
Developing a Computer Aided Diagnosis System
to Identify Pulmonary Nodules in Computed

Tomography Scans

Stuart Clark - C1353032
Supervised by Paul Rosin

Moderated by Xianfang Sun

Final Year Project, BSc Computer Science

School of Computer Science and Informatics, Cardiff University

May 5, 2017

Abstract

A pulmonary nodule is a small somewhat round growth on the lungs. Approx-
imately 40% of pulmonary nodules found turn out to be malignant. Studies have
shown that using computer aided diagnosis systems can result in earlier detection of
pulmonary nodules, saving lives. This report details the design, iterative implemen-
tation and evaluation of a prototype computer aided diagnosis system used to detect
pulmonary nodules in computed tomography scans. The system produced at the end
of the project had an overall system sensitivity 0.316 and 3782.416 FPs/per stack. This
poor performance was largely due to the use of poorly performing segmentation tech-
niques, however suggestions are made as to how these techniques could be improved.
The systems greatest merit was in the classification stage where a TP rate of 0.932 and
a FP rate of 0.099 was achieved. The classifier used to obtain these results was an im-
plementation of a Support Vector Machine trained using 382 nodule cross sections and
tested using 117 nodule cross sections. 49 features were used for classification including
what is thought to be a novel adaptation of Local Ternary Patterns. Preliminary tests
showed this feature to be the best feature used by the system.

1

Acknowledgements
I would like to take this opportunity to express my whole hearted gratitude to the people
who have supported me over the duration of this project, the years that built up to it and
the years to come. A massive thank you to:

• Paul Rosin for lending me his invaluable guidance and expertise throughout the project.
I have no doubt the without his assistance the project would have been far less of a
success.

• All my family for their continued support, I would be nowhere without them.

• My house mates past and present for keeping me fed and sane during the periods when
I have been extremely busy during my time at university.

2

Contents
1 Introduction 7

2 Background 12
2.1 Pulmonary Nodule Detection . 12
2.2 Computed Tomography Scans . 15
2.3 Existing Computer Aided Diagnosis Systems 17

2.3.1 Noise Removal . 17
2.3.2 Case Study . 18

2.4 Dataset Selection . 23

3 Approach 25
3.1 Requirements . 25
3.2 Development Strategy . 26
3.3 Tools and Libraries . 26
3.4 Initial Design . 28

4 Implementation 31
4.1 Version 0.1 . 32

4.1.1 Acquisition . 32
4.1.2 GUI . 34
4.1.3 Configuration . 35
4.1.4 Subset Selection . 36
4.1.5 Segmentation . 37
4.1.6 ROI Classification . 42
4.1.7 Classifier Training and Testing . 43
4.1.8 Evaluation . 44

4.2 Version 0.2 . 45
4.2.1 Segmentation . 45
4.2.2 Classifier Training and Testing . 49
4.2.3 Evaluation . 49

4.3 Version 0.3 . 51
4.4 Version 0.4 . 52

4.4.1 Segmentation . 52
4.4.2 Classifier Training and Testing . 57
4.4.3 Evaluation . 57

4.5 Version 0.5 . 58
4.5.1 Features . 60
4.5.2 Classifier Testing . 64
4.5.3 Evaluation . 65

5 Future Work 67

6 Conclusions 69

3

7 Reflection on Learning 71

8 Glossary 72

9 Abbreviations 72

10 Appendices 73
10.1 Appendix 1 - V0.1 Segmentation . 73
10.2 Appendix 2 . 76
10.3 Appendix 3 . 78
10.4 Appendix 4 . 80
10.5 Appendix 5 . 81
10.6 Appendix 6 . 82

List of Figures
1 Survival rates for men women and adults diagnosed with lung cancer (Cancer

Research UK 2014b). 7
2 One year net survival rate for lung cancer patients (Cancer Research UK 2014b). 8
3 Estimated cost of treating individuals with cancer at different stages. 9
4 The model of CT scanner that was used to create the images used in this

project. 10
5 A basic diagram identifying the key tissues that make up the human lungs

(Lung Cancer Alliance 2017). 12
6 An annotated example of a CT cross section. 13
7 An example of a SPN. 14
8 An example of a JPN. 14
9 A CT scanner with the X-ray source and detector shown in three positions

(Gibbs 2013). 16
10 Top level block diagram of CAD system devloped by Tan et al. (2011) . . . 20
11 An Entity Relationship Diagram showing the initial design for the structure

of the database. 30
12 A flow chart showing the top level design for the pipeline used to train the

classifier. 31
13 A class diagram showing the main classes used in Lungs. 31
14 The distribution of slice thicknesses for stacks created using the Sensation 16

CT scanner. 38
15 Frequency of voxel intensities comparison. 41
16 Cumalative frequncy of voxel intensities comparison. 42
17 Distribution of minimum nodule voxel intensities. 46
18 A one dimensional representation of the model used for SPNs. 46
19 A histogram showing the distribution of voxel intensities for the unmatched

nodules. 50
20 A histogram showing the distribution of voxel intensities for the unmatched

nodules using 16 bit imagery. 51

4

21 A closer look at Figure 20 . 52
22 A visual representation of the DOG pyramid implemented (Lowe 2004) . . . 53
23 A visual example of the main steps in Algorithm 9. 56
24 Distribution of match scores frequencies for nodules matched to a ground

truth by at least one voxel. 58
25 Distribution of match scores for nodules matched to a ground truth by at least

one voxel. 59
26 An example match score of 0.25. The ROI is filled green and the nodule

outlined in red. 60
27 The distribution estimate nodule areas. 61
28 Example LTP neighbourhood for a voxel found at the edge of an ROI. 63
29 An example slice annotated using the classifier. Green regions indicate ROIs

classified as nodules, orange regions indicate ROIs classified as non-nodules
and the red contour shows a nodule identified by the ground truth 66

30 An unprocessed slice. 76
31 The results of filtering the unprocessed slice. The parameters chosen for this

filter where not the optimum ones but instead were selected to exaggerate the
effect of the filter. 76

32 The result of thresholding the filtered slice. 76
33 The result of applying opening to the thresholded slice. 76
34 The result of extracting the connected components from the opened slice and

rejecting the one with the largest area. 77
35 The largest ROI returned from by the solitary nodule segmentation stage. A

juxtapleural nodule is highlighted by the red square. 78
36 The convex hulls of the plural cavities, and a false positive (the smallest region). 78
37 The eroded hulls. 78
38 The mask created by inverting the eroded plural hulls. 78
39 The results of subtracting the mask from the largest ROI. A juxtapleural

nodule is highlighted by the red square . 79
40 The original slice. 81
41 The largest ROI returned from solitary nodule segmentation 81
42 The internal cavities of the largest ROI . 81
43 The results of applying the mask to the original image 81

List of Tables
1 The effect of CAD on false positive rate and sensativity (Sahiner, Berkman et

al. 2009). 10
2 Example CT numbers for various tissues, values taken from Webster (1988) . 16
3 The PSNR & MSE values for the different filters (Vijaya and Suhasini 2014). 18
4 The effectiveness of existing CAD systems (NI = Not Informed) (Firmino et

al. 2014). 19
5 Table of features used by Tan et al. (2011) 22
6 The results of running the aggregation in Listing 5 37

5

7 V0.2 Segmentation Results. 50
8 V0.5 Segmentation Results. 58
9 Result of testing and training the classifier with the two JPN segmentation

techniques. 60
10 Result of testing and training different Weka classifiers using undersampling. 64
11 Result of testing and training different Weka classifiers when sampling each

nodule 9 times. 65
12 Analysis of how well requirements were met. 70
13 Analysis of how well requirements were met continued. 71
14 Result of testing and training different Weka classifiers using undersampling. 82

6

1 Introduction
Lung cancer is the most common form of cancer across the globe. In 2012 alone there were
approximately 1,825,000 new cases diagnosed (Cancer Research UK 2014a). Lung cancer
is a highly debilitating disease and is often fatal. Data provided to Cancer Research UK
by the London School of Hygiene and Tropical Medicine in 2014 provided survival rates
for patients in England and Wales. The patients were aged 15-99 and were diagnosed with
Non-Small Cell Lung Cancer between 2010-2011. This is the most common form of lung
cancer. Figure 1 shows the aforementioned data plotted on a graph. In the figure all of the
patients described above are included as Adults and either Men or Women.

Figure 1: Survival rates for men women and adults diagnosed with lung cancer (Cancer
Research UK 2014b).

Survival rates of ≥ 5 years were predicted using an excess hazard statistical model (Cancer
Research UK 2014b). The figure shows that survival rates are very poor and patients diag-
nosed with lung cancer rarely survive more than a few years. Another issue surrounding the
disease aside from this tragic loss of life is the financial cost to individuals, health services
and even whole societies affected by it. The American Cancer Society (2010) state that
the worldwide economic impact of premature death and disability due to lung cancer was
$188 billion in 2008. Furthermore, this figure does not include direct medical costs. Each
lung cancer patient costs the NHS appropriately £9,071 annually. For this figure patients
are defined as “people who have previously been diagnosed with cancer and who are still
alive. These may be newly diagnosed individuals, individuals with a stable disease being
followed-up regularly, or individuals considered to be cured” (National Cancer Research In-
stitute 2012). It would be a fair assumption that for other countries that are not fortunate
enough to have a public health service that a similar cost would fall upon the shoulders of

7

the affected individuals and their family.

A key factor that effects the survival rate of patients diagnosed with lung cancer is the stage
that the cancer is in when it is detected. The following list gives a brief description of the
main stages using information provided by Cancer Research (Cancer Research UK 2014b):

• Stage I - The cancer is small and contained inside the lung and has not spread to
lymph nodes.

• Stage II - The cancer is smaller than 7cm and may have spread to lymph nodes, or
it is bigger than 7cm but has not spread to lymph nodes. Alternatively it may have
spread into surrounding tissues, but if it has, it had not spread to the lymph nodes.

• Stage III - The cancer can be any size. It may have spread to the lymph nodes and it
may also have grown into other parts of the lung or nearby structures in the chest.

• Stage IV - The cancer has spread to both the lungs, or it has spread to a distant part
of the body such as the liver or bones.

A term used multiple times above is “lymph nodes”. Lymph nodes are part of the body’s
immune system. If lung cancer has spread to the lymph nodes it is a strong indicator that it
is growing quickly and is more likely to spread to other parts of the body (American Cancer
Society 2015).

Figure 2: One year net survival rate for lung cancer patients (Cancer Research UK 2014b).

Figure 2 shows the net rate at which patients survive at least one year after being diagnosed
with lung cancer at different stages. The figure clearly shows that the chances of survival
are decreased the later the stage of the cancer at the point of diagnosis. Earlier diagnosis of

8

lung cancer does not only improve survival rates but also saves indiviuals and health services
a great deal of money. For example, in 2014 the estimated treatment costs to the NHS per
individual for lung cancer at stage 1 was £7,952 where as at stage 4 it was £13,078 (Incisive
Health 2014). Figure 3 shows how the cost of treatment varies over all the stages using data
from Incisive Health (2014) . Although the increase in cost when compared to stage 1 is
less dramatic for stage 2 and 3 than stage 4 it is still significant due the the magnitude of
patients being treated.

Figure 3: Estimated cost of treating individuals with cancer at different stages.

One of the primary methods used for detecting lung cancer is Computed Tomography (CT).
Figure 4 shows an example of a CT scanner. In order to obtain images from the scanner a
patient lies on the bed which is then moved incrementally through the ring. For each step
that the bed moves a cross section of the patient is created. More detail about this process
is provided in Section 2.2. Once the cross sections for a patient have been obtained they
are traditionally examined by a radiologist who will attempt to identify any issues that have
been revealed by the scan.

One of the main abnormalities that a radiologist will be looking for, as an indicator that a
patient may have lung cancer, is the presence of pulmonary nodule(s). A pulmonary nodule
(PN) is a small somewhat round growth on the lungs. Approximately 40% of PNs found
turn out to be malignant (cancerous) as opposed to benign (non-cancerous) (University of
Rochester 2017). As such it is highly important that no PNs are missed when reviewing
the images obtained from a CT scan. This is as missing PNs can result in cancer remaining

9

Figure 4: The model of CT scanner that was used to create the images used in this project.

undetected until it has progressed to a later stage. One way to ensure that as few PNs are
missed as possible is to use Computer Aided Diagnosis (CAD) systems to assist radiologist
in the process of reviewing CT Scans. A study by Sahiner, Berkman et al. (2009) was con-
ducted in order to assess the effectiveness of one such CAD system. The study involved six
subjects, four fellowship-trained cardiothoracic radiologists1 and two cardiothoracic radiolo-
gists who were in the final months of their fellowship year. The radiologists were instructed
to conduct two reviews of 85 CT scans first without and then with the aid of CAD. Prior
to this all of the CT scans were reviewed by a different group of expert thoracic radiologists
in order to provide a ground truth used to measure the success of the readings made by the
test subjects. To ensure that the results were not skewed when the subjects were reviewing
the same set of CT scans a second time, the subjects only reviewed the regions of interest
identified by the CAD system. Any PNs missed by the CAD system that were identified by
the radiologist without CAD were automatically counted as a true positive (TP).

Table 1: The effect of CAD on false positive rate and sensativity (Sahiner, Berkman et al.
2009).

Table 2 shows the results obtained from the study. The table shows that the use of CAD
improves the sensitivity of the readings especially for smaller PNs. Further more all of the
p-values for the results were < 0.05 which is a good indicator that they were statistically
relevant. A negative effect of using the CAD was that the false positive (FP) rate was
increased. As "doctors approach every pulmonary nodule as cancerous until they can prove

1A fellowship-trained cardiothoracic radiologists is a radiologists who has undertaking a post doctorate
qualification and has specialised in the examination of the organs within the thorax.

10

otherwise" (University of Rochester 2017), increases in the number of FPs often means
patients are subjected to further invasive testing such as biopsies. This wastes both the time
and money of health services and individuals. Furthermore, it also inflicts unnecessary worry
and risk on patients. As such, it is important that CAD systems return as few false positives
as possible. None the less the benefits of increased sensitivity outweigh the drawbacks of
increased false positives for patients who are exhibiting symptoms of lung cancer. The aim
of the project documented in the following sections was to design, implement and evaluate
a prototype CAD system (similar to the one used in the case study given above) capable of
assisting a radiologist in the detection of PNs in CT scans of the chest.

11

2 Background
The first stage in the project was to obtain a strong understanding of both the medical and
technical background surrounding the creation of a CAD system for nodule detection.

2.1 Pulmonary Nodule Detection

In order to complete the project it was important to have a basic understanding of the
structure of the lungs and how PNs differ from the tissues expected to be present in a
healthy pair of lungs. Figure 5 should be referred to throughout this section as a point of
reference for the tissues being discussed.

Figure 5: A basic diagram identifying the key tissues that make up the human lungs (Lung
Cancer Alliance 2017).

One of the first steps taken during the project was to arrange a meeting with Dr Donald
McLintock M.B., Ch.B. MRCGP, a long serving general practitioner for the NHS with ex-
perience treating patients with lung cancer. During the meeting example CT scans were
reviewed and Dr McLintock provided incite into how they should be interpreted. One of the
most important concepts taken from the meeting was that tissues with high density appear
lighter in CT imagery, when compared to those with a low density. This can be seen in
Figure 6 which shows an annotated example of a CT cross-section or “slice”. For example,
a vertebra of the spine (annotated by the yellow square) is made of dense bone and as such
appears bright white in the slice. Conversely, at the top of the slice there is a large black
region indicating low density. This is as this region represents the air above the patients
body. The other squares in the figure highlight examples of blood vessels discussed with
Dr McLintock. Blood vessels are visible in CT scans as they are more dense than their

12

surrounding lobes. As such they appear as light regions within the lobes. The red square
shows the left main stem bronchus at the point where it meets the trachea. By referring
to Figure 5 this should indicate to the reader the approximate location of this slice in the
patients lungs. The green square highlights examples of less major blood vessels (bronchi /
bronchioles) which extend appropriately orthogonally to the viewing vector i.e. the vector
from the patients head to their feet (or vice versa). The blue square highlights similar blood
vessels which extend appropriately parallel to the viewing vector. The blue arrow in Figure
6 points to the plural membrane of the left lung. This is the boundary between the left lobes
(the dark area) and the pleura (the light area). The area enclosed by the plural membrane
is often refereed to as the “plural cavity” in this report.

