulty 

and starts from those images such as the control set in dataset 2 as initial feature 

extraction and matching algorithm testing. 

Bruise Segmentation and dimension Measurement: 

The current bruise segmentation is majority affected by the shading effect. It is 

important to balance/flatten the illumination effect first. Then performs segmentation. 

Also, the hair or scar removal algorithm should be implemented to reduce noise which 

is not related to bruise. Retinex [32] lighting correction method is worthy to try out. 

Retinex Image Enhancement is convert the input image to the enhanced image which 

is independent of the illumination source.   

The current result is only based on pixel unit. It must be converted to other measurement 

unit for forensic purpose like centimetre. However, the ruler in different images has 

different scale. It is necessary to find out the ratio between pixel unit and centimetre or 

millimetre. 



68 

 

  



69 

 

13. Conclusion 
The goals of this project are that to use image processing technique to match the bite 

mark to the corresponding dentition cast and measure the dimension of a bruise. 

Although both goals have not been reached, all most all the pre-processing tasks have 

been completed. Those tasks are necessary and significant gateways to reach the goal. 

There are series pre-processing tasks have been done. For bite mark matching, there are 

2 methods have been introduced which are MSER blob detection approach and Colour 

+ Intensity thresholding approach. Using Colour + Intensity approach successfully 

segments the almost all the dentition cast is successfully extracted, except 2 of the 

unusual convex shape cast. 

Then 5 skin detection approaches were experimented including HSV & YCbCr Colour 

Thresholding, Probability Density Function, 2 versions of Quadratic Discriminant 

Analysis and K-Means Clustering. The colour thresholding approach is rated to be the 

best under our scope. The flaws of each algorithm are also included in the 

corresponding part. 

Circle feature based window drawing using Colour Thresholding and Hough Circle 

with geometric selection has demonstrated the significant success. Potential problems 

and solutions are also reported and proposed. 

SIFT feature detection has been applied on bite mark, but there are only few features 

which are found. The reason of the extraction failure has explained. It is a bottleneck 

that the first goal cannot be reached.  

Regarding to bruise dimension measurement, rotated minimum bounding box to 

measure dimension has been proposed and tested. Segmentation methods including 

Colour Quantisation, Region Growing and Thresholding have been tested. Shading 

effect has been identified as bottleneck for bruise segmentation. Also, a potential 

shading effect correction has been proposed.  

Finally, future work corresponding to each task has been outlined to assist further 

development on bite mark matching and bruise segmentation.  



70 

 

14. Reflection  
Having come towards the end of this module, I shall come to the reflection on what I 

have learnt over this project. In this project, I have applied and experimented a lot of 

fundamental image processing techniques range from feature extraction, recognition 

and segmentation that mentioned in Computer Vision, Graphic, Scientific Computing 

modules and Data Processing and Visualisation. Not only image processing technique, 

some mathematical concepts behind the image processing theories are practically 

explored. Also, I understand how Software Engineer or Scientist use their knowledge 

to solve real-life problems, including linking the solution to requirement, improving 

solution from base scenario. This experience is valuable. 

Understanding the failure and turning failure as lesson are important in every 

development. During this project, I had a period feeling frustrated, because solution 

didn’t go well. I was so caught up to reach the best solution. I sometimes dropped the 

solution directly without carefully improving it. During the meetings with supervisors, 

I was always advised to keep the solution and to develop more from the bugs or errors. 

Then, I found the iterative processes useful. It is normal that solutions do not always 

perform as good as I think. The best solution does not come out directly. The best 

solution is always iterated through many versions like extracting the circle feature from 

the measurement tool. Each iteration solves a single bug, improve the result. When the 

algorithm or idea does not work as expected, do not throw it. Keeps it and analyses it 

then improves it to achieve the best one.  

Moreover, there are several skills could be improved. Especially, time management. 

The time spent on skin detection function was too much, it consequently reduced the 

time spending on core problem which extracts bruises from skins. When I was doing 

skin detection function, I was pursuing perfect result. However, all my proposed 

methods were not perfect. I kept trying new methods which they didn’t seem improved. 

I didn’t realise the imperfectness of the function is acceptable and fulfils the expectation 

under the project scope. At that moment, I lost the sense of sticking to schedule. By this 

experience, I learnt the new way to assess a result. Assessing a result not only takes the 

performance of accuracy or efficiency as considerations. The expectation of outcome, 

the resource such as time given are also need to consider. Luckily, the tasks after skin 

detection including dentition cast extraction, window drawing were efficient enough to 

balance the majority time loss. Luck is not guaranteed in developments. Understanding 

how to assess the result if it is sufficient or not is important to keep development 

smoothly.  

