
C1334989 – Robert Harris CM3203 – One Semester Individual Project

Final Report

Creating An AI That Can Play a
Tactical Intelligence Game Alongside

Human Players

Robert Harris

C1334989

Supervisor: Professor Alun Preece

Moderator: Federico Cerutti

Module Code: CM3203

Module Title: One Semester Individual Project

Credits: 40

Project: 96

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

May 5th 2017

Abstract
The aim of this project is to determine whether a virtual system can be a viable asset
in contributing to crowdsourced knowledge base. The project aims to answer this by
implementing a system that can play the crowdsourcing knowledge game
SHERLOCK. Using visual reasoning, linguistic reasoning and communication it is
hoped the system can act as “one of the crowd” and contribute at the same level a
human player would when playing the game. The project will use a mix of
technologies such as; controlled natural languages, CENode and image recognition.
The design and implementation will aim to have the attributes that are commonly
found in a cognitive architecture.

The primary deliverable will see the AI player's contribution interact with the
SHERLOCK dashboard alongside a human player's contribution. This contribution
must then be “asked” for by a human player to determine that a human and virtual
player can work together to produce crowdsourced knowledge.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Acknowledgments
I would like to acknowledge my supervisor Professor Alun Preece for his continued
enthusiasm and guidance during the project's development. A further
acknowledgement is to Dr Will Webberley whose guidance setting CENode and
CEServer was invaluable in making this project a success.

Finally I would like to acknowledge my housemate and friend Samuel Martin for his
support and advice in implementing and writing the project.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Table of Contents
Abstract 2

Acknowledgments 3

Table of Contents 4

1.0 Introduction 7

2.0 Background 12

2.1 Cognitive Architecture 12

2.11 ACT-R Cognitive Architecture 12

2.12 How ACT-R Works 13

2.2 Computer Vision 14

2.21 How Image Recognition is Currently Achieved 15

2.22 Choosing the Descriptor 16

2.23 The SIFT algorithm 17

2.231 How it Works 18

2.23 Open Source Computer Vision Library (OpenCV) 22

2.3 Natural Language Processing 22

2.31 Controlled Natural Languages 22

2.32 Controlled English Node (CENode) 24

3.0 Approach and System Design 25

3.1 Approach 25

3.2 Requirements 27

3.21 Functional Requirements 27

3.22 Non Functional Requirements 29

3.23 Use Case 30

3.3 System Architecture 30

3.4 Modified SHERLOCK Model 32

4.0 Implementation 34

4.1 Development Environment 34

4.11 Hardware Environment 34

4.12 Software Environment 35

4.121 Primary Languages 35

4.122 Further API’s Used 36

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

4.123 Software Versions 37

4.2 Making and Implementing a Telegram Message Relay Bot 38

4.3 Setting up CENode Locally 40

4.4 The Communication Module 41

4.5 The Visual Module 45

4.51 Installing OpenCV 45

4.52 Training the Images 45

4.53 The Visual Module Class 49

4.54 Example Case 51

4.55 Descriptor and Matcher Code 52

4.6 The Linguistics Module 54

4.61 The Linguistics Class 54

4.62 Check Question Existence 55

4.63 Process Question Data 57

4.64 Searching the Environment 58

4.65 Constructing Output 60

4.7 SHERLOCK Dashboard 61

5.0 Testing 62

5.1 The system must be prompted to answer a question 62

5.2 The system must produce CNL output with relationships 63

5.3 The system must play the game alongside human players 64

5.4 The system should use the same or similar model of the world as human
players. 66

5.5 The system must not launch if a local CENode instance is not operational 67

5.6 The AI player must use computer vision techniques to accurately perceive
objects in a scene 68

5.7 Invalid input must be handled gracefully 75

5.8 Unsuccessful HTTP requests must be handled gracefully 76

5.9 Use Case 77

6.0 Future work 80

7.0 Reflection 81

8.0 Conclusion 82

9.0 References 83

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

10.0 Appendices 86

Appendix 1 - Original SHERLOCK CE model 86

Appendix 2 - Modified SHERLOCK CE model 87

Appendix 3 - Query of instances with SHERLOCK CE model uploaded 89

Appendix 4 - Process Question Data Method 90

Appendix 5 - Full Code Base 91

Appendix 6 - SHERLOCK Questions 100

Appendix 7 - Objects 101

Appendix 8 - Scenes 102

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

1.0 Introduction
The purpose of this project is to create an AI (Artificial Intelligence) which can play a
crowdsourcing focused game alongside human players, and communicate what it
sees to a central gossip agent. The game involves human players exploring a
physical environment, finding posters and describing what they see in a natural
language. To play alongside humans, the AI will receive visual and linguistic input,
perform reasoning and produce a linguistic output. It will then communicate its
linguistic output to a central agent similarly to human players. Systems that share
similar components are traditionally known as cognitive architectures.