Figure 6: An annotated example of a CT cross section.

There were two main types of PN that were focussed upon during the project, Solitary PNs
and juxtapleural PNs. a Solitary Pulmonary Nodule (SPN) is "an isolated, single lesion in a
round or oval shape with a diameter of ≤3 cm in lung parenchyma, surrounded entirely by
gas-containing lung tissue" (Xu, Chunhua et al. 2017). Essentially this means a PN which
is found within a lobe and is not connected to either a blood vessel or the plural membrane.
Figure 7 shows an example of an SPN highlighted by a red square. A Juxtapleural Pul-
monary Nodule (JPN) is a PN that is attached to the plural membrane and protrudes into
one of the lobes (Jirapatnakul, Artit et al. 2011) as shown highlighted by the red square
in Figure 8. Another class of PN occasionally refereed to in the report is a Juxtavascular
nodule. These as the name suggests are PNs that are attached to a blood vessel.

Dr McLintock suggested the following properties which could be used to distinguish PNs
from blood vessels:

• They are often either lighter or darker than the surrounding blood vessels.

13

Figure 7: An example of a SPN.

Figure 8: An example of a JPN.

• They are often speculated i.e. covered with needle like protrusions into the surrounding
lobe.

• They often have a non-uniform texture.

• They do not track across the image when iterating through an ordered set of slices (a
“stack”).

14

• They do not exhibit a defined tree like structure similar to that of the blood vessels
highlighted by the green square in Figure 6.

2.2 Computed Tomography Scans

In order to process the images obtained from CT scans it was first important to obtain
a strong understanding of what was being represented by the pixel values in them. CT
scanners use X-rays to scan the bodies of patients. X-rays are a highly penetrating form of
electromagnetic radiation with a far shorter wavelength than that of visible light. The wave-
length of X-rays ranges from approimatley 10−8m to 10−11m (Columbia University Press
2000). As X-rays are highly penetrating they can pass through solid objects and be used
to create images which reveal the internal structure of an object such as the human body.
When X-rays pass through the body there are four types of attenuation that can occur as
photons interact with the atoms within it: Raliegh scatter, Compton scatter, photoelectric
absorption and pair production. Pair production does not occur at energy levels used for
X-ray imagery and as such is not covered in any detail in this report. Toennies (2012) pro-
vides detail on each of the other types of attenuation. Raliegh scatter occurs when an atom
absorbs a photon and the entire atom becomes excited. The atom instantaneously releases
a new photon with slightly less energy than the one absorbed. The new photon is usually
scattered in a direction different than that of the one the original photon was travelling
in. Compton scatter is where an X-ray photon displaces a valance electron from an atom.
The photon looses as much energy as is required to displace the electron and is scattered
in a different direction to the one it was initially travelling in. Both Raliegh and Compton
scatter have the effect of creating noise in X-ray imagery. Photoelectric absorption is the
most important type of attenuation in X-ray imagery. This is as it is the form of attenuation
that is most responsible for the images produced. Photoelectric absorption occurs when a
photon displaces one of the electrons from the inner shell of an atom. This requires all of the
energy in the photon. The shell with the missing electron fills the space using an electron
from an outer shell. This process is repeated until the outermost shell is reached. Each time
an electron changes shell a photon is released. These photons have a much lower energy than
than the original photon and as such are absorbed by the surrounding atoms. The proba-
bility of photoelectric absorption increases with atomic number of the atom the photon is
incident with. Hence, denser materials are more prone to photoelectric absorption. Overall
the probability of a photon reaching the detector unscattered can be modelled as a Poission
process, this is useful information for removing noise from slices during pre-processing.

As shown in Figure 9 CT scanners obtain images by having a patient lie on a bed between an
X-ray source and X-ray detector. Using the properties of photoelectric absorption discussed
above, projection images can be created for small slices of the patients body. The source
and detector are rotated in synchrony through 180o creating a projection image at each step.
When all the projection images for the slice have been captured the bed is moved and the
process is repeated to capture the next slice. The number of slices that are created depends
on many factors such as the size of the objects that are being examined in the scan. Each
set of projections is converted into a cross section containing voxels. Each voxel holds the
value for attenuation per unit volume in the imaged patient. This value is known as an

15

Figure 9: A CT scanner with the X-ray source and detector shown in three positions
(Gibbs 2013).

Tissue CT number (HU)

Bone 1000+
Haemorrhage 60 to 110

Liver 50 to 80
Muscle 44 to 59
Blood 42 to 58

Grey matter 32 to 44
White matter 24 to 36

Heart 24
Cerebrospinal fluid 0 to 22

Water 0
Fat -100 to -20
Lung -300
Air -1000

Table 2: Example CT numbers for various tissues, values taken from Webster (1988) .

attenuation coefficient (µ). Attenuation coefficients are obtained using a highly complicated
algorithm based around the Central Slice Theorem and the use of filtered back projection.
The algorithm is explained in detail by Toennies (2012) but is beyond the scope of this
report. In order to make the results of CT scans independent of parameters such as the wave
length of the X-rays being used. In each of the voxels the attenuation coefficient is converted
into a CT number measured in Hounsfield units (HU). Hounsfield units are defined relative
to water and can be calculate using the following equation (Dougherty 2009):

CT number = 1000× µ− µH2O

µH2O

(1)

16

2.3 Existing Computer Aided Diagnosis Systems

As discussed in Section 1 there are multiple large incentives for the creation of CAD systems
used to detect PNs in CT scans. As such it is no surprise that there has been a great deal of
research conducted in the area. All of the CAD systems discussed in Firmino et al. (2014)
used the same generic pipeline with the following stages:

• Acquisition - The importing of images and associated data into the system. Images and
data can be obtained from either through partnerships with hospitals or from publicly
available databased. The choice of dataset used for this project is discussed in detail
in section 2.4.

• Pre-processing - The application of filters and enhancement techniques to the slices in
order to improve the accuracy of the detection algorithms used.

• Segmentation - The separation of regions of interest believed to be candidate nodules
from the remainder of the slices. The regions of interest obtained in this stage should
aim to represent the shape and position of the candidate nodules as accurately as
possible. The segmentation stage aims to reduce computational complexity through
minimising the number of pixels that are processed by later stages of the system.

• Classification - The process of determining if each region of interest (ROI) obtained
in the previous stage is in fact a nodule. This is achieved through the computation
of features for each of the ROIs. These features are are then used to train a classifier
against some ground truth imported into the system during the acquisition stage. The
trained classifier can then be used to classify previously unseen ROIs.

2.3.1 Noise Removal

One of the key stages in pre-processing CT slices is noise removal. This is as noisy images
result in poor segmentation and increased computational complexity. As stated in section
2.2 the production of noise in CT imagery is often modelled using as Poission process. This
being the case the obvious choice of method for removing noise from slices would be to
apply a Gaussian Filter. This is as a Gaussian function is a good approximation of a Pois-
sion distribution for a large number of events such as the effect of scattering on the vast
number of photons required for CT imagery (Toennies 2012). Further more, a Gaussian
Filter is efficient as it is a separable filter. This means that it can be implemented such
that it has a computational complexity of O(n), where n is the number of pixels in the
image being filtered (Rosin 2017). However, in a comparison of 7 different filters Vijaya
and Suhasini (2014) use empirical evidence to demonstrate that a Bilateral Filter was the
most appropriate for noise removal in CT imagery. In an experiment using 418 images the
filters were applied to each of the images and compared to the original in order to obtain
the Mean Square Error (MSE) and the Peak Signal-to-Noise Ratio (PSNR). An effective
noise removal technique should minimise MSE and maximise PSNR. As can be seen in ta-
ble 3 the Bilateral filter had the highest PSNR and the lowest MSE of all of the filters tested.

17

Bilateral filtering works by combining domain and range filtering and is defined by Tomasi
(1998) using the following equations:

h(x) = k−1(x)

∫ ∞
−∞

∫ ∞
−∞

f(ξ)c(ξ x)s(f(ξ), f(x))dξ (2)

with the normalisation:

k(x) =

∫ ∞
−∞

∫ ∞
−∞

c(ξ,x)s(f(ξ), f(x))dξ (3)

Where:

• f(x) = the value(s) for point x in a single or multi-band input image.

• h(x) = the value(s) for point x in the output image (this image will have the same
number of bands as the input image).

• c(ξ,x) = a measure of geometric closeness between point x and near by point ξ.

• s(f(ξ), f(x)) = a measure of photometric similarity between point x and near by point
ξ.

The Bilateral Filter is non-separable and as such incurs a computational complexity O(n2).
However, the Bilateral Filter was still selected for use in this project over the more efficient
Gaussian filter as for a CAD system accuracy holds precedence over efficiency.

Table 3: The PSNR & MSE values for the different filters (Vijaya and Suhasini 2014).

2.3.2 Case Study

In their review paper Firmino et al. (2014) collated results used to determine the effec-
tiveness of numerous CAD systems, see Table 4. As shown in the table CAD systems are
capable of achieving sensitivities in the range of 70%-97% and false positive (FP) rates of
between 2-25.3 per stack. The CAD system studied in the greatest depth was developed by
Tan et al. (2011) . The primary decisive factor when choosing this systems was the number

18

of nodules used to test it. This is as although other systems achieved higher sensitivity and
specificity they were tested using fewer nodules. Hence these values were likely to be less
accurate.

Table 4: The effectiveness of existing CAD systems (NI = Not Informed) (Firmino et al.
2014).

Tan et al. devised a system with a sensitivity of 87.5% and 4 FPs per case when tested using
574 nodules. Their system was tested and trained using publicly available images provided
by the Lung Image Database Consortium (LIDC) (Armato et al. 2011). A basic outline of the
system is given in Figure 10. As the resolution, slice thickness and the distance between each
slice varies between stacks in the LIDC dataset, the first step performed by the system was to
normalise them. This was achieved through Isotropic resampling in order to normalise voxel
dimensions to 1mm3 and Trilinear interpolation to obtain grey levels at a sub-voxel precision.

19

Next a 3D mask of the lungs was created to ensure that nodule detection only took place
within the area of the lungs. This was achieved through the application of a binary threshold
using a value of -550HU. This value was obtained through optimisation against the training
set. After thresholding, voxels below -550HU were retained as the foreground. The mask was
then obtained by discarding regions adjacent to the very top and bottom of the images and
selecting the remaining segment with the largest volume. This ordinarily returned a single
ROI, as when viewed in three dimensions the lungs are connected by the primary bronchi.
However, occasionally where a tumour was present, two ROIs were obtained. In this case, if
the second largest ROI contained greater than half the number of voxels in the largest ROI,
the ROIs were combined to create the mask. Finally a 3D morphological closing operation
was applied to the mask in order to include missing structures in the lungs such as JPNs.

Figure 10: Top level block diagram of CAD system devloped by Tan et al. (2011) .

Once the ROI for the lungs had been identified the next stage was to identify nodule can-
didates. This was accomplished by first detecting seed points that could be used to aid the
segmentation of the nodules. The seed points were obtained by computing the maxima of
the divergence of normalised gradient (DNG) at 6 different scales. DNG is a measure of
mean curvature in 3D and is calculated using the following equation:

k = div(w), where w =
∇L
|| ∇L ||

, and L = the image intensity (4)

By locating the maxima the centres of the candidate nodules were found. These maxima
were then thresholded so that voxels with values bellow two empirically obtained thresholds
(100 for solitary and juxtavascular nodules and 25 for JPNs) were rejected. Next in order
to obtain sets of voxels for the center points different segmentation techniques were used for
each type of nodule. For SPNs first the resampled images were thresholded at -600HU. Next
the selective nodule and vessel enhancement filters proposed in (Li et al. 2003) were applied
to the images and a threshold of 6 was used to obtain clusters of voxels. Those clusters
which correspond to the center points detected in the previous stage and had a volume in

20

the range of 9mm3-500mm3 were selected as candidate nodules. Candidate juxtavascular
nodules were obtained by applying a grey level threshold of 150 to vessel enhanced images
in order to obtain clusters of voxels. Those clusters of voxels which corresponded to previ-
ously detected center points were rejected. The remaining center points which were within
2 voxels from a cluster were used as seeds in a region growing algorithm. This algorithm
uses a 3×3 neighbourhood. Neighbouring voxels were added to the candidate nodule if the
nodule enhanced value for the voxel did not differ by >10 from the most recent voxel added.
After region growing a threshold of 6 was applied to the enhanced values of the candidate
nodules. Finally those nodules with a volume of less than 9mm3 were rejected. Candidate
JPNs were detected using a third technique. Firstly a threshold of -400HU was applied to
the resampled images. The enhancement filters were then applied and a threshold of 4 was
used on the enhanced image to obtain the voxel clusters. As with the SPNs, only clusters
which correspond to detected center points were excepted as candidate nodules. However,
for the JPNs only center points which lay within 4 pixels of the plural membrane were
valid. This region was obtained by applying 2D erosion to the mask of the lungs previously
created. The remaining center points which did not correspond to clusters were used in a
region growing algorithm similar to the one for juxtavascular candidates. However, a final
threshold of 4 was applied rather than 6. Finally any juxtapleural candidates that had a
volume <2mm3 were rejected. Once all the candidate nodules had been extracted the final
stage of the segmentation process was to cluster the candidates. This was done in order
to remove duplicate candidates that were detected using multiple segmentation techniques.
This was achieved in two steps. Firstly, any candidates obtained through region growing
that occurred outside the mask of the lungs were rejected. Next a logical OR operation was
applied to all the remaining candidates to combine them where appropriate. When all these
stages were complete the remaining set of nodule candidates were ready to have features com-
puted. This segmentation method achieved a sensitivity of 91.1% and produced 479FP/scan.

As shown in Table 5 Tan et al. used a total of 45 features to train their classifier. Many
of these features were transformation and/or translation invariant. It is important that
such features were used when classifying nodules to ensure the trained classifier is robust
to variance in size, orientation, location and intensity values etc. In order to obtain such
features a 3D gauge co-ordinate system defined by Salden, Florack, and Haar Romeny (1991)
was used. Some of the features selected were computed using spherical kernels rather than
all of the segmented voxels. These features were required as the thresholding applied during
segmentation led to the poor segmentation of some nodule candidates. Demir and Yener
(2005) highlights five main types of features that are often used in cancer focused CAD
systems:

• Morphological features - These features are used to describe the shape and size of
candidate legions. Features 1-7 in Table 5 provide examples of morphological features.

• Textural features - These features describe changes in intensity throughout candidate
legions. There were no textual features used in Table 5. However, Orozco et al. (2012)
used the Fast Fourier Transform and Discrete Cosine Transform to compute average
grey level and third moment features in the frequency domain.

21

Table 5: Table of features used by Tan et al. (2011) .

• Fractal features - These features are used to describe how self similar the structure of
a candidate legion is. Again there are no examples of fractal features shown in Table
5. However, Demir and Yener (2005) states that “the most common feature is the
fractal dimension. The fractal dimension d is defined as d = log(N)/log(p), where N
is the number of self similar pieces at the magnification scale of p”.

• Topological features - These features are used to describe the spatial distribution of
legion candidates. Features 8 and 9 in Table 5 provide examples of topological features.

• Intensity features - These features describe characteristics of the intensity values present
in candidate legions. Features 22–27 and 31–45 to in Table 5 provide examples of in-
tensity features. Another commonly used method is to use histogram bins as features.

Once the features have been computed the nodule candidates must be classified as either
nodules or non-nodules. Tan et al. achieved this by examining the Euclidean distance be-
tween the candidate nodule centroid and the centroids provided by the ground truth. For
nodules provided by the ground truth with a volume of less than 600mm3, if the distance
was less than 5mm the candidate was considered to be a nodule. For nodules greater than
this a threshold of 9mm was used. Nodule candidates that did not meet these criteria were
classified as non-nodules. Once the nodule candidates were classified they could be divided
into testing and training sets. The training set used by Tan et al. contained 574 nodules
and 111332 non-nodules. For most classification algorithms it is important to have balanced
numbers of each class in the training set. Tan et al. achieved this by clustering non-nodules
in feature space and using appropriately even numbers of non-nodules from each cluster
when training the classifier. Using this method the number of non-nodules used for training
was reduced to 3382. Tan et al. tested their system using three classifiers: a Support Vector
Machine (SVM), a standard feed-forward fixed-topology Artificial Neural Network (ANN)

22

and the novel classifier FS-NEAT proposed in (Tan et al. 2009). Tan et al. concluded that
the most appropriate classifier for the system was the ANN which yielded a sensitivity of
91.1% and 479FP/scan.