Planning too tight schedule should be avoided. In the initial plan, I planned the schedule 

quite tight, the academic holiday was filled by different further tasks. The ideal holiday 

plan was supposed to refine and keep missing tasks back to track. Therefore, there were 

no buffers for any delay or accidents. Unfortunately, I was invited to few technical 

interviews with Amazon Alexa Team for graduate position. As Amazon interview is 

well known as tough, I spent total 2 weeks during holiday to manage the interviews. It 

could have predicted that job interview or any delay and refinement would occur in 

project development. It is not necessary pushing tasks together and expecting smooth 

development. Assigning time slot for buffering for any projects is important.  



71 

 

I truly enjoy this project which has helped me to identify my strength and improvement 

for my future career life.  



72 

 

15. Reference 
 

[1] Refuge, “Domestic violence – the facts,” Refuge, [Online]. Available: 

http://www.refuge.org.uk/get-help-now/what-is-domestic-violence/domestic-

violence-the-facts/. [Accessed 05 May 2017]. 

[2]  Sam Evans, Suzanne Noorbhai, Zoe Lawson, Seren Stacey-Jones, Romina 

Carabott, “Contrast Enhancement of Bite Mark Images Using the Grayscale 

Mixer in ACR in Photoshop®,” Journal of Forensic Science, vol. Volume 58, no. 

3, p. 804–810, 2013.  

[3]  Catherine Adams, Romina Carabott, Sam Evans, Forensic Odontology, UK: 

Wikey Blackwell, 2014.  

[4]  “ Bruises,” Forensic Medicine For Medical Student, 2015. [Online]. Available: 

http://www.forensicmed.co.uk/wounds/blunt-force-trauma/bruises/. [Accessed 3 

May 2017]. 

[5]  Claire G. Ross, Carley Chwal, Jeffrey A. Beckstead, Roger W. Byard, Neil E.I. , 

“Hyperspectral imaging of bruises,” Pathology, vol. Volume 46, p. S88, 2014.  

[6]  Anita Chaudhary, Sonit Sukhraj Singh, “Lung Cancer Detection on CT Images by 

Using Image Processing,” in Computing Sciences (ICCS) 2012 International 

Conference, Phagwara, India, 2012 International Conference on.  

[7]  BHAVYASHREE K G, SHEELA RAO N, “Determination and Analysis of 

Arthritis Using,” in IRF International Conference, Bengaluru, India, 2014.  

[8]  R. Sumithra, Mahamad Suhil, D.S. Guru, “Segmentation and Classification of 

Skin Lesions for Disease Diagnosis,” Procedia Computer Science, vol. Volume 

45, pp. 76-85, 2015.  

[9]  S. SUZUKI, “Topological Structural Analysis of Digitized Binary Images by 

Border Following,” Computer Vision, Graphics, and Image Processing, vol. 

Volume 30, no. Issue 1, pp. 32-46, 1985.  

[10]  “Morphological Transformations,” OpenCV, 2 May 2017. [Online]. Available: 

http://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html. 

[Accessed 2 May 2017]. 

[11]  A. D. Bimbo, “MSER,” The Media Integration and Communication Center 

(MICC), 2011. [Online]. Available: 

https://docs.google.com/document/d/1A1XkWJzs1H0DpzDE05qXQkCA2tor1mz

o5fZC5QxVm40/edit. [Accessed 03 May 2017]. 



73 

 

[12]  “Contour Features,” OpenCV, 18 December 2015. [Online]. Available: 

http://docs.opencv.org/3.1.0/dd/d49/tutorial_py_contour_features.html. [Accessed 

03 May 2017]. 

[13]  K. B. Shaik, “Comparative Study of Skin Color Detection and Segmentation in 

HSV and YCbCr Color Space,” Procedia Computer Science, vol. 57, pp. 41-48, 

2015.  

[14]  “HSL_and_HSV,” Wikipedia , 3 May 2017. [Online]. Available: 

https://en.wikipedia.org/wiki/HSL_and_HSV#/media/File:Hsl-hsv_models.svg. 

[Accessed 3 May 2017]. 