The tactical intelligence game at the forefront of this project is SHERLOCK (Simple
Human Experiments Regarding Locally Observed Collective Knowledge) which
traditionally involves human players performing intelligence, surveillance, and
reconnaissance (ISR) tasks in a physical environment. A typical SHERLOCK game
consists of Characters of Interest (CoI) displayed within poster scenes alongside
accompanying attributes. Each poster will contain one character along with a
differing number of the following attributes; location, types of fruit, types of sport, hat
colour and varying objects [1]. The following images represents typical posters within
the SHERLOCK game which humans will see.

The first 2 images contain the elephant character with location information (Ruby
Room), fruit (Orange), sport (Tennis) and hat colour (Green). The 3rd image contains
the character Leopard with its location (Emerald Room), fruit (Pear) and an object
(Balloon).

Operating as a team, human players are tasked with describing and reporting the
scene objects they observe in natural language. Natural language observations can
be reported using the SHERLOCK conversational interface, which in turn converts it
into a controlled form of natural language to pass to the local user agent. This local
agent will then update its local SHERLOCK dashboard accordingly. Interaction with
the conversational interface can be seen below;

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Conversational Interface Natural Language Input Local SHERLOCK
Dashboard

The reported observations will initially update the user's local agent knowledge base,
before enacting policies which relay its contents to a central “gossip” agent. This
central agent will then distribute its collected knowledge to all players’ local agent,
updating their SHERLOCK dashboard appropriately. A dashboard representing the
combination of observations can be seen below;

There are 4 different colours represented by the board; green implies that players
have come to the same conclusion, red implies that there are contradictory
statements regarding the same question, yellow implies some information is
available but not enough to draw a conclusions, and grey implies no information has
been received regarding that question.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

The central agent will distribute its knowledge at regular intervals to ensure all
agents have up to date knowledge about the environment.

The following diagram attempts to illustrate how a player's local user agent will
communicate with the central agent.

A user's agent will relay its knowledge as well as receive crowdsourced knowledge
from the central agent.

The aim of the AI player is to be equal to the human player in terms of capability, and
to be one of the crowd amongst the agents playing the game. To be an equal to the
human player it will need to perceive, describe and communicate observations it
makes to the central agent. The AI players observations should then be visible and
queryable by human players. Due to the absence of a physical body, the AI player
will need to perceive posters through feeds rather than exploring a physical
environment. The AI player should also have its own local agent to maintain, so it
can relay and receive knowledge from the central agent.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

A game environment containing the AI player can be illustrated with the following
diagram.

The above diagram illustrates how the AI player should play the game in a similar
manner to a human player.

In this project I’ll discuss how I’ve attempted to model my high level design and
implementation on cognitive architectures. Taking influence from a cognitive
architecture I can attempt to modularise human behaviour in the program (eg: vision,
language, communication).

Overall, this project aims to prove the viability of an AI player in contributing to a
crowdsourcing activity by combining computer vision, reasoning and communication
techniques. Proving the technique works in a controlled environment opens it up to
be further expanded into real life situations. For example, a human's ability to
perceive, describe and adapt to an environment is superior to a computer's, however
a computer has the ability to remotely operate in inaccessible or potentially
dangerous environments to humans. In a future project, we could aim to combine the
strengths of both humans and computers while performing crowdsourcing activities.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

The report structure is as follows: Chapter 2 introduces the related work that has
guided this project, including cognitive architectures, controlled natural languages
and computer vision.

Chapter 3 will focus on the design and architecture of the software, including system
scope, requirements, use cases and boundaries.

Chapter 4 will contain an in-depth description and discussion about the software
implementation including code snippets and justifications.

Chapter 5 will focus on testing and the techniques used to ensure different systems
were communicating with each other.

Chapter 6 will focus on the potential for future work, discussing how the techniques
used can be expanded and re-applied in situations where crowdsourcing knowledge
and creating shared awareness is a key goal.

Chapter 7 will reflect on the overall project including design choices, implementation
and underlying assumptions.

Chapter 8 will conclude the project and summarise my findings.

During development and testing, no personally identifiable or compromising
information has been collected or processed by myself or the system.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

2.0 Background
To design and implement an AI which is modeled on human behaviour, a deep
understanding was required in several key areas. These areas include cognitive
architectures, computer vision techniques and controlled natural language research.
In this chapter I will thoroughly explore each area and expand on how each topic
relates to the overall objective.