2.4 Dataset Selection

How effective a classifier is greatly depends on the dataset upon which it was trained. As
such it was highly important to select an appropriate dataset for the project. As men-
tioned in Section 2.3 there are two main sources for datasets containing CT imagery: private
datasets obtained through partnership with a hospital and publicly available datasets. For
this project it was decided that a publicly available dataset should be used. This decision
was made for two main reasons. The first was ease of access. Obtaining a private dataset
from a hospital would likely be very difficult and time consuming due to patient confiden-
tiality regulations, where as a public dataset can simply be downloaded at will. The second
advantage of using a public dataset was that the CAD system created could be more easily
compared against other systems that had been tested using the same dataset. In order to ef-
fectively train and test the classifier used by the system, it was important to select a dataset
of sufficient size and with a reliable ground truth identifying the locations of nodules in the
CT imagery. There were two publicly available databases that were considered for use in the
project. The first was the ELCAP database (ELCAP 2003), created in collaboration by the
International Early Lung Cancer Action Program and the Vision and Image Analysis Group.
This database consisted of 50 stacks with supporting csv files indicating the centroids of the
nodules present. The supporting documentation for this dataset was very limited and only
indicated that the annotations were created by a radiologist. The second dataset was the
LIDC set used that was used in (Tan et al. 2011). This dataset contains 1,018 stacks and is
a popular choice in the academic community having been cited 260 times (Google Scholar
2017). The dataset included annotations which not only provided a centroid for nodules, but
for nodules ≥3mm in diameter a full outline of the nodule was provided. Furthermore, the
dataset was extremely well documented and great detail was provided on how it was created.
Armato et al. (2011) describe how the annotation process was divided into two phases. In
the initial “blind read phase” four radiologists independently reviewed stacks and used a piece
a software to annotate any nodules they identified. Next came the “unblinded read phase”.
During this phase each radiologist reviewed the same stacks, however this time they were
annotated with the markings created by themselves and the three other radiologists. Upon
seeing the markings of the other radiologists, each radiologist was offered the opportunity
to add, remove or edit their own annotations. These annotations were then stored in XML
files so they could be easily used as a ground truth in a CAD system. This method was used
to attempt to identify as many nodules as possible without demanding that all radiologists
must agree with one another. Out of the two candidate datasets the LIDC dataset was
selected for the project. This was as it provided superior documentation, a larger number
of stacks and detail about the origin of the ground truth provided. Further more as it was
a popular choice for other CAD systems comparisons drawn between observed results could
be made in greater confidence.

A key piece of information required before implementation could begin was how to link each

23

of the annotations in the XML files to it’s respectice slice. The slices provided in the LIDC
data were encoded as DICOM files. DICOM “is the standard for the communication and
management of medical imaging information and related data” (DICOM 2017). The files are
not only used to encode images but also contain meta-data stored in the file header. This
meta-data provides information about the patient and how the images were obtained. Part
of the documentation provided with the dataset explained that imageSopUID field in the file
header was used to identify a unique slice in the dataset. Each annotation represented in
the XML also had an imageSopUID field which linked it to it’s respective image. Another
useful identifier used throughout the dataset was the seriesInstanceUID. This was used to
identify which stack each of the slices in the dataset belonged to.

24

3 Approach
In order for the project to be success it was important that sufficient time was spent on
design, the selection of appropriate tools and resource acquisition. This section provides
detail relating to each of these topics.

3.1 Requirements

The following requirements outline the features and properties that were expected of the
CAD system developed.

The system should be capable of:

• importing and querying meta-data provided by CT scans.

• segmenting ROIs in CT slices.

• comparing ROIs to the ground truth.

• training a classifier using features computed for ROIs identified.

• using a trained classifier to identify PNs in previously unseen CT scans or state that
there are no PNs.

• highlighting PNs in a suitable GUI so that it can be used as an aid for radiologists.

• having additional features added to the classifier easily.

• storing the results of features calculated for the training set so that they do not need
to be recomputed each time the classifier is trained.

• unit testing functionality where possible and appropriate.

• evaluating the effectiveness of the classifier.

• easily configuring parameters the user may wish to change from one instance of the
system to another.

• only using a small subset of images during development. This will help to speed up
development as code can be tested on just a few images before being running again
with the full dataset.

• optimising values for parameters which are not easily determinable using appropriate
algorithms.

• be capable of processing 1000s of images in a reasonable amount of time. This should
be achieved through the use of low computational complexity algorithms and multi-
threading.

25

3.2 Development Strategy

The limiting factor for the project was the extremely short time frame in which the system
had to be implemented and tested. This guided much of the decision making that was made
both before and during implementation. To ensure that a functioning prototype was deliv-
ered at the end of the project the decision was made that an Agile development methodology
should be applied throughout. As such, multiple versions of the system would be developed.
The first of these versions was to be a Minimum Viable Product (MVP) which was incremen-
tally improved in each of the following versions. In order to decide how the system could be
improved from version to version experiments where conducted to ascertain how aspects of
the system could be improved. Another methodology applied to the project was Test Driven
Development. Unit tests were created for code whenever possible. Creating unit tests not
only instils confidence in an implementation but also helps to flag issues in existing code
created by adding new code. Identifying and rectifying issues early is advantageous as it
avoids them cascading into large amounts of new code that depends on the the problematic
code.

3.3 Tools and Libraries

In order to aid rapid development it was important that appropriate tools and libraries were
used where ever possible. This section discusses why some of the most important ones were
chosen. Arguably one of the most important decisions that had to be made before imple-
mentation could begin was the choice of the main image processing / computer vision library
that would be used. Two main options were considered for the project: MATLAB alongside
supporting toolboxes and OpenCV. MATLAB is an excellent tool for prototyping software
as it comes packaged with a wide array of pre-implemented functionality. Two supporting
packages which would have been particularly useful for the project were the Image Process-
ing Toolbox (MathWorks 2017b) and the Computer Vision System Toolbox (MathWorks
2017a). The Image Processing Toolbox provides a suite of image processing functions and
data visulisation tools. The Computer Vision System Toolbox provides functionality such
as feature extraction and machine learning frameworks. A major draw back of MATLAB
is that MATLAB code is slow to execute (as it is an interpreted language) and there is no
explicit multi-threading. As such, the language is not ideal for processing vast numbers of
images. Another drawback of the language is as it is loosely typed refactoring can be very
time consuming. This is not ideal for highly iterative development. (OpenCV 2017) is an
open source, cross-platform computer vision library written in C/C++. At the time of writ-
ing the library is on it’s third major release, boasts more than 2500 optimized algorithms and
has been used by well renowned companies such as Google, Yahoo, Microsoft, Intel, IBM,
Sony, Honda and Toyota. The library provides interfaces that allow programmers to develop
in C++, C, Python, Java and MATLAB. This was advantageous as Java was the language
the author had the most experience using, and as such could develop the system fastest in.
Furthermore, in contrast to MATLAB Java 8 has a very simple framework that supports
explicate multi-threading. It is also strongly typed, allowing for fast refactoring with the aid
of an appropriate Integrated Development Environment (IDE). A downside of using Java
is it too is slow to execute. This is as Java programs run on a virtual machine. However,

26

a great deal of the computationally heavy processes in the CAD system could be executed
using OpenCV functions written in C/C++ and both of these languages are notoriously
fast. Another powerful feature of Java is the remote debugger. This feature is particularly
useful for identifying the causes of bugs that only occur when code is running on a server.
For these reasons the CAD system created in this project was developed using OpenCV and
Java 8.

Another important choice was that database management system (DBMS) used to store
and query data created by the sytem. The DBMS selected for the project was MongoDB
(MongoDB 2017a). MongoDB is a NoSQL (non-relational) database. Some terms used in
MongoDB that should be defined are “collection” and “document”. In MongoDB a collection
is analogous to a table and a document is analogous to a row in one such table. MongoDB
typically stores all related information in single documents which are similar to JSON ob-
jects. As such documents can be very easily be mapped to and from objects created in
object orientated languages, such as Java. This is a task that is far more challenging when
using a relational database. Another feature of MongoDB which made it an appropriate
choice for the project was that it requires no rigid schema to be defined, as is common in
SQL databases. This is ideal for the iterative development methodology that was selected
for the project as it allows fields to be added to and removed from documents very quickly.
MongoDB provide a Java driver that can be used to interact with a database from Java
code (MongoDB 2017b). However, the driver requires that all Java objects are converted
into Maps before they are inserted into a database and converted from Maps to Java objects
when they are returned by a query. This requires a resonable amount boiler plate code to be
written and updated with every schema change. As such it was decided that the third party
mapping library Morphia should be used (Morphia 2017). Morphia allows for Java objects
to be saved to MongoDB in a matter of lines. It also provides a framework which can be
used to perform complex queries and aggregations.

As many versions of the system were created it was important to use version control software
to manage them. The software selected for this task was Git (2017) . For each version of
the CAD system a Git tag was created. A tag is used to record a specific point in the
history of the project. Each of these tags had an associated message which was added as a
reminder of the changes that had been made since the previous version. The git repository
was backed up online using Bitbucket (2017) . Bitbucket’s issue tracker was also used to
manage the project. This tool allows for known issues to be logged and assigned a priority
which could then be used to decide which features and bug fixes should be implemented in
the next iteration of development.

Another library selected for use in the project was Weka (University of Waikato 2017). Weka
is a machine learning library for Java, that comes with approximately 40 configurable, pre-
implemented classification algorithms. These algorithms can be swapped between with great
ease allowing the system to be tested using a wide range of them. The author also had ex-
perience using the library which would help during implementation. Another reason Weka
was chosen was that it comes packaged with a tool set that can be used for tasks such as
featuresselection and visualisation of feature space.

27

Image processing is in general a computationally complex process. As such it was predicted
that a server would be need in order to train the system. This is as 1000s of images would
need to be processed. Fortunately Cardiff University where able to provide a Virtual Private
Server (VPS) which could be used for the project. The VPS was managed through the
OpenStack dashboard (OpenStack 2017) and was created with: 16GB of RAM, 8 Virtual
CPUs and a total of 315GB of disk space. The additional RAM and CPUs meant that more
threads could be introduced when processing images and the large disk space was useful
for storing the large dataset, and data created by the system. As the system would be
frequently deployed to the server, so that new code could be tested using the full dataset, it
was important to be able to build the project quickly. As such two additional development
tools were used Apache Ant (Apache 2017a) and Apache Ivy (Apache 2017c). Ant is a
tool that facilitates the development and execution of build scripts. Ivy is used to manage
dependencies for a project and can easily be used as part of an Ant build script. Together
these tools were used to: download any libraries required from the Maven Central Repository
(Maven 2017), compile the project code, pack it into a JAR file and present the built project
as a single directory which can be uploaded to a server and run. Once the build script had
been created all this could be achieved in a single simple command. Not only does this save
time it also encourages the testing of code against the full dataset more regularly. This helps
to identify bugs early which as previously stated this is important for rapid development.

3.4 Initial Design

The design stage is a crucial stage for any project. Although the final product is often
far from what was envisioned by the initial design, having the design is a great way of
maintaining a top down view of how a system will work during implementation. During the
design phase the system was given the name “Lungs” and will be refereed to as such from this
point in the report. Figure 11 shows the initial design used for the Lungs database. Each
of the entities in figure can be mapped to a single collection in the database. Fields that
have been marked with an asterisk indicate that they should have unique values for each
document stored in the collection. As a non-relational database was used for the project the
entities in the diagram were not normalised for instance both CTSlice and CTStack have
share a model field with the same possible set of values but no Model entity was created.
This was so that all the information about a CTSlice or CTStack could be returned in a
single query. The following list outlines the purpose of each collection:

• CTSlice - Each document in this collection was used to hold information about a
single slice. Some key fields used by CTSlice documents were manufacture and model
these fields were used to identify the CT scanner which was used to create each slice.
Another key field was imageNumber, this field was used to indicate the order that slices
appear in their respective stacks.

• CTStack - Each document in this collection was used to hold all the information about
the slices contained in a single stack. The slices field was used to hold a sorted list
of CTSlices. It should be noted that the actual documents were saved in this list, not

28

references to them. This vastly reduced query times when whole stacks were required
at once and meant that the slices only needed to be sorted once.

• GroundTruth - Each document in this collection was used to hold information about
a single annotation on a slice created by a radiologist. The key fields in this collection
were groupId and type. The groupId field was used to link GroundTruths that
appeared on different slices but were for the same nodule. The type field was used to
indicate which class of GroundTruth each document belonged to. The two classes used
were SMALL_NODULE and BIG_NODULE. SMALL_NODULEs were GroundTruths for nodules
with a diameter of <3mm. These GroundTruths had no edgePoints and region fields
as only the centroids were marked by the radiologists.

• ROI - Each document in this collection was used to hold information about a single
nodule candidate identified in the segmentation stage of the system. Some key fields
were: classification, used to identify if the ROI was a nodule or non-nodule; set used
to indicated whether the ROI belonged to the testing or training set and groundTruth,
used to identify the GroundTruth that the ROI had been matched too if it was a nodule.

Figure 12 shows the initial design for the pipeline used to train the classifier. As can be seen
from the flow chart the first stage was to import the dataset into the database. The XML
and DICOM files could be imported in parallel as they were stored independently of one
another in the database. Conversely the CTSlices could not be aggregated into CTStacks
until all of the slices had been imported or some stack could be missing slices. Once the
data had been imported the following stages processed it so that it could be used to train a
classifier. Stages 4-6 could have been computed all at once. This would reduce the number
of update operation performed on the ROIs however it was elected that the steps should be
separated so that they could each be run individually. The advantage of this method was
that each step could be run individually to avoid unnecessary processing time. For example,
if it was decided that a parameter used to classify the ROIs should be changed then only
stage 6 would need to be rerun. If the stages were combined then all of the processing per-
formed in stages 4 and 5 would also need to be performed. This was an important feature
to design into Lungs as the system processed large amounts of data.

Figure 13 shows a class diagram representing the main classes that were implemented for
Lungs. It should be noted that one of the classes in the diagram Lungs has been named after
the system. This is as it is the class that is the end-user uses in order to detect nodules in
unseen CT imagery. Some helper classes and models have been omitted from the diagram
in the interest of readability. Including these would have hindered readability as they are
use in the majority of classes that have included in the diagram. Examples of the omitted
classes were all of the models used by the system and classes to help access the database
and configuration file. The concrete classes that implemented Feature were also omitted
as they are numerous and are discussed in detail in Section 4. Many of the classes that
are shown in Figure 13 are also discussed in Section 4 however for a more detailed insight
the documentation and code submitted alongside this report should be examined. The final
system developed in this project mostly conformed to the design detailed in this sections

29

Figure 11: An Entity Relationship Diagram showing the initial design for the structure of
the database.

however, any changes that were made throughout the iterative implementation process are
described in the following section.

30

Figure 12: A flow chart showing the top level design for the pipeline used to train the
classifier.

Figure 13: A class diagram showing the main classes used in Lungs.

4 Implementation
This section provides detail on the iterative implementation of Lungs that took place during
the project. The code for each of the versions created has been submitted along side this

31

report, however the dataset had not. This is as the full data set comes to ≈126GB. Appendix
10.1 contains a tree that shows the structure of the source code for the final version of Lungs.
The general structure of the project did not change greatly between version. As such this
tree should be refereed in order to view the source code for classes discussed in this section.

4.1 Version 0.1

As previously stated the aim for the first version of Lungs was to create a MVP. As such
the version needed to be as simple as possible. This subsection details the how the MVP
was implemented and the methods and assumptions used to simplify the system. One key
simplification of Lungs when compared to the system developed by Tan et al. (2011) was it
only operated in 2D. This reduced the complexity of the algorithms developed and allowed
more of the functionality implemented by OpenCV to be used. However, the system was
developed with the possibility of adding a 3rd dimension at a later date in mind.