[15]  “YCbCr-CbCr,” Wikipedia , 02 April 2017. [Online]. Available: 

https://en.wikipedia.org/wiki/File:YCbCr-CbCr_Scaled_Y50.png. [Accessed 03 

May 2017]. 

[16]  “Probability Density Function,” Wolfram Math Word, 2016. [Online]. Available: 

http://mathworld.wolfram.com/ProbabilityDensityFunction.html. [Accessed 2 

May 2017]. 

[17]  “The Anatomy of Shading,” The Virtual Instructor , 2016. [Online]. Available: 

http://thevirtualinstructor.com/images/theanotmyofshading.jpg. [Accessed 2 May 

2017]. 

[18]  “1.2. Linear and Quadratic Discriminant Analysis,” Scikik Learn, 2016. [Online]. 

Available: http://scikit-learn.org/stable/modules/lda_qda.html. [Accessed 02 May 

2017]. 

[19]  “K-Means Clustering in OpenCV,” OpenCV 3.0, 10 November 2014. [Online]. 

Available: http://docs.opencv.org/3.0-

beta/doc/py_tutorials/py_ml/py_kmeans/py_kmeans_opencv/py_kmeans_opencv.

html . [Accessed 2017 May 03]. 

[20]  “Understanding K-Means Clustering,” OpenCV, 10 November 2014. [Online]. 

Available: http://docs.opencv.org/3.0-

beta/doc/py_tutorials/py_ml/py_kmeans/py_kmeans_understanding/py_kmeans_

understanding.html. [Accessed 3 May 2017]. 

[21]  Michael J. Quinlan, Stephan K. Chalup, Richard H. Middleton, “Application of 

SVMs for Colour Classification,” School of Electrical Engineering & Computer 

Science, The University of Newcastle, Australia. 

[22]  Nakhoon, BaekSun-Mi, ParkKu-Jin, KimSeong-Bae Park, “Vehicle Color 

Classification Based on the Support Vector Machine Method,” in International 

Conference on Intelligent Computing, Berlin, 2007.  

[23]  N. K. E. abbadi, N. Dahir, Z. Alyasseri and A. Alkareem, “An algorithm of skin 

detection based on texture,” in 4th International Congress, Iraq, 2011 .  



74 

 

[24]  A. A. Mohammadreza Hajiarbabi, “Human Skin Detection in Color Images Using 

Deep Learning,” International Journal of Computer Vision and Image 

Processing, p. 13, 2015.  

[25]  S. Price, “Edges: The Canny Edge Detector,” Institute for Computer Based 

Learning, 4 July 1996. [Online]. Available: 

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/ed

ges/canny.htm. [Accessed 03 May 2017]. 

[26]  Ali Ajdari Rad, Karim Faez, Navid Qaragozlou, “Fast Circle Detection Using 

Gradient Pair Vectors,” in Proceedings of the VIIth Biennial Australian Pattern 

Recognition Society Conference, Sydney, 2013.  

[27]  R. Rao, “Features and Image Matching,” 2009. [Online]. Available: 

https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect6.pdf. 

[Accessed 2017 05 03]. 

[28]  Alexander Mordvintsev, Abid K. Revision, “Feature Homography,” OpenCV, 

2013. [Online]. Available: http://opencv-python-

tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_feature_homograp

hy/py_feature_homography.html. [Accessed 2017 May 05]. 

[29]  D. Geier, “Computing oriented minimum bounding boxes in 2D,” THE 

INFINITE LOOP, 23 January 2014. [Online]. Available: 

https://geidav.wordpress.com/tag/rotating-calipers/. [Accessed 3 May 2017]. 

[30]  P. D. Marshall, “CM2208 Fourier Transforms 01 Theory,” [Online]. Available: 

http://users.cs.cf.ac.uk/Dave.Marshall/CM2208/LECTURES/CM2208_Fourier_T

ransforms_01_Theory.pdf. [Accessed 05 May 2017]. 

[31]  R. CLOUARD, “TUTORIAL: ILLUMINATION CORRECTION,” GREYC, 08 

July 2011. [Online]. Available: 

https://clouard.users.greyc.fr/Pantheon/experiments/illumination-

correction/index-en.html. [Accessed 2017 May 05]. 

[32]  Glenn A. Woodell, Daniel J. Jobson, “Retinex Image Enhancement: Application 

to Medical Images,” NASA Langley Research Center, Greenbelt, 2001. 

 

 

 