2.1 Cognitive Architecture
Paul Rosenbloom from the Institute for Creative Technologies defines a cognitive
architecture as a “hypothesis about: (1) the fixed structures that provide a mind,
whether in natural or artificial systems; and (2) how they work together – in
conjunction with knowledge and skills embodied within the architecture – to yield
intelligent behavior in a diversity of complex environments.”[4]

In its most most basic form, a cognitive architecture specifies the underlying
infrastructure for an intelligent system. Focusing on the theoretical structure of the
human mind, cognitive architectures aim to summarise results of cognitive
psychology into an extensive computer model. An architecture would include those
aspects of a cognitive agent that are constant over time and across different
application domains. Just as different programs can be run on the same computer
architecture, different knowledge bases and beliefs can be interpreted by the same
cognitive architecture.

Langley, Laird and Rogers [3] state a cognitive agent would include the following
capabilities: short-term and long-term memories that store the agent’s beliefs, goals
and knowledge; the representation of elements that are contained in these memories
and their organization into larger-scale mental structures; and the functional
processes that operate on these structures, including the performance mechanisms
that utilize them and the learning mechanisms that alter them.

Traditionally cognitive architectures can be symbolic, connectionist or hybrid.
Symbolic cognitive architectures tend to be based on generic rules or the mind-is-like
a computer analogy (SOAR [5]). In contrast, the sub-symbolic nature of a
connectionist cognitive architecture specifies no such rules based on previous
examination, and relies on emergent properties of processing units (CLARION [6]).
The hybrid approach combines both symbolic and connectionist processing.

2.11 ACT-R Cognitive Architecture
With the aim of harnessing cognitive abilities such as vision, reasoning and linguistic
communication, it was important I attempt to model my design off an already existing
cognitive architecture. The architecture I have chosen is ACT-R (Adaptive Control of
Thought - Rational) which was developed by John Robert Anderson at the Carnegie
Mellon University. ACT-R was chosen due to its already established role in
modelling and solving problems in a similar fashion to the human mind.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

ACT-R is an example of a hybrid approach to cognitive architecture processing, as
its symbolic structure is a production system, whereas the subsymbolic structure is
represented by a set of massively parallel processes that can be summarized by
mathematical equations. These subsymbolic equations control many of the symbolic
processes [2].

ACT-R’s approach to modelling human cognition can, on the exterior look like a
programming language; however it’s constructs reflect assumptions about human
cognition, derived from numerous psychological experiments. In a similar vein to a
programming language, ACT-R is a framework for different tasks e.g (language
comprehension, communication, memory for texts/ words). Researchers develop
models written in ACT-R, that incorporate ACT-R’s view of cognition as well as their
own assumptions for that specific task. A distinguishable feature of ACT-R over other
cognitive architectures, is its ability to collect quantitative measures that can be
directly compared with that of human. For example, a researcher can directly
compare the time to perform a task and the accuracy of a task for a human and an
ACT-R model directly. This feature will be applicable to my application as the AI
player will be performing the same task alongside humans.

2.12 How ACT-R Works
The ACT-R cognitive architecture contains 3 main components; a pattern matcher,
modules and buffers. The following diagram illustrates how the different components
of a traditional ACT-R model interact.

[7]

The 2 main types of modules in ACT-R include perceptual-motor modules and
memory modules. Perceptual-motor modules supply an interface to the real world
environment, with most the popular perceptual-motor modules including visual and
manual. Memory modules consist of declarative memory (long term memory) which
store facts, and procedural memory which are made of production rules (if-then rule
model). ACT-R accesses its modules through buffers, with each module having a

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

dedicated buffer to serve as the interface to that module. The buffers in a sense act
as short-term memory, with their state being modified regularly. The pattern
matching component searches for productions (rules) that match the current state of
the buffers. Only one production can be executed at a single time. When executed,
the production can modify the buffers and change the state of the system, thus
cognition unfolds as a succession of production firings.

The goal of my implementation was to take inspiration from the modelling paradigms
of ACT-R and design my system in a similar fashion. I aim to have 3 perceptual
motor modules consisting of a linguistic module and visual module and
communication module. This is followed by the declarative memory which will be in
the form of our local user agent. The production rules, pattern matching and
execution will be performed by the code itself. The modules will aim to act as an
interface between the environment, whereas the buffers act as the interface between
the modules and production rules, pattern matching and production execution. The
buffers in my context will be the content of variables passed between modules. The
environment will be other human players’ observations, poster scenes (visual input)
and human interaction with the AI player (question input).