4.1.1 Acquisition

The first task during implementation was to import the data required for the system into the
database. In order to keep the code organised all the classes used to achieve this were placed
in the same package data. Importer was an abstract class created to provide a generic
framework that could be used by subclasses to import data from files.

Algorithm 1 Importer
1: procedure Run
2: path← the to the file or directory that will be imported
3: collection← the collection the file(s) will be imported into
4: collection.drop()
5: collection.dropIndexes()
6: importModels(path)
7: collection.createIndexes()

Algorithm 1 shows how Importer was used. importModels() was an abstract method that
was implemented by all subclasses of Importer. This allowed importing to be handled in
the specific way required by the subclass. The indexes on the collection were dropped before
importModels() was called and created after, as this reduces the time required to insert the
new documents into the collection. In order to reduce query times indexes were added to all
the fields that were queried by any part of the system.

GroundTruthImporter was a subclass of Importer that was used to import the annota-
tions created by the radiologists. In order to do this the XML files needed to be parsed
into Java objects. Fortunately the LIDC had provided a schema file on the website that
the dataset was downloaded from (The Cancer Imaging Archive 2014). This could be used
in conjunction with the Java XML Binding Compiler and the JAXB API (JAXB 2017) to
generate the Java classes that the XML files were parsed into. All of these classes were
stored in their own package model.lidc. The objects obtained from parsing the XML were

32

then parsed again but this time into GroundTruth instances which were save to the database.

Another subclass of Importer was CTSliceImporter. This class was used to import the
meta-data and file paths of the slices provided in the dataset. This was achived by recursively
searching the image directory for DICOM files. The meta-data stored in the header of these
files was then extracted into a single string using a class provided by the ImageJ library
(ImageJ 2017). The following listing shows a truncated example of the meta-data for a
single slice:

Listing 1: Truncated DICOM meta-data.
0008 ,0060 Modality : CT
0008 ,0070 Manufacturer : GE MEDICAL SYSTEMS
0008 ,1030 Study Desc r ip t i on : CT THORAX W/CONTRAST
0008 ,103E S e r i e s Desc r ip t i on : Recon 2 : CHEST
0008 ,1090 Manufacturer ' s Model Name : LightSpeed16

In each line of meta-data the characters preceding the colon represent the key and the char-
acters succeeding it the value. The values required for each CTSlice object were extracted
from the meta-data using regular expressions (RegEx) and string handling techniques. These
objects were then saved to the database. It was later realised that it may have been more ef-
ficient to insert the key-value pairs into a HashMap which could then be queried, rather than
using RegEx. This was as using RegEx meant that all the meta-data had to be searched
once for each key-value pair required. However, the suggested method was never tested
as CTSliceImporter was rarely executed so improving efficiency was not a priority. Once
CTSliceImporter had been run CTStackGenerator used Algorithm 2 to aggregate the CT-
Slices and store them as CTStacks.

DataPipline was the top level class used to run all the other classes that have been discussed
in this subsection. DataPipline used multi-threading to run GroundTruthImporter and
CTSliceImporter in paralleled followed by CTStackGenerator. This implementation could
have been more efficient if GroundTruthImporter, CTSliceImporter and CTStackGenera-
tor were multi-threaded internally and run one after another. This is as the implementation
used had a maximum of two threads running concurrently. As such it could only ever utilise
two CPU cores. If the creation and saving of the models imported/generated by these classes
was multi-threaded additional threads could be created to maximise CPU core usage. The
ideal number of threads would likely exceed the number of CPUs as while one thread was
saving an object another that was not performing any IO would be able to make use of the
CPU time. However this improvement was never implemented for the same reason as the
previous one discussed in this subsection.

In order to process the slices the DICOM files needed to be read into Mat objects. These are
objects by OpenCV to represent and manipulate images. This was accomplished using code
from the ImageJ library to read the files into DICOM objects. Then the method of MatUtils
shown in Listing 2 was used to convert the DICOM objects into 8bit Mats. The resampling
of the DICOM files from their original 16bit depth to to 8bits was handled by the call to

33

dicom.getBufferedImage().

Algorithm 2 CTStackGenerator
1: procedure Aggregate
2: stackCollection← the CTStack collection
3: sliceCollection← the CTSlice collection
4: field← “seriesInstanceUID”
5:
6: stackCollection.drop()
7: stackCollection.dropIndexes()
8: for each id in stackCollection.findDistinctV alues(field) do
9: slices← sliceCollection.allWhere(field).equals(id)
10: slices.sort()
11: stack ← new CTStack()
12: stack.setSlices(slices)
13: stack.setSeriesInstanceUID(id)
14: stackCollection.save(stack)

15: stackCollection.createIndexes()

Listing 2: MatUtils.fromDICOM(..)
/∗∗
∗ @param dicom
∗ @return a {@link Mat} read from {@code dicom }.
∗/

public stat ic Mat fromDICOM(DICOM dicom) {
BufferedImage b i = dicom . getBuf feredImage () ;
Mat mat = new Mat(b i . getHeight () , b i . getWidth () , CvType .

CV_8UC1) ;
byte [] data = ((DataBufferByte) b i . getRaster () . getDataBuf fer ()

) . getData () ;
mat . put (0 , 0 , data) ;
return mat ;

}

4.1.2 GUI

The next stage of implementation was to create a very simple GUI that could be used to view
Mats. The class that contained the code for the GUI was MatViewer. MatViewer allowed
two list of Mats to be displayed. A common use case for this was one list that contained all
the Mats for a stack with annotations and another that contained the same Mats without the
annotations. The lists of Mats provided were then converted into BufferedImages which
were stored in circular lists. The images could then be presented to the user one at a time
using a swing JFrame. Using keyboard controls the user could then iterate through the

34

images and swap between the annotated un-annotated version. MatViewer was created this
early on in the project as it was an invaluable tool for development and debugging. However,
it also served as a prototype for the GUI which would be used by radiologists to review the
nodules detected by the system.

4.1.3 Configuration

As Lungs was a complex system there were many parameters that required configuration.
This was amplified by the fact that the system was not only being used locally but also on a
server. For example, the path to the directory containing the ground truth files was different
for the two hosts. In order to avoid editing code every time an instance of the project
was deployed to the server, a configuration file (application.conf) was used to set the
parameters. application.conf was read using the Apache Commons Configuration library
(Apache 2017b). The class ConfigHelper was also introduced in order to validate and parse
the key-value pairs in the configuration file. The class was also used to provide system wide
access to the values. In order to make the configuration system maintainable classes such
as Mode, shown in Listing 3, were created. These classes provided public static final
variables that mapped to the keys and values used in application.conf. Classes like Mode
allowed keys and values in application.conf to be edited without having to adjust the
code in every place they were used.

Listing 3: Mode.java
/∗∗
∗ The key and va l u e s f o r the system mode con f i g u r a t i on

v a r i a b l e
∗
∗ @author S tuar t Clark
∗/

public class Mode {

public stat ic f ina l St r ing KEY = "mode" ;

public enum Value {
PROD, DEV, TEST

}

private Mode() {
// Hide the cons t ruc t o r

}

}

The mode key in application.conf was used to set the system mode. This in conjunction
with DataFilter was used to control what data was used by the system. TEST mode was
used whilst unit tests were ran. When in TEST mode a new database was created upon

35

running the unit tests. This was done in order to avoid corrupting data created in the other
modes. DEV mode was used during development or when the system was to be tested using
a very small subset of the data (one stack for training and one stack for testing). Using a
small subset meant that code could be run often during development. PROD mode was used
when the code was run on the server against the full subset of the LIDC dataset selected,
see Section 4.1.4.

4.1.4 Subset Selection

As the LIDC data set was so vast it was decided that initially only a subset of it would be
used. One of the motivations for this decision was it reduced the time required to process
the images and train the classifier allowing for faster testing of PROD mode. In an effort to
reduce variance in the slices use by the system, the subset selected contained only stacks
created using the same model of CT scanner. The aggregation in Listing 5 (Appendix 10.4)
was used to count the number of slices created by each model of CT scanner and determine
how many bits were used to represent the highest values in the slices. Table 6 shows the
results obtained by running the aggregation. A subset with a uniform highest bit across all
slices was chosen in an effort to minimise the amount of preprocessing required. Out of these
subsets the Sensation 16 subset was chosen. One of the reasons this subset was chosen was
all the images it contained were of the same resolution so would not need rescaling. An-
other was that it the largest and as such would provide ample data to train the classifier with.

Once the subset had been decided upon DataFilter was used to append conditions to queries
so that only results contained in the subset were returned. DataFilter was also used to
separate the subset into training and testing sets, such that they contained 80% and 20% of
the stacks respectively. This method was chosen primarily as it was simple to implement.
Stacks were used to create the split, rather than slices, to ensure the training and testing
sets were distinct.

36

CT Scanner Model Number of Slices High Bit(s)

Emotion Duo 278 11
Definition 827 11
Brilliance16 1683 11
Brilliance 64 1750 11
Brilliance 40 3416 11

LightSpeed Power 3819 15
Emotion 6 3907 11

LightSpeed Plus 5066 15
Aquilion 7506 15

LightSpeed VCT 9719 15
LightSpeed QX 12594 15
Sensation 64 14240 11
Brilliance 16P 15465 11
Sensation 16 33357 11

LightSpeed Pro 16 34126 15, 11
LightSpeed16 35899 11, 15

LightSpeed Ultra 43973 11, 15

Table 6: The results of running the aggregation in Listing 5

4.1.5 Segmentation

The first stage of the segmentation process implemented by Tan et al. was to resample the
CT imagery that was being segmented. As Lungs operated in 2D the distance between slices
would not affect it. However, variations in slice thickness would result in voxels containing
tissues of the same density to have differing intensity values. Figure 14 shows the distribu-
tion of slice thicknesses in the slices used. Despite the variation in slice thicknesses no effort
was made to normalise the voxels. This was as it was proposed that the variance in intensity
may have been removed (or at least lessened) in the resampling the took place during the
acquisition stage. Furthermore, as the density of nodules is variable, the segmentation and
classification techniques used would have to be robust to variance in intensity levels. As such
the normalisation of voxels could be implemented in a later version if it’s absence appeared
to be causing problems.

ROIGenerator was created in order to manage the concurrent extraction of ROIs from slices
in the training set. These ROIs were then saved to the database. For this version only
SPNs were intended to be segmented. Algorithm 3 provides a basic outline of how each of
the slices had it’s ROIs extracted. The first stage of the algorithm was to apply a Bilateral
filter to the image. This filter was chosen because as discussed in Section 2.3.1 empirical
evidence suggested it was the best filter to use to remove noise from CT imagery. Next
the filtered image had a binary threshold applied in order to segment the lighter nodules
from the dark background. After thresholding a morphological opening operation was ap-

37

Figure 14: The distribution of slice thicknesses for stacks created using the Sensation 16
CT scanner.

plied to the thresholded image. This was done to remove noise from the thresholded image.
Failing to remove this noise would have resulted in a huge number of ROIs being extracted
and massively increased the computational complexity of training the classifier. Once the
noise had been removed the connected component algorithm was used to extract each of the
connected regions in the foreground of the thresholded image into an ROI object. The ROI
with the greatest area was then rejected. This was done as the ROI with the largest area
was always the area surrounding the lungs. Due to the large number of voxels contained
within it, computing features for this ROI was expensive hence it was dropped. Appendix
10.2 contains a set of figures that show the effects of each of the stages of the algorithm.

The following list states the parameters that required values for this segmentation technique.
These parameters were omitted from Algorithm 3 for simplicity.

• Size of kernel used for the Bilateral filter.

• The sigma colour for the Bilateral filter. The larger this value the larger the range of
intensities found within the kernel that would be mixed together.

• The sigma space for the Bilateral filter. The larger this value the greater the influence
of pixels further from the center of the kernel.

• The threshold value used.

38

Algorithm 3 Solitary Nodule Segmentation
1: procedure Segment(slice)
2: filtered← bilateralF ilter(slice)
3: thesholded← threshold(filtered)
4: opened← morphologicalOpening(thesholded)
5: rois← connectedComponents(opened)
6:
7: largest← null
8: maxArea← 0
9: for each roi in rois do
10: if roi.size() > maxSize then
11: largest← roi
12: maxArea← roi.area()

13: rois.remove(largest)
14:
15: return rois

• The shaped of the kernel used for the opening operation.

• The width of the kernel used for the opening operation.

• The height of the kernel used for the opening operation.

The values for these parameters were not easy to determine as there were many permutations
of values which could be used. Furthermore, changing the values used at each stage in the
algorithm would impact the optimum values for all the stages after. As such a Genetic Algo-
rithm (GA) was used to set the parameters. A GA was selected above other combinatorial
optimisation algorithms as it was easy to implement and allowed for the parameters that
were being optimised to be changed with ease. This was as no neighbourhood functions had
to be devised for them. The GA was implemented in SegmentationOptimiser with the aid
of the Jenetics library (Jenetics 2017). This library was chosen at it was well documented,
required little additional code to be written and handled all the multi-threading. Each mem-
ber of the GA’s population was used to run the segmentation algorithm with the parameter
values present in its genotype. The effectiveness of the parameters used was then evaluated
using the fitness function defined by Algorithm 4. The fitness function worked by calculating
the mean match score for all of the nodules. All possible fitness values fell within the range
[0 − 1]. In order to obtain a mean value the total number of nodules in the training set
needed to be known. As the LIDC ground truth was composed of the annotations of 4 sepa-
rate radiologists it contained many duplicates. It would have been possible to remove these
duplicates using clustering techniques. However, in the interest of simplicity, it was elected
that annotations created by the radiologist who made who identified the most nodules should
be used. This was as it was better for the system to produce False Posatives (FPs) rather
than False Negatives (FNs). This method of filtering the ground truth was applied across the
whole system. The function match(..) used the formula defined in Equation 5 to calculate
how well each nodule had been matched to an ROI, see Section 4.1.6. An alternative fitness

39

function could have been to maximise the number of nodules that had a match score above
a certain threshold. However, the fitness function in Algorithm 4 was chosen so that the
nodules that were included in the segmentation were segmented as accurately as possible.
This would result in more representative features being computed later in the the pipeline.
Furthermore, as in (Tan et al. 2011) additional segmentation techniques could be introduced
to segment the nodules that were missed.

The GA was run against the full training set using a population size of 200. Ideally a larger
population size would have been used. However, due to the computational complexity of
the segmentation technique and fitness function used this was not feasible. The GA was
assumed to have found the optimum parameters when three generations had been evaluated
with no increase in the maximum fitness for the population. The following list shows the
parameters obtained:

• Bilateral Filter Kernel Size = 3× 3

• Sigma Colour = 1

• Sigma Space = 7

• Threshold = 73

• Opening Kernel Shape = Elliptical

• Opening Kernel Width = 4

• Opening Kernel Height = 1

Algorithm 4 SegmentationOptimiser
1: procedure Fitness
2: slices← a list of all the slices in the training set that contain nodules
3: numNodules← total number of nodules for the slices in the training set ground truth
4: fitness← 0.0
5:
6: for each slice in slices do
7: for each groundTruth in slice.getGroundTruths() do
8: bestScore← 0.0
9: for each roi in slice.getRois() do
10: score← match(roi, groundTruth)
11: if bestScore < score then
12: bestScore← score
13: fitness← fitness+ bestScore

14: fitness← fitness/numNodules
15:
16: return fitness

40

These parameters achieved an average match score of 0.22133346318817104. In order to
sanity check the threshold used, histograms were created for the nodules and slices in the
training set. These were computed using NoduleHistograms and SliceHistograms respec-
tively. The nodule histogram bins were then subtracted from the respective bins in the
slice histograms to create a “non-noudle-slice” histogram. The values in the bins were then
converted into frequencies and plotted to create Figure 15.

Figure 15: Frequency of voxel intensities comparison.

Figure 15 showed that the nodules had a disproportionate frequency of intensities in the range
of approximately 85 − 95 when compared to rest of the surrounding slices with. Another
observation of the figure was that nodules had a high frequency of voxels with an intensity
of 0. As the non-noudle-slices exhibited this trait also it was assumed that these voxels had
been unintentionally included in the nodules during the annotation process. Figure 16 was
used to compare the cumulative frequency of the voxel intensities in the nodules and non-
noudle-slices. In accordance with the assumption stated, the nodule voxels with intensity
values of 0 were omitted from this figure. Using the values shown by the annotations in
Figure 16 probabilities could be calculated.

p(S) = p(non-nodule-slice voxles present after thresholding) = 1− 0.8273 = 0.1727

p(N) = p(nodule voxles present after thresholding) = 1− 0.5254 = 0.4746

p(S) was a good indicator that the segmentation technique would not return too many FPs.
This is as only ∼ 0.1727 of the pixels that were FPs would be returned from thresholding.
Having as few FPs as possible was important as it reduced computational complexity in the
later stages of the pipeline. Furthermore, fewer FPs would reduce the number of non-nodules
that the classifier would have to identify. p(N) showed that ∼ 0.4746 of the nodule pixels

41

would be returned from thresholding indicating that the sensitivity of the segmentation
technique would be reasonable. These probabilities were only approximations as they were
computed using the unfiltered intensity values and did not factor in any stages of segmen-
tation other than the thresholding. When the segmentation was run with the parameters
stated there were 24602699 ROIs generated for the data set.

Figure 16: Cumalative frequncy of voxel intensities comparison.

4.1.6 ROI Classification

Once the ROIs had been extracted it was necessary to classify them as either nodules or
non-nodules so that they could be used to train the classifier. Tan et al. (2011) measured
the affinity of candidate nodules and nodules identified by the ground truth by measuring
the Euclidean distance between centroids. A drawback of this method is that it does not
measure how well nodules have been segmented. To overcome this issue Equation 5 was
used. This method was suggested by project supervisor Paul Rosin.

R = {all points in the ROI}
G = {all points in the GroundTruth}

match(R,G) = match score for R and G

match(R,G) =
|| R ∩G ||
|| R ∪G ||

(5)

Similarly to the system developed by Tan et al. it was decided that nodules provided by the
ground truth with a diameter less than 3mm should be ignored. This was as the annotations
provided only gave the centroid for the nodules. As such a technique such as region growing

42

would need to be used in order to obtain the regions for the nodules. Algorithm 5 was used
to classify the ROIs. Each ROI was compared to all the GroundTruths that appeared in the
slice it belonged to. The comparisons were made using Equation 5 which returned match
scores in the range [0, 1]. A match score of 0 indicated no match at all, where as a match
score of 1 indicated a perfect voxel for voxel match between the ROI and GroundTruth.
If the highest match score for a ROI was greater than the “match threshold” the ROI was
classified as a nodule, otherwise it was classified as a non-nodule. It was important that each
ROI was only compared to the GroundTruths that appeared in the same slice as the ROI in
order to reduce computational complexity. Algorithm 5 was used both in ROIGenerator and
ROIClassifier. In ROIGenerator it was used to classify newly generated ROIs before they
were saved, where as ROIClassifier used it to reclassify ROIs using a new match threshold
without having to generate them again.

Algorithm 5 ROI Classification
1: procedure ClassifyROIs(threshold)
2: slices← all the slices that had nodules according to the ground truth
3:
4: for each slice in slices do
5: groudTruths = slice.getGroundTruths()
6: rois = slice.getRois()
7:
8: for each roi in rois do
9: Classify(roi, groudTruths, threshold)

10: save(rois)

11:
12: procedure Classify(roi, groudTruths, threshold)
13: bestScore← 0.0
14: for each gt in groudTruths do
15: score← match(roi, gt)
16: if bestScore < score then
17: bestScore← score
18:
19: if bestScore > threshold then
20: roi.setClassification(NODULE)
21: else
22: roi.setClassification(NON_NODULE)

4.1.7 Classifier Training and Testing

In order to train and test the classifier it was necessary to compute features for the ROIs.
FeatureEngine was the classed used to accomplish this. To reduce the amount of IO re-
quired FeatureEngine was implemented so that each slice would only be loaded into memory
once. Objects used to compute features were stored in a list and computed sequentially for

43

each ROI. This was an inefficient way of computing the features as it meant that the voxels
in the ROIs were iterated over multiple times. However, this method was favoured as it
vastly simplified the code and allowed for features to added or removed with great ease.
FeatureEngine used multi-threading to reduce the amount of time required to compute the
features. Each ROI had its own thread which computed the features for the ROI then updated
the database. The maximum number of threads that were executed concurrently was equal
the number of CPU cores available (8 in the case of the sever). This limit was imposed as us-
ing more than 8 threads required too much memory. The features used in this version were:
Mean Intensity, Area, Perimeter, Min Circle Radius, Fitted Ellipse Angle, Fitte
Ellipse Area, Fitted Ellipse Width, Fitted Ellipse Height, Coarse Hist , Medium
Hist , Fine Hist A discussion of how features were implemented and why they were cho-
sen is provided in Section 4.5.1

The classifier was trained and tested using ArffGenerator. This class was used to create
two ARFF files, one for training and one for testing. These files were used to store the
feature values for the instances used to train and test the classifier. As stated in Section
2.3.2 it is important to train the classifier using roughly equal numbers of instances for each
class, in this case nodules and non-nodules. In this version both the testing and training files
contained equal numbers of instances for each class. The classification algorithm chosen for
used during development was Weka’s J48 classifier. This algorithm was chosen as it uses a
decision tree. This was advantageous as using tools provided by Weka decision trees can be
viewed giving a useful insight into how the classifier is working.

4.1.8 Evaluation

In order to evaluate the success of the version and decide what improvements could be made
MLPipline was run. This class was responsible for running all code required to train and
test the classifier. 1580/24602699 ROIs obtained by the segmentation technique could be
matched to a nodule by at least one voxel. From these results it was known that multiple
ROIs were being matched to the same nodule. This was as according to the ground truth
used there were 1381 nodules in the images processed. Furthermore, JPNs were not yet
expected to be included in the segmentation. The mean match score for these ROIs was
0.33229. Figure 24 shows the distribution of match scores amongst the matched ROIs. From
the figure it could be seen that some nodules had been segmented with a high degree of
accuracy however, there was definitely room for improvement.

The classifier was trained using a match threshold of 0.0, in order to maximise the number
of instances used for testing and training. Out out of the nodules obtained 1085 were used
for training and 495 were used for testing. Testing revealed the classifier achieved a total
accuracy of 85.6566%, a TP rate of 0.764 and a FP rate of 0.051. However, these figures
were unlikely to be representative of the classifiers true performance as in reality there would
be far more non-nodules than were present the testing set.

44

4.2 Version 0.2

Overall version 0.1 of Lungs achieved better results than expected. This is as many of
the implementation choices made were based purely of getting a working system as fast as
possible. The main aims for the Version 0.2 were to: improve the segmentation technique
for SPNs, add an additional segmentation technique for JPNs, add additional features to
improve classifier accuracy and implement classifier training in such a way that the statics
obtained was were more representative of the classifier’s performance.

4.2.1 Segmentation

In order to try to improve the segmentation of SPNs it was decided that a region growing
algorithm should be used. Region growing was an attractive method as it offered the po-
tential for a more intensity robust segmentation technique. The region growing algorithm
selected was the the marker based Watershed algorithm implemented in OpenCV (OpenCV
2015). This algorithm works by selecting markers which are placed on an image to define
seed regions. These regions are then incrementally expanded. Neighbouring pixels with a
low gradient are expanded into more readily and vice versa. As the regions expand they
begin to collide. The pixels where the regions meet are marked as the boundaries between
them and are no longer used to further expand the regions. The algorithm stops when all
the pixels have been assigned a region.

In order for the segmentation technique in version 0.1 to perfectly segment all the nodules
they would all have had to have the same minimum intensity vale, as shown in Figure 17
this was not the case. Using a region growing algorithm meant that each nodule would be
considered individually and as such it would be possible to account for the variations in the
nodules. Tan et al. (2011) modelled SPNs as “a sphere with decreasing intensity along the
radial axis against a darker background”. A similar model was adopted for Lungs differing
in that, as the system operated in 2D, nodules were modelled as circles. This assumption
was supported by the fact that malignant nodules grow over time so are likely to be denser
in the middle than at the edge. It also conformed to what has been observed visually in the
slices. The solid blue line in Figure 18 shows a 1D representation of the model used. The
area between the red markers represents a SPN and the area outside it’s surrounding tissue.
Algorithm 6 shows how the seed regions were obtained by Lungs. The intuition behind this
method is best described with reference to Figure 18. The area above the dashed red line
represents a seed region identified using fgThreshold(filtered). The area bellow the dashed
magenta line represents a seed region identified using bgThreshold(filtered). The area be-
tween the lines is where the regions were expected to expanded into using the watershed
algorithm. As the gradient between voxels in the nodule is less than the gradient between
voxels at the edge and the surroundings tissue, the foreground region would expand to fully
segment the nodule before the background was region was expanded.

Version 0.2 also included the first attempt to segment JPNs present in the slices. Algorithm 7
shows the method used to achieve this and complementary images can be found in Appendix
10.3. The main assumption made by this algorithm was that the tissues the surrounding

45

Figure 17: Distribution of minimum nodule voxel intensities.

Figure 18: A one dimensional representation of the model used for SPNs.

the lungs were always segmented into a single ROI, and as such the plural cavities could
be obtained from the ROI. As shown in Algorithm 6 once all the ROIs had been obtained
ROIs with a radius > 35.2279 or < 1.0 pixels were rejected. These values were obtained
by measuring the radius of nodules in the training set. This had the effect of rejecting the

46

background region obtained using the watershed algorithm and other FPs.

Similarly to version 0.1 a GA was used to optimise the various parameters for the segmen-
tation technique. The following list states the parameters and the values obtained through
optimisation.

• Bilateral Filter Kernel Size = 5× 5

• Sigma Colour = 3

• Sigma Space = 3

• Foreground threshold (used by fgThreshold(..)) = 65

• Background threshold (used by bgThreshold(..)) = 104

• Size of erosion structure = 6× 6

These results were surprising as the foreground threshold was less than background threshold.
This meant that when the background was subtracted from the foreground there was no
unknown region. This in effect meant that a binary threshold of 65 was being used to
segment the ROIs and no region growing was occurring.

47

Algorithm 6 Nodule Segmentation
1: MAX_R← 35.2279
2: MIN_R← 1.0
3:
4: procedure Segment(slice)
5: filtered← bilateralF ilter(slice)
6:
7: sureForeground← fgThreshold(filtered)
8: sureBackground← bgThreshold(filtered)
9: // Note this is element by element matrix subtraction
10: unknown← sureBackground− sureForeground
11:
12: // Labels values of 0 identify the unknown region, labels >0 identify the seed regions
13: // Init all labels as 1 so they default to background region
14: labels← matOfOnes(size(slice))
15: // Add the foreground regions
16: id← 2
17: for each region in connectedComponents(sureForeground) do
18: labels.setAllInRegion(region, id)
19: id← id+ 1

20: // Add the unknown regions
21: for each region in connectedComponents(unknown) do
22: labels.setAllInRegion(region, 0)

23:
24: rois← watershed(filtered, labels)
25:
26: // Find the largest ROI
27: largest← null
28: maxArea← 0
29: for each roi in rois do
30: if roi.size() > maxSize then
31: largest← roi
32: maxArea← roi.area()

33:
34: // See Algorithm 7
35: rois.add(Juxtapleural(largest, slice))
36:
37: // Remove ROIs that are too big or too small
38: for each roi in rois do
39: radius← minimumCircle(roi).radius()
40: if radius < MIN_R OR radius > MAX_R then
41: rois.remove(roi)

42:
43: return rois

48

Algorithm 7 Juxtapleural Nodule Segmentation
1: procedure Juxtapleural(largestRoi, source)
2: // Get the convex hull of cavities in largestRoi
3: contours← largestRoi.internalContours()
4: hulls← convexHulls(contours)
5: hullsImg ← imageOfZeros(source.size())
6: hullsImg.paintF illed(hulls)
7:
8: // Create the mask (morphological erosion using circular kernel)
9: eroded← erode(hullsImg)
10: mask ← invert(eroded)
11:
12: // Apply the mask to largestRoi
13: roiImg ← imageOfZeros(source.size())
14: roiImg.paintF illed(largestRoi)
15: // Note this is element by element subtraction of two matrices
16: masked← roiImg −mask
17:
18: rois← connectedComponents(masked)
19:
20: return rois

4.2.2 Classifier Training and Testing

The features used to train and test the classifier for this version were: Juxtapleural,
Mean Intensity, Area, Perimeter, Min Circle Radius, Circularity, Fitted Ellipse
Angle, Fitted Ellipse Area, Fitted Ellipse Width, Fitted Ellipse Height, Elon-
gation, Coarse Hist, Medium Hist and Fine Hist. The only other change made from
version 0.1 was that the classifier was tested using all the instances in the testing set. In
order to do this the instances had to be loaded incrementally from the ARFF file as there
was too many to fit them into memory.

4.2.3 Evaluation

Despite the parameters used for the watershed algorithm preventing any region growing ver-
sion 0.2 yielded improved match scores for the SPNs successfully segmented, see Figure 24.
This was most likely due to the fact FPs were removed based on radius measurements rather
than applying morphological opening. Table 7 shows the results of the segmentation with
and without JPN segmentation turned on. These results showed an improvement on version
0.1 as the number of ROIs matched to at least one voxel of a nodule fell bellow the number of
nodules expected. This indicated that there was likely to be fewer duplicates than in version
0.1. Furthermore, with JPN segmentation turned on 187 additional ROIs were matched to
nodules without dramatically effecting the mean match score.

Despite the improvement in the segmentation technique it appeared that many nodules where

49

Juxtaplural On ROIs matched ≥1 voxel Total ROIs Mean match score

No 808 8523284 0.4088
Yes 995 10741007 0.40467

Table 7: V0.2 Segmentation Results.

still being missed. For example when the match threshold was set to 0.5 only 781 out of
1381 nodules were detected. This indicated that many nodules were being missed or poorly
segmented during segmentation. In order to ascertain the characteristics of the nodules that
were being missed MissedNodules was created. This class was used to create images and
histograms of the nodules that had not been matched to any ROI. In these images the vast
majority of the nodules appeared completely black. Figure19 shows the distribution of voxel
intensities for the unmatched nodules.

Figure 19: A histogram showing the distribution of voxel intensities for the unmatched
nodules.

As can be seen from Figure 19 the vast majority of the voxels that were not detected had
an intensity of 0. As such these nodules would be very hard to detect against the dark
background of the plural cavity.

For this version the classifier was again trained using a match threshold of 0.0. 750 nodules
and 750 non-nodules were used for training. Where as testing used 245 nodules and 1346799
non-nodules. Testing revealed the classifier achieved a total accuracy of 60.1378% and a FP
rate of 0.399. This decrease and increase respectively was expected due to the improved

50

testing method implemented. The TP rate had increased to 0.837 this was a good indicator
that the improved segmentation and additional features had aided classification.

4.3 Version 0.3

The main focus of this version was to move the whole system over to using 16bit slices as
opposed to the 8bit slices that had been used up to this point. It was hoped by increasing the
bit depth that the unmatched nodules could more easily be detected. In order to obtain the
16 bit images the PixelMed Java DICOM Toolkit (PixelMed 2016) was used. This library
was chosen over the previous one as it offered a far simpler API that could be used to control
the bit depth that the images were imported at. Once the code to read the DICOM images in
to Mats had been implemented the next task was to make them displayable with annotations.
This required converting the Mats into BufferedImages. In order to do this a non-standard
colour space had to be defined which supported 16bits per channel. The implementation for
this can be seen in MatUtils.toBufferedImage(..).

Figure 20: A histogram showing the distribution of voxel intensities for the unmatched
nodules using 16 bit imagery.

To see if the unmatched nodules could be detected using a 16bit system more histograms
were created. As can be seen from Figure 21 there is characteristic peak for the unmatched
nodules when using 16bit imagery. This showed promise that increasing the bit depth used
over the system would improve detection rates. However, much of OpenCVs pre-implemented
functionality does not currently support 16bit images, for instance the watershed algorithm.
As the time allotted for the project was waning, it was elected to spend it improving the 8bit
system rather than moving over to another library or implementing the missing functionality
from scratch.

51

Figure 21: A closer look at Figure 20

4.4 Version 0.4

The main aims for version 0.4 were to: reduce the number of FPs returned by segmentation,
explore another juxtaplural segmentation technique and add additional features. It was also
decided that the segmentation optimiser should be forced to return appropriate values for
the watershed algorithm. This was to ensure that parameters obtained in version 0.2 had
not just occurred as a quirk of optimisation.

4.4.1 Segmentation

The primary method for reducing the number of FP obtained through the segmentation of
SPNs was to use a mask. Similarly to Tan et al. (2011) the mask was obtained using the
largest ROI returned from segmentation. Once the largest ROI had been found the areas that
filled it’s internal contours were used as the mask. Any ROIs that had one or more pixel
outside this mask were rejected. Appendix 10.5 provides images that show visually how the
masking worked.

The alternate JPN segmentation technique proposed was based around a blob detector very
similar the initial stages used in David Lowe’s SIFT (Lowe 2004). This blob detector de-
veloped was implemented from scratch so that it could be optimised for the task at hand.
A blob detector was a valid option for detecting JPNs as from observations of the dataset
it could be seen they were in most cases blob like protrusions into the lungs. The initial
stages of the segmentation technique were essentially the same as used in SIFT. First a
Difference of Gaussian (DOG) pyramid was created using a wide range of sigma values, see
Figure 22. This was implemented in DOGPyramid using the same method and parameters

52

described in (Lowe 2004). In SIFT once the DOG pyramid has been constructed the local
extrema are found using a 3×3 neighbourhood and returned as key-points. For the blob
detector implemented (BlobDetector) only the maxima were found. This is as the nodules
that were to be detected where composed of high intensity voxels. In SIFT the extrema are
found to sub pixel precision through interpolation using the Taylor expansion. This was not
the case for BlobDetector. For the sake of simplicity nearest neighbour interpolation was
used. This was deemed likely to be sufficiently accurate as the key-points returned were not
required to be at the exact center of the nodules, see Algorithm 8. To reduce the number
of key points that were returned three checks were used. These were made before the scale
space neighbourhood was examined. Performing the checks at this stage greatly improved
performance. The first check was to ensure that the key-points lay within the convex hull
of the plural cavity but not within the plural cavity. Algorithm 8 shows how the mask used
to achieve this was obtained. The second check used a threshold to reject key-points with a
DOG value below a given threshold and the third check used a threshold to reject key-points
with too large a gradient. The remaining key-points were converted into blobs using the
sigma coordinate for each key-point as the radius. Once the blobs had been returned from
BlobDetector an additional algorithm was used to better segment the nodule candidates
contained within them, see Algorithm 9. This algorithm was implemented in BlobToROI.

Figure 22: A visual representation of the DOG pyramid implemented (Lowe 2004)

Figure 23 provides a visual example of how each blob was segmented. The image in the
top left shows sub-matrix created for a JPN. The image to the right of this shows the blob
that was detected by BlobDetector for the JPN. The equation for the subMatSize shown
in Algorithm 9 was used as it returned yielded a sub-matrix with twice the area of the blob,
as shown in Equation 6. As such, for the sake of thresholding each sub-matrix was assumed
to have a bi-modal distrabution of intensities (a light area for the nodule and a dark area

53

Algorithm 8 Juxtapleural Nodule Segmentation
1: procedure Juxtapleural(largestRoi, slice)
2: // Create the mask
3: contours← largestRoi.internalContours()
4: hulls← convexHulls(contours)
5: hullsImg ← imageOfZeros(slice.size())
6: hullsImg.paintF illed(hulls)
7: inverted← invert(hullsImg)
8: roiImg ← imageOfZeros(slice.size())
9: roiImg.paintF illed(largestRoi)
10: // Note this is element by element subtraction of two matrices
11: mask ← roiImg − inverted
12:
13: rois← emptyList()
14: for each blob in BlobDetector.getBlobs(slice,mask) do
15: rois.add(SegmentBlob(blob, slice))

16:
17: return rois

for the surrounding tissues). This meant that Ostu thresholding could be applied to each
sub-matrix in order to better segment the nodule. The image at the bottom left of Figure 23
shows regions that remained when the blob was subtracted from the thresholded image. The
image to the right of this shows the region that connected the blob to the plural membrane.
This region was then subtracted from the original thresholded image in order to obtain the
improved ROI for the nodule (shown bottom right).

r = the radius of the blob
b = πr2 = the area of the blob

l = the length of one side of the sub-matrix
s = l2 = the area of the sub-matrix

s = 2b

l2 = 2πr2

l =
√
2πr2

(6)

BlobOpt was created in order to optimise the thresholds that were used to limit the num-
ber of key-points detected by BlobDetector. As these two parameters were independent of
one another they could be optimised using two sequential binary searches. The first binary
search was used to find the maximum DOG threshold that could be used whilst maintaining
maximum nodule inclusion. Similarly, the second binary search was used to find the mini-
mum gradient threshold that could be used whilst maintaining maximum nodule inclusion.
Nodule inclusion was computed using the same method as SegmentationOptimiser, this
was discussed in Section 4.1.5. The maximum nodule inclusion was found by setting the

54

Algorithm 9 Blob Segmentation
1: procedure SegmentBlob(blob, slice)
2: r ← blob.getRadius()
3: subMatSize←

√
2πr2

4: // Returns a sub subMatSize by subMatSize sub-matrix with the blob
5: // at the center
6: subMat← createSubMat(slice, blob, subMatSize)
7:
8: thresholded← otsuThreshold(subMat)
9:
10: // Create a list of all the ROIS that are connected to the blob
11: rois← connectedComponents(thresholded)
12: for each roi in rois do
13: if NOT connected(blob, roi) then
14: rois.remove(roi)

15:
16: if rois.size()! = 1 then
17: // When tested this error was only thrown 1.9% of cases
18: throw ERROR
19: blobROI ← rois.get(0)
20:
21: thresholded.remove(blob)
22:
23: for each roi in connectedComponents(thresholded) do
24: if touchingSideOfImg(roi, submat) then
25: blobROI.removeIntersection(roi)

26:
27: return blobROI

55

Figure 23: A visual example of the main steps in Algorithm 9.

DOG and gradient thresholds to values that would result in no key-points being filtered.
Obtaining the maximum nodule inclusion was highly computationally expensive. This was
because as no thresholding of key-points takes place a huge number of ROIs needed to be
considered. This being the case and with the remaining time for the project rapidly depleting
the thresholds were optimised using only a few stacks know to have nodules in. The values
obtained were 27 for the DOG threshold and 51 for the gradient threshold. In order to try
to account for variance in the nodules these values were decreased and increased by 20%
respectively.

Forcing the segmentation optimiser to return appropriate values for the watershed algorithm
required only a very small change. Instead of optimising a parameter that was used as the
background threshold a new parameter was introduced with possible values in the range
[0 − 0.9]. This parameter was named the “background fraction” and was multiplied by
the foreground threshold in order to calculate the background threshold. This guaranteed
that the background threshold would always be less than the foreground threshold. The
parameters obtained from optimisation were as follows:

• Bilateral Filter Kernel Size = 4× 4

• Sigma Colour = 8

• Sigma Space = 6

• Foreground threshold = 105

• Background fraction = 0.8987624741608482

56

4.4.2 Classifier Training and Testing

In this version the ability to oversample 2 the nodule instances was introduced. Oversam-
pling the nodules meant that more of the non-nodule instances in the training set could
be used to train the classifier whilst maintaining the ratio of nodules to non-nodules. This
would hopefully reduce the number of FPs returned during testing. The features that were
used in this version were: Juxtapleural, Mean Intensity, Area, Perimeter, Min Circle
Radius, Circularity, Hu Circularity, Convexity, Fitted Ellipse Angle, Fitted El-
lipse Area, Fitted Ellipse Width, Fitted Ellipse Height, Elongation, Coarse Hist
, Fine Hist, Coarse LTP and Fine LTP.

4.4.3 Evaluation

The value obtained from optimisation for the background fraction could not have been much
closer to 0.9. This is a strong indicator that the values obtained in version 0.2 were not
a quirk of optimisation. To try to gain a better understanding of why the algorithm did
not appear to be working as expected the source code was investigated. This revealed a
major oversight in the way it had been used in the system. The algorithm used a priority
queue to ensure that pixels with the lowest intensities were examined first when attempting
to expand regions. This meant if the nodule model presented in Figure 18 was correct, the
background region would be expanded until it met the foreground, effectively resulting in a
binary threshold. As such, it was proposed that if the slices were inverted before segmen-
tation better results would have been obtained. However, as there was not enough time
remaining in the project to run the optimiser again this theory was never tested.

Out of the 5222440 ROIs returned by SPN segmentation 738 were matched by at least
one voxel to a nodule. This was 70 fewer than version 0.2. Furthermore a reduced mean
match score of 0.34319 was obtained. Figure 24 shows a comparison of all of the SPN
segmentation techniques used and confirms that version 0.2 was the best. As it was known
that the segmentation technique used in this version was inferior to version 0.2 testing of
JPN segmentation and classifier were differed to version 0.5.

2To train the classier with the same instances multiple times.

57

Figure 24: Distribution of match scores frequencies for nodules matched to a ground truth
by at least one voxel.

4.5 Version 0.5

The aim of this version was to combine the most successful segmentation techniques devel-
oped so that comprehensive testing of the classification stage could take place. As it had
been established that the most successful SPN segmentation technique was the one imple-
mented in version 0.2. This technique and it’s parameters were used in version 0.5. The only
change being that the mask described at that start of Section 4.4.1 was used. Both JPN
segmentation techniques were tested along side the SPN techniques. As can be seen from
Table 8 the erosion based technique used in version 0.2 obtained a better mean match score
that the blob detector, however it also matched fewer nodules.

Ideally the classifier experiments conducted in Section 4.5.2 would have used a range of
match thresholds. This would allow for observations of how it affected the performance of

JPN segmentation ROIs Matched Matched Rate Total ROIs Mean match score

Blob Detection 738 0.646 6484656 0.40157
Erosion 698 0.610 8117908 0.43291

Table 8: V0.5 Segmentation Results.

58

Figure 25: Distribution of match scores for nodules matched to a ground truth by at least
one voxel.

the classifier to be made. As there was not enough time to do this, a single match score was
chosen to perform the experiments. The match score was chosen by viewing images of many
hundreds of matches at different match scores and selecting the minimum match score that
the author deemed to be a reasonable match. These images were generated using MatchEx-
amples. The minimum value was chosen as it would maximise the number of nodules used
for testing and training. Figure 26 shows an example of a ROI with a match score of 0.25,
the chosen match threshold for the experiments.

It was initially planned to use the JPN segmentation technique that obtained the largest
number of matched ROIs above the match threshold for the classifier experiments. However,
by subtracting the Y values in the annotations in Figure 25 from there respective values for
total matched ROIs, it could be seen that the blob detection and erosion methods would
have 494 and 496 remaining matched nodules. As these values were so close both techniques
were used to train and test the classifier so it could be seen which technique yielded the best
results when trained with the same slices features.

Table 9 shows the results of training and testing the classifier using the two JPN segmentation
techniques. It was elected that the erosion based method should be used for the next phase of
testing. This method was selected because although it returned 4 fewer TPs it also returned
65940 fewer FPs. Reducing the number of FPs was important at this stage. This is as if too
many were presented to a radiologist using the system the degree of assistance that system

59

Figure 26: An example match score of 0.25. The ROI is filled green and the nodule
outlined in red.

JPN segmentation TPs FPs

Blob Detection 103 161733
Erosion 99 95793

Table 9: Result of testing and training the classifier with the two JPN segmentation
techniques.

could provide would be vastly diminished. Given more time it would definitely be worth
fully optimising the blob detector as this could potentially reduce the number of FPs whilst
maintaining the higher TP rate.

4.5.1 Features

This subsection provides information about how the features used to train the classifier were
computed and why they were selected. Where equations are used to define how features
were computed P = {all pixels in an ROI} and val(p) = the intensity value for pixel p.

Juxtapleural - This feature was a simple boolean flag set to true on all ROIs that were
obtained using a JPN segmentation and false on all ROIs that were obtained using a SPN
segmentation. The feature was introduced as it was expected that the ROIs obtained using
different segmentation methods would exhibit different characteristics. This feature could
be used by classifier to easily distinguish between the two techniques used.

60

Mean Intensity - This feature was chosen as the density of the tissues found in the lungs
is variable as such some tissues would have a higher mean intensity than others.

MeanIntensity =
1

|| P ||
∑
p∈P

val(p)

Area - Figure 27 was computed by modelling nodules as circles and using their radii to
estimate the area. As can be seen from the figure some area values were more common than
others. This is valuable information for the classifier.

Area =
∑
p∈P

1

Figure 27: The distribution estimate nodule areas.

Circularity & Hu Circularity - As most nodules are roughly circular and most blood
vessels had a tree like structure (when viewed in 3D) scale invariant measures of circu-
larity were an obvious choice for features. Circularity was computed dividing the area
of ROI by the area of the minimum fitting circle for the ROI. Where as Hu Circularity
was calculated using moments, as defined in (Rosin et al. 2010). Both features were used as
the values returned were effected differently by small imperfections in the circularity of ROIs.

Convexity - This feature was selected in an attempted distinguish the concave ROIs from
blood vessels that exhibited a branching structure from the remaining convex ROIs. Values
were obtained by dividing the area of an ROI by the area of its convex hull.

Elongation - This feature was selected as most nodules are approximately circular where
as some blood vessels exhibited a long elongated shape. As such it was hoped that the
feature could be used to distinguish between them. The values where computed as shown

61

in the equation below. Computing the values in this manner made them rotation and scale
invariant.

w = width of minimum bounding box

h = height of minimum bounding box

Elongation = 1− min(w, h)

max(w, h)

Coarse Hist & Fine Hist - These features were used to encode the frequency of intensity
values found within ROIs. Similarly to Mean Intensity these features were hoped to en-
code the density of the tissue the ROI was composed of. Each bin in the histogram was used
as a feature. The number of bins used in each histogram is discussed at the end of this section.

Coarse LTP & Fine LTP - These features were used to attempt to encode the texture of ROIs.
This was valuable information for the classifier because as stated in Section 2.1 nodules often
exhibit a non-uniform texture. It was hoped this texture would be distinctive and could be
used to distinguish them from non-nodules. LTP stands for Local Ternary Pattern. This is
a standard technique used to create texture features (Ren, Jiang, and Yuan 2013). However
the features used by Lungs implemented what is though to be a novel adaptation of the
algorithm in order to encode additional information about the voxels found at the edge of
each ROI. The following method shows how the LTP value was computed for each voxel at
the center of a 3×3 neighbourhood. The numbers in the black boxes shown in Figure 28
correspond to the values for i used in this method.

val(i) = The intensity values for voxel i of the neighbourhood

compare(i) =

0, val(i) < val(8)

1, val(i) ≥ val(8)

2, val(i) = VOID

LTP =
7∑

i=0

3i × compare(i)

Once all the LTP values were obtained they were placed into a frequency histogram and
each bin was used as a feature. The number of bins used in each histogram is discussed at
the end of this section. Voxel intensities marked as VOID are voxels which lie within the 3×3
neighbourhood but are not included in the ROI. It was proposed that this method would
produce scale invariant features that encoded aspects of both the shape and texture of the
ROI and distinguished the textures found on the edge of the ROI from those found within
it. However, further investigation would be required to establish what information is truly
encoded using the method.

Perimeter, Fitted Ellipse Angle, Fitted Ellipse Area, Fitted Ellipse Width, Fit-
ted Ellipse Height, Min Circle Radius - These features were very basic features imple-
mented in the hope that the classifier would use them to make inferences. For example a

62

measure of elongation could be created using Fitted Ellipse Width & Fitted Ellipse
Height.

Figure 28: Example LTP neighbourhood for a voxel found at the edge of an ROI.

In order to maximise the amount of information that was conveyed to the classifier using
histograms based features, Sturge’s rule was applied in an attempt to optimise the bin sizes
used. Sturge’s rule is defined as follows (Legg et al. 2007):

w = the ideal bin width for the histogram
r = the range of values withing the dataset
n = the number of elements in the data set

w =
r

1 + log2(n)

(7)

This equation was used to find the bin sizes both for the intensity and LTP histogram fea-
tures. For the intensity histogram the value for r used was 256 this was as 8bit images were
processed by the system and 28 = 256. However, in hind sight this was a poor choice of value
as the true range of values was smaller than this, see Figure 16. For the LTP histograms
the range of values was calculated as such r = 38. A problem with using Sturge’s rule for
histograms computed for ROIs was that the number of elements (n) varied from one ROI to
another. As the histogram bins were used as features there needed to be the same number of
bins for each ROI. For this reason two values of where used. For Coarse Hist and Coarse
LTP the mean number of elements for all the ROIs was used, where as for Fine Hist and
Fine LTP the max number of elements was used.

Using Weka’s InfoGainAttributeEval tool the entropy associated with each feature was
calculated. This indicated that the best features were The LTP and intensity histograms,
Mean Intensity and Perimeter. The table of results for the top 30 features can be seen
in Appendix 10.6. This being said all the features were still used to test the classifier in
the following section. This is as the combinations of features may have resulted in higher
entropy then when calculated individually.

63

4.5.2 Classifier Testing

In order to attempt to maximise the accuracy of detection multiple classifiers where trained
and tested using the same data. Initially all the classifiers were trained using undersampling.
The training set used contained 382 nodules and 382 non-nodules and testing set contained
117 nodules and 915710 non-nodules. Table 14 shows the results for each of the classifiers
used. The MultilayerPerceptron is an implementation of an ANN and SMO is an imple-
mentation of a SVM. These classifers where chosen as they were similar to the ones used in
(Tan et al. 2011). The remaining classifiers were chosen as they were methods of classifica-
tion that had been discussed in lectures. All the classifiers tested performed reasonably well
with total accuracy ranging from 85.423-90.087. A problem with all the classifiers was that
there was a large number of false positives being returned. In order to attempt to combat
this the same classifiers were tested using oversampling.

Weka Class Accuracy % TPs TP rate FPs FP rate
J48 89.538 99 0.846 95793 0.105

MultilayerPerceptron 87.301 107 0.915 116290 0.127
SMO 90.087 109 0.932 90778 0.099

BayesNet 90.038 107 0.915 115133 0.126
RandomTree 85.423 102 0.872 133484 0.146

RandomForest 86.866 110 0.940 120282 0.131

Table 10: Result of testing and training different Weka classifiers using undersampling.

For the oversampled training 9 instances of each nodule were used to train the classifier. As
such, 3438 nodules and 3438 non-nodules were used to train the classifier. The testing set
remained the same. As can be seen in Table 14 oversampling did reduce the FP rate however
this came at the price of diminished sensitivity. The only exception to this was the SMO. This
classifier had increased TP and FP rates. This showed that oversampling was particularity
ineffective for the SMO. The decreases in TP rates when using oversampling was likely to be
caused by overtraining. As such better results may have been obtained if the number of
times each nodule was sampled was reduced.

64

Weka Class Accuracy % TPs TP rate FPs FP rate
J48 92.070 77 0.658 72585 0.079

MultilayerPerceptron 92.416 94 0.803 69437 0.076
SMO 88.401 102 0.872 106211 0.116

BayesNet 92.690 92 0.786 66922 0.073
RandomTree 92.962 63 0.538 64401 0.070

RandomForest 95.378 75 0.641 42287 0.046

Table 11: Result of testing and training different Weka classifiers when sampling each
nodule 9 times.

4.5.3 Evaluation

Out of the classifiers and sampling techniques tested the SMO trained using undersampling
was the chosen method for the final version of Lungs created during the project. This was
as it had the second highest TP rate and the lowest FP rate. The RandomForest trained
using undersampling had the highest TP rate however it returned an additional 29504 FPs
for the training set. The reduction in FPs was chosen over the marginal increase in TPs so
that the suggestions made by the system would be of more used to a radiologist using it.
The following equation was used to calculate the overall sensitivity for the system:

m = number of ROIs with match score > 0.25
n = total nodules in ground truth

t = classifier TP rate

segmentaion sensativity =
m

n
system sensativity = t× segmentaion sensativity

(8)

The values for the variables in Equation 8 were: m = 496, n = 1381 and t = 0.932 and as
such the segmentation sensitivity was 0.359 and the total system sensitivity was 0.316. On
average there were 3782.416 FPs/per stack. These figures only take into account nodules
with a diameter ≥3mm. In order to be able to compare these figures directly to the results
shown in Table 4 the ROIs would need to be grouped in 3D regions and a consensus would
need to be drawn between the ROIs. However, there was not time to implement this. From
the system sensitivity and FPs/per stack calculated it could be inferred that the system was
inferior to those given in the table.

From the tests conducted it appeared that the classifier was performing extremely well with
a total accuracy of 90.087%. This indicated that a good choice of features had been made.
However, to ensure this value was accurate a larger test set would need to be used. The
main area that let the system down was the segmentation stage. This is as the segmentation
technique had a poor TP rate and a high number of FPs/stack. This resulted in a low system
sensitivity as although the classifier was working well not enough nodules were making it
to that stage. Similarly, the huge number of FPs returned from segmentation meant that

65

even though 90.1% of them were being classified correctly a large number of FPs were being
returned by the system.

Figure 29: An example slice annotated using the classifier. Green regions indicate ROIs
classified as nodules, orange regions indicate ROIs classified as non-nodules and the red

contour shows a nodule identified by the ground truth

66

5 Future Work
Due to the short time frame allowed, at the end of the project there were many areas in
which the system could potentially be improved. If more time was allowed one of the first
changes made would be to increase the amount of information available to the system when
segmenting and computing features. One way of doing this would be by using 16bit images,
as stated in Section 4.3 this would be particularly useful for segmentation. The best way
to implement this change would probably be to use a different library that had full support
for 16bit images. Ideally this library would still be implemented in C/C++ to maintain
performance. Another way of increasing the amount of information available would be to
consider the 3rd dimension when segmenting and computing features. This would be partic-
ularly useful for helping the system distinguish between nodules and blood vessels that are
extending parallel to the viewing vector, see Section 2.1. Furthermore, using 3D ROIs would
reduce the number of non-nodules that needed to be identified by the classifier. This would
likely be a easier than reducing the number of FPs returned by the classifier than attempting
to lower the FP rate further.

As stated in Section 4.4.3 2D SPN segmentation would likely be greatly improved by in-
verting the slices before the Watershed algorithm was used on them. Furthermore the blob
detector JPN segmentation showed promise when tested and would likely out perform the
erosion method if fully optimised. In order to attempt to try to reduce the number of FPs re-
turned from segmentation an additional optimiser was created SegOpt2. This class takes the
maximum nodule inclusion as an argument and tries to reduce the number of ROIs returned
from segmentation while maintaining nodule inclusion. This class was never run against the
full data set however it showed promise when tested on a small subset. As such it should be
used to optimise the parameters in the next iteration of the project.

One way in which the training of the classifier could potentially be improved would be to
synthesise additional nodules. This could be achieved through applying transformations to
the existing nodules detected. Similarly to oversampling the nodules this would largely be of
benefit as it would mean that more non-nodules could be used for training whilst maintaining
the balance of nodules and non-nodules used. The advantage that this technique would have
over oversampling is that it would reduce the likely hood of overfitting when training using
large datasets. In all cases where undersampling was used the first n non-nodules returned
from the database to train the classifier. This method is a naive approach as it is liable to
introduce a sampling bias. To combat this a simple solution would be to randomise the order
in which the sampled where returned from the database. An alternative solution would be to
cluster the instances in sample space and take an even number of samples from each cluster.
This method was used by Tan et al. (2011) and is a superior solution to the problem as if
done correctly it would guarantee that the classifier was exposed to all the variation present
in the instances. A way in which the testing of the classifier could be improved would be to
use cross validation. The methods works by selecting some subset of the instances for testing
and using the remained for training. Once training and testing is completed, the process is
repeated using a different subset of the instances for testing. Using this method can help
to eliminate a sample bias and also makes it possible to train the classifier using more data

67

while still testing it thoroughly.
Another improvement that could be made to the system would be to utilise more of the LIDC
database. One way of doing this would be to take into consideration nodules with a diameter
less than 3mm. These nodules were ignored through the project in the interest of simplicity
however they make up 0.242 of the nodules in the LIDC database. Furthermore, not only are
these nodules likely to be the hardest for a radiologist to detect visually their detection holds
the most value. This is as small nodules are an indicator of cancer in the very early stages.
As stated in Section 4.1.5, another way the LIDC ground truth could be further utilised
would be to cluster the readings taken by the four radiologists and only used those annota-
tions where more than one radiologists agree. This would improve confidence in the ground
truth and lead to better training of the classifier. The final and most obvious way in which
the database could be further utilised would be to train the classifier using more slices. This
would be particularity useful as more instances of nodules and non-nodules could be used to
train the classifier without having to use oversampling or synthesis. Incorporating more data
would no doubt require the images to be normalised. However, even without the additional
data this could be worth while as it may reduce the variance in nodule intensities, see Sec-
tion 4.1.1. Another issue with including more data is that it would increase computational
complexity. In order to combat this it would be wise to use distributed computing techniques.

68

6 Conclusions
At the end of the project the CAD system implemented was not competitive with the existing
CAD systems described in Table 4. The main downfall of the system was the segmentation
stage which had a sensitivity of just 35.900%. The SNP segmentation technique used in the
final version was the one implemented in version 0.2, see Section 4.2.1. This technique was
chosen to maximise the result obtained at the end of the project however there were known
issues with it which if resolved would have likely improved results greatly, see Section 4.4.3.
The JPN segmentation technique chosen for the final version was also the one implemented
in version 0.2. This choice again was to maximise results by the end of the project. However,
it was predicted that if the technique implemented in 4.4.1 had been fully optimised it would
have out performed the method selected. Although the segmentation stage of the system
performed quite poorly the classification stage yielded impressive results. The classifier had
a total accuracy of 90.087%. This indicated that appropriate features had been selected.
Of particular interest was the novel LTP feature described in Section 4.5.1. Initial testing
showed this feature to be the most effective out of the features used to classify the pulmonary
nodules. Within the time frame allowed for the project it would have been difficult to obtain
better results than those delivered by the system implemented. This was due to the large
amounts of data that needed to be processed. Merely creating the multi-threaded framework
to process all this data was a complex task in it’s self and took up a large portion of the
development time. Furthermore the relatively small amount of computing power available
for the project meant optimisation of parameters took a very long time. This restricted
how well the system could be optimised as a small population had to be used for the GAs
implemented and there was not always enough time to run the optimisation tasks. This had
the greatest effect in that there was not enough time to re-optimise the parameters for the
Watershed algorithm using inverted slices and as such this method was not tested. It was
predicted that using this method would greatly improved the sensitivity of segmentation. A
further indicator that the project was a success was that vast majority of the requirements
defined in Section 3.1 were met, see Table 12. Overall it was the authors opinion that the
project was a success. This is as in the short time allowed great steps had been made toward
the development of a highly complex system which set out to accomplish a difficult task.

69

The system should be capable of: Was it achieved?
importing and querying meta-data provided
by CT scans.

The meta-data was successfully imported
and index using CTSliceImporter and was
queried by many parts of the system.

segmenting ROIs in CT slices. Methods were developed for segmenting the
CTSlices they performed poorly.

comparing ROIs to the ground truth. This was achieved using Matcher which im-
plemented the method of comparison shown
in Equation 5.

training a classifier using features computed
for ROIs identified.

This was successfully implemented and per-
formed very well.

using a trained classifier to identify PNs in pre-
viously unseen CT scans or state that there are
no PNs.

This was implemented in Lungs however the
accuracy of the predictions made by the clas-
sifier was hindered by the segmentation tech-
nique.

highlighting PNs in a suitable GUI so that it
can be used as an aid for radiologists.

This was successfully implemented in Lungs,
see Figure 29. The orange regions have been
added to show correctly classified non-nodules.

having additional features added to the classi-
fier easily

Adding additional features was trivial. To add
a new feature a single method of the Fea-
ture interface needed to be implemented by
the class for the new feature. After that all
that was required was for a new instance of this
class to be added to the list in FeatureEngine.

storing the results of features calculated for
the training set so that they do not need to be
recomputed each time the classifier is trained.

This was implemented in FeatureEngine.

unit testing functionality where possible and
appropriate.

A total of 24 unit test were created. These
tests mostly had in excess of 80% line cover-
age and were used to test most of function-
ality of the system where the desired results
were easily determinable. However to improve
confidence in the system it would be wise to
develop unit tests for the remaining function-
ality.

evaluating the effectiveness of the classifier. The classifier was successfully tested and
statistics were collected to evaluate it’s effec-
tiveness.

easily configuring parameters the user may
wish to change from one instance of the system
to another.

The configuration file application.conf al-
lows the system to configure all such parame-
ters.

only using a small subset of images during de-
velopment. This will help to speed up devel-
opment as code can be tested on just a few
images before being running again with the
full dataset.

This was achieved using application.conf
and DataFilter.

Table 12: Analysis of how well requirements were met.

70

optimising values for parameters which are
not easily determinable using appropriate al-
gorithms.

Optimisation algorithms used however there
was not time to run all of them against the
full training set. The decision to use a GA
may have been a poor choice in hindsight as it
was a very computationally complex approach.

be capable of processing 1000s of images in
a reasonable amount of time. This should be
achieved through the use of low computational
complexity algorithms and multi-threading.

The final version was capable of processing
227625 images, computing features training
the classifier and testing it in approximately
6 hours.

Table 13: Analysis of how well requirements were met continued.

7 Reflection on Learning
The greatest lesson learnt from undertaking this project was the importance of writing the
report as you go along. This was not the approach I took throughout the project electing
instead to only taking noted during implementation and writing the report after. Whilst
writing the report I fell my understanding of the problem at hand deepened enormously. This
is as putting my thoughts in to writing helped me to organise and formalise them. Another
major error in the manner the project was conducted was not enough time was spent acquir-
ing an deep understanding of how the OpenCV implementation of the watershed algorithm
was implemented. Had the source code been examined earlier there would have been time to
test using it with an inverted image. Another lesson learnt was the importance of collecting
data throughout the project. Although data was collected during implementation to assist
decision making it was not stored and organised in way which meant it could be used in the
report. Instead it was all collected at the end using Git to return to the previous versions.
To run all the code required to collect the results took approximately two weeks with code
running almost continuously. This resulted in a great deal of stress caused by the worry
there would not be time to run it all which could have been avoided. These lessons were
learnt the hard way however they will be invaluable for projects such the research project I
am undertaking with the university this summer.

On a different note a great deal was learnt about cancer and medical imagery whilst per-
forming the background research. I had not previous experience working in the area and the
project was a great insight into how computer vision can be applied in the field of medicine.
Furthermore this is a field of work that I am highly interested in perusing and the experience
gained during this project will no doubt be invaluable.

Another skill I developed during the project was writing reports in LATEX. I only began using
latex at the beginning of the project as I thought that it would be a useful tool for writing
this report. Throughout the project I learnt how to make used of many additional packages
and create references with great ease. For any future report of this scale I would definitely
opt to used LATEXagain as it has been an invaluable tool.

71

8 Glossary
• Pulmonary Nodule - A small somewhat round growth on the lungs.

• Slice - A single cross-section obtained using a CT scanner.

• Stack - A collection of slices obtained using a CT scanner.

• Lungs - The name given to the CAD system developed during the project.

9 Abbreviations
• CT - Computed Tomography

• PN - Pulmonary Nodule

• CAD - Computer Aided Diagnosis

• TP - True Positive

• FP - False Positive

• TN - True Negative

• FN - False Negative

• SPN - Solitary Pulmonary Nodule

• JPN - Juxtapleural Pulmonary Nodule

• ROI - Region Of Interest

• MSE - Mean Square Error

• PSNR - Peak Signal-to-Noise Ratio

• LIDC - Lung Image Database Consortium

• DNG - Divergence of Normalised Gradient

• DBMS - Database Management System

• IDE - Integrated Development Environment

• SVM - Support Vector Machine

• ANN - Artificial Neural Network

• MVP - Minimum Viable Product

• VPS - Virtual Private Server

72

• GA - Genetic Algorithm

• DOG - Difference of Gaussian

• LTP - Local Ternary Pattern

10 Appendices

10.1 Appendix 1 - V0.1 Segmentation

Listing 4: Source Tree
s r c
|−− c on f i g
| |−− Annotation . java
| |−− BlobOptimisat ion . java
| |−− Misc . java
| |−− Mode . java
| |−− SamplingMethod . java
| |−− SegOptimisat ion . java
| `−− Segmentation . java
|−− core
| |−− Lungs . java
| `−− Pipe l i n e . java
|−− data
| |−− CTSliceImporter . java
| |−− CTStackGenerator . java
| |−− DataPipe l ine . java
| |−− GroundTruthImporter . java
| `−− Importer . java
|−− d i s c ov e r
| |−− CsvWriter . java
| |−− HistogramWriter . java
| |−− MatchExamples . java
| |−− MatchScores . java
| |−− MissedNodules . java
| |−− NoduleHistograms . java
| |−− NoduleRadii . java
| |−− ROIClassStats . java
| `−− S l i c eH i s tog rams . java
|−− ml
| |−− Arf fGenerator . java
| |−− FeatureEngine . java
| |−− I n s t anc e sBu i l d e r . java
| |−− MLPipeline . java

73

| |−− ROIC la s s i f i e r . java
| |−− ROIGenerator . java
| |−− TrainAndTest . java
| `−− f e a t u r e
| |−− Al lH i s t s . java
| |−− Area . java
| |−− BoundingBox . java
| |−− C i r c u l a r i t y . java
| |−− Convexity . java
| |−− Feature . java
| |−− F i tE l l i p s e . java
| |−− HuCircu lar i ty . java
| |−− LTP. java
| |−− MeanIntensity . java
| |−− MinCirc le . java
| `−− Perimeter . java
|−− model
| |−− CTSlice . java
| |−− CTStack . java
| |−− Ci r c l e . java
| |−− DOGPyramid . java
| |−− GroundTruth . java
| |−− Histogram . java
| |−− KeyPoint . java
| |−− MinMax . java
| |−− MinMaxXY. java
| |−− Object IdResul t . java
| |−− ROI . java
| |−− ROIAreaStats . java
| |−− SigmaMat . java
| |−− St r ingResu l t . java
| `−− l i d c
| |−− BlindedReadNodule . java
| |−− Cha r a c t e r i s t i c s . java
| |−− EdgeMap . java
| |−− LidcReadMessage . java
| |−− LobarLocation . java
| |−− Locus . java
| |−− NonNodule . java
| |−− ObjectFactory . java
| |−− ReadingSess ion . java
| |−− ResponseHeader . java
| |−− Roi . java
| `−− UnblindedReadNodule . java
|−− opt imi se

74

| |−− BlobOpt . java
| |−− LungsOptHelper . java
| |−− Optimiser . java
| |−− SegOpt1 . java / SegmentationOptimier . java
| `−− SegOpt2 . java
|−− u t i l
| |−− C i r c u l a rL i s t . java
| |−− ColourBGR . java
| |−− Conf igHelper . java
| |−− Counter . java
| |−− DataF i l t e r . java
| |−− FutureMonitor . java
| |−− LungsException . java
| |−− MatUtils . java
| |−− MatViewer . java
| |−− MongoHelper . java
| |−− MultiMap . java
| |−− Po in tUt i l s . java
| `−− TimeUti ls . java
`−− v i s i o n

|−− B i l a t e r a l F i l t e r . java
|−− BlobDetector . java
|−− BlobToROI . java
|−− ConvexHull . java
|−− Matcher . java
|−− ROIExtractor . java
`−− Sobel . java

75

10.2 Appendix 2

V0.1 Solitary Nodule Segmentation

Figure 30: An unprocessed slice. Figure 31: The results of filtering the
unprocessed slice. The parameters chosen for
this filter where not the optimum ones but
instead were selected to exaggerate the effect

of the filter.

Figure 32: The result of thresholding the
filtered slice.

Figure 33: The result of applying opening to
the thresholded slice.

76

Figure 34: The result of extracting the connected components from the opened slice and
rejecting the one with the largest area.

77

10.3 Appendix 3

Juxtapleural Segmentation Using Erosion

Figure 35: The largest ROI returned from by
the solitary nodule segmentation stage. A

juxtapleural nodule is highlighted by the red
square.

Figure 36: The convex hulls of the plural
cavities, and a false positive (the smallest

region).

Figure 37: The eroded hulls. Figure 38: The mask created by inverting the
eroded plural hulls.78

Figure 39: The results of subtracting the mask from the largest ROI. A juxtapleural nodule
is highlighted by the red square

79

10.4 Appendix 4

Listing 5: Subset statistics aggregation
db . CTSlice . aggregate (

[
{

"$group" : {
"_id" : "$model" ,
"count" : {

"$sum" : 1
} ,
"highBit" : {

"$addToSet" : "$highBit"
}

}
} ,
{

"$sort" : {
"count" : 1

}
}

]
)

80

10.5 Appendix 5

Solitary Nodule Masking

Figure 40: The original slice. Figure 41: The largest ROI returned from
solitary nodule segmentation

Figure 42: The internal cavities of the largest
ROI

Figure 43: The results of applying the mask
to the original image

81

10.6 Appendix 6

Feature Information Gain

N.B numbers after than name of histogram features indicate the index of the bin used for
that feature.

Information Gain Feature
0.5983 36 Coarse LTP 4
0.5666 3 Area
0.5179 49 Fine LTP 12
0.4887 48 Fine LTP 11
0.4868 2 Mean Intensity
0.4856 15 Coarse Hist 1
0.4729 4 Perimeter
0.4677 5 Min Circle Radius
0.4516 22 Fine Hist 3
0.4221 44 Fine LTP 7
0.4123 11 Fitted Ellipse Width
0.4107 47 Fine LTP 10
0.4019 45 Fine LTP 8
0.3964 40 Fine LTP 3
0.3913 10 Fitted Ellipse Area
0.3893 17 Coarse Hist 3
0.3726 35 Coarse LTP 3
0.3696 26 Fine Hist 7
0.3582 27 Fine Hist 8
0.3489 42 Fine LTP 5
0.3445 43 Fine LTP 6
0.3416 25 Fine Hist 6
0.336 32 Coarse LTP 0
0.3341 12 Fitted Ellipse Height
0.3247 37 Fine LTP 0
0.3187 46 Fine LTP 9
0.3056 28 Fine Hist 9
0.2986 34 Coarse LTP 2
0.2815 39 Fine LTP 2

Table 14: Result of testing and training different Weka classifiers using undersampling.

82

References
American Cancer Society (2010). THE GLOBAL ECONOMIC COST OF CANCER. url:
http://phrma-docs.phrma.org/sites/default/files/pdf/08-17-2010_economic_
impact_study.pdf (visited on 04/13/2017).

– (2015). Lymph Nodes and Cancer. url: https://www.cancer.org/cancer/cancer-
basics/lymph-nodes-and-cancer.html (visited on 04/13/2017).

Apache (2017a). Apache Ant - Welcome. url: http : / / ant . apache . org/ (visited on
04/28/2017).

– (2017b). Commons Configuration – Java Configuration API. url: http://commons.
apache.org/proper/commons-configuration/ (visited on 04/28/2017).

– (2017c). Home | Apache Ivy ™. url: http://ant.apache.org/ivy/ (visited on 04/28/2017).
Armato et al. (2011). “The lung image database consortium (LIDC) and image database
resource initiative (IDRI): a completed reference database of lung nodules on CT scans”.
In: Medical physics 38.2, pp. 915–931.

Bitbucket (2017). Bitbucket | The Git solution for professional teams. url: https : / /
bitbucket.org/product (visited on 04/25/2017).

Cancer Research UK (2014a). Lung cancer incidence statistics. url: http://www.cancerresearchuk.
org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-
cancer (visited on 04/13/2017).

– (2014b). Lung cancer survival staistics. url: http : / / www . cancerresearchuk . org /
health- professional/cancer- statistics/statistics- by- cancer- type/lung-
cancer/survival (visited on 04/13/2017).

Columbia University Press (2000). The Columbia Encyclopedia. 6th ed. 0-7876-5015-3. Columbia
University Press.

Demir, Cigdem and Bülent Yener (2005). “Automated cancer diagnosis based on histopatho-
logical images: a systematic survey”. In: Rensselaer Polytechnic Institute, Tech. Rep.

DICOM (2017). Introduction and Overview. url: http://dicom.nema.org/medical/
dicom/current/output/pdf/part01.pdf (visited on 04/26/2017).

Dougherty, Geoff (2009). Digital Image Processing for Medial Applications. 1st ed. 978-0-
521-86085-7. Cambridge.

ELCAP (2003). Public Lung Image Database. url: http://www.via.cornell.edu/lungdb.
html (visited on 04/26/2017).

Firmino et al. (2014). “Computer-aided detection system for lung cancer in computed to-
mography scans: Review and future prospects”. In: BioMedical Engineering OnLine 13.1,
p. 41. doi: 10.1186/1475-925X-13-41. url: http://dx.doi.org/10.1186/1475-925X-
13-41.

Gibbs, Keith (2013). Computerised axial tomography (CAT or CT). url: http://www.
schoolphysics.co.uk/age16-19/Medical%20physics/text/CT_scanning/index.html
(visited on 04/17/2017).

Git (2017). Git. url: https://git-scm.com/ (visited on 04/25/2017).
Google Scholar (2017). The lung image database consortium (LIDC) and image database
resource initiative (IDRI): a completed reference database of lung nodules on CT scans -
Google Scholar. url: https://scholar.google.co.uk/scholar?q=The+lung+image+
database+consortium+%28LIDC%29+and+image+database+resource+initiative+

83

%28IDRI%29%3A+a+completed+reference+database+of+lung+nodules+on+CT+scans&
btnG=&hl=en&as_sdt=0%2C5 (visited on 04/26/2017).

ImageJ (2017). DICOM (ImageJ API). url: https://imagej.nih.gov/ij/developer/
api/index.html (visited on 04/27/2017).

Incisive Health (2014). Saving lives, averting costs. url: http://www.cancerresearchuk.
org/sites/default/files/saving_lives_averting_costs.pdf (visited on 04/13/2017).

JAXB (2017). JAXB Reference Implementation — Project Kenai. url: https://jaxb.
java.net/ (visited on 04/27/2017).

Jenetics (2017). Jenetics: Java Genetic Algorithm Library. url: http://jenetics.io/
(visited on 04/29/2017).

Jirapatnakul, Artit et al. (2011). “Segmentation of Juxtapleural Pulmonary Nodules Using
a Robust Surface Estimate”. In: International Journal of Biomedical Imaging 2011. doi:
10.1155/2011/632195.

Legg et al. (2007). “Improving accuracy and efficiency of registration by mutual information
using Sturges’ histogram rule”. In: Proc. Med. Image Understand. Anal, pp. 26–30.

Li et al. (2003). “Selective enhancement filters for nodules, vessels, and airway walls in two-
and three-dimensional CT scans”. In: Medical Physics 30, pp. 2040–2051.

Lowe, David G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. url:
https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf (visited on 04/24/2017).

Lung Cancer Alliance (2017).Overview - Lung Cancer Alliance. url: http://lungcanceralliance.
org/get-information/the-basics-about-lung-cancer.html (visited on 04/16/2017).

MathWorks (2017a). Computer Vision System Toolbox - MATLAB & Simulink. url: https:
//www.mathworks.com/products/computer-vision.html (visited on 04/25/2017).

– (2017b). Image Processing Toolbox - MATLAB - MATLAB. url: https://uk.mathworks.
com/products/image.html (visited on 04/25/2017).

Maven (2017). Maven Repository: Search/Browse/Explore. url: https://mvnrepository.
com/ (visited on 04/28/2017).

MongoDB (2017a). MongoDB for GIANT Ideas | MongoDB. url: https://www.mongodb.
com/ (visited on 04/26/2017).

– (2017b). Java MongoDB Driver. url: https://docs.mongodb.com/ecosystem/drivers/
java/ (visited on 04/26/2017).

Morphia (2017).Morphia. url: http://mongodb.github.io/morphia/ (visited on 04/26/2017).
National Cancer Research Institute (2012). Lung cancer UK price tag eclipses the cost of
any other cancer. url: http://www.cancerresearchuk.org/about-us/cancer-news/
press-release/2012-11-07-lung-cancer-uk-price-tag-eclipses-the-cost-of-
any-other-cancer (visited on 04/13/2017).

OpenCV (2015). OpenCV: Image Segmentation with Watershed Algorithm. url: http :
//docs.opencv.org/3.1.0/d3/db4/tutorial_py_watershed.html (visited on
04/29/2017).

– (2017). OpenCV library. url: http://opencv.org/ (visited on 04/25/2017).
OpenStack (2017). OpenStack Docs: Ocata. url: https://docs.openstack.org/ (visited
on 04/28/2017).

Orozco et al. (2012). “Lung nodule classification in frequency domain using support vector
machines”. In: Information Science, Signal Processing and their Applications (ISSPA),
2012 11th International Conference on. IEEE, pp. 870–875.

84

PixelMed (2016). PixelMed Publishing™ Java DICOM Toolkit. url: http://www.pixelmed.
com/dicomtoolkit.html (visited on 05/01/2017).

Ren, Jianfeng, Xudong Jiang, and Junsong Yuan (2013). “Relaxed local ternary pattern for
face recognition.” In: ICIP, pp. 3680–3684.

Rosin et al. (2010). “A Hu moment invariant as a shape circularity measure”. In: Pattern
Recognition 43.1, pp. 47–57.

Rosin, Paul (2017). “Computer Vision”. Lecuture slides avaliable at https://learningcentral.
cf.ac.uk/bbcswebdav/pid-4032303-dt-content-rid-6600869_2/courses/1617-
CM3113/CM3113-slides.pdf.

Sahiner, Berkman et al. (2009). “Effect of CAD on Radiologists’ Detection of Lung Nodules
on Thoracic CT Scans: Analysis of an Observer Performance Study by Nodule Size”. In:
Academic Radiology 16.12, pp. 1518–1530.

Salden, Alfons H, LMJ Florack, and BM ter Haar Romeny (1991). “Differential geometric
description of 3D scalar images”. In: 3D Computer Vision, Utrecht, The Netherlands,
Technical Report, pp. 91–23.

Tan et al. (2009). “Automated feature selection in neuroevolution”. In: Evolutionary Intelli-
gence 1.4, pp. 271–292. doi: 10.1007/s12065-009-0018-z. url: http://dx.doi.org/
10.1007/s12065-009-0018-z.

– (2011). “A novel computer-aided lung nodule detection system for CT images”. In: Medical
Physics 38.

The Cancer Imaging Archive (2014). LIDC-IDRI - The Cancer Imaging Archive (TCIA)
Public Access - Cancer Imaging Archive Wiki. url: https://wiki.cancerimagingarchive.
net / display / Public / LIDC - IDRI # 62619512ca5a48cea7103b0e9fbce3fd (visited on
04/27/2017).

Toennies, Klaus (2012).Guide To Medical Image Analysis. 1st ed. 978-1-4471-2750-5. Springer.
Tomasi, C. (1998). “Bilateral Filtering for Gray and Color Images”. In: IEEE International
Conference on Computer Vision.

University of Rochester (2017). Pulmonary Nodules. url: https://www.urmc.rochester.
edu/encyclopedia/content.aspx?contenttypeid=22&contentid=pulmonarynodules
(visited on 04/14/2017).

University of Waikato (2017). Weka 3 - Data Mining with Open Source Machine Learn-
ing Software in Java. url: http://www.cs.waikato.ac.nz/ml/weka/ (visited on
04/29/2017).

Vijaya, G. and A. Suhasini (2014). “An Adaptive Preprocessing of Lung CT Images with
Various Filters for Better Enhancement”. In: Academic Journal of Cancer Research 7,
pp. 179–184. doi: 10.5829/idosi.ajcr.2014.7.3.84231.

Webster, J (1988). Encyclopedia of Medical Devices and Instramentation. 1st ed. Wiley.
Xu, Chunhua et al. (2017). “Early Diagnosis of Solitary Pulmonary Nodules.” In: Journal of
Thoracic Disease 5.6, pp. 830–840.

85