2.2 Computer Vision
The AI player will use computer vision to perceive the environment and determine
which objects are present in it. Given the below poster scene, computer vision will be
used to identify the objects within it.

Scene Items to Find

Our computer vision implementation should be able to find all items within scenes,
and when prompted, return the item that’s been requested (eg: if we’re looking for
which fruit the Giraffe eats then we’d return the fruit banana). As we are only finding
simple 2D objects in simple 2D scenes, we can use a well performing off the shelf

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

solution which can achieve this functionality. As my implementation is not in real
time, the engine can be located on a remote system and not on a handheld device.
This design choice has allowed me to explore several types of descriptors regardless
of resource usage, before deciding on a final one.

The vision module defined in ACT-R is where visual input is received from the
environment in the form of pixels. The goal of this module is to mimic human vision
which is sensed through the eyes and processed by the brain. Computer vision is the
science that attempts to replicate this function by giving a machine similar or better
visual sensing and processing. It is primarily focused on the automatic extraction,
analysis and understanding of useful information from a single or sequence of
images. There are numerous areas where computer vision is applicable, with a
subset including; augmented reality, facial recognition, forensics, remote sensing,
robotics, security and surveillance [8].

2.21 How Image Recognition is Currently Achieved
Image recognition requires 3 key components in order to function. The first being a
set of training images to train the descriptors, the second being the descriptor used
to gain information from an image, and the third being the matcher which is how
training images are matched with query images.

Training images are an critical component, as these images are what query images
attempt to match too when the algorithm is run. They can take the form of a single
image or a set of images, which will train the detector in finding images of a similar
nature. In the context of this project, our training images will be the individual objects
within the game (Appendix 7), and our query images will be the scene posters
featured in the game (Appendix 8).

To identify areas of interest in an image, feature descriptors are used. The descriptor
component classifies and stores information about pixel areas of a training image,
and uses them to recognise similar pixels in query images. The two most widely
used descriptors are texture descriptors and key-point descriptors.

Given a texture area, texture descriptors uniformly process the entire area and
extract a high number of parameters to describe it. These parameters tend to be
very similar or identical for each patch of the input area. These parameters tend to
be of low quality by themselves, however in high numbers can be useful for a
classification task.

Key points on the other hand can be defined as spatial locations or points in the
image that stand out due to their interesting nature or “uniqueness”. Key-point
descriptors only process pixels that have a high enough uniqueness value, meaning

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

each pixel will be given a uniqueness measurement before being processed. The
uniqueness value measures how recognisable that pixel will be in another image,
with the top rated pixels being processed into descriptor objects. Keypoint detection
is scale invariant, meaning it’s unaffected by changes in image rotation, shrinking,
expanding and distortion. Being scale invariant, one should be able to detect the
same key points in a modified image as one can in the original.

Both techniques will invoke descriptor methods which produce descriptor objects.
Formed from training images, key point descriptors contain such data as; scale,
orientation, edges, gradients and corners relating to key points. Texture descriptors
on the other hand contain data relating to features, templates and image segments
extracted from texture areas.

The final component to image classification is the matching process. The matcher is
responsible for matching a query image with training images. This’ll determine
whether an object exists or not. This component is very much dependent on the
ability of the descriptor to identify areas of interest, meaning it’s important the correct
image classification technique is used for the problem.

The above diagram illustrates the typical flow of using a key point descriptor. It would
first take a training and query image, and describe them with a descriptor. These 2
descriptors can then be compared against each other with a matcher, producing a
distance parameter to indicate similarity.

2.22 Choosing the Descriptor
The descriptor was chosen early on in the project lifecycle and involved research
and experimentation of both texture and key point descriptors. Firstly I experimented
with the texture descriptor Histogram of Gradients, however I decided early on that I
would not be implementing a texture descriptor for my visual module. This is
because the Histogram of Gradients descriptor along with other similar texture
descriptors (Local Binary Patterns, Haar), require thousands of positive and negative
images stored in a classifier to perform well. This project would require thousands of
positive and negative images of each SHERLOCK object, which would take a lot of
time to compile (the images) and to train each descriptor.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

The solution therefore was to use a key point detector as it only needs a single
image to be trained. The SIFT (Scale Invariant Feature Transform) descriptor was
chosen over other key point descriptors due to its high accuracy rate, scale
invariance and open source availability. Further advantages included; its locality,
meaning its features are local and robust to occlusion and clutter. It’s distinctiveness,
allowing individual features to be matched in a large database of objects. It’s quantity
and efficiency allowing many features to be generated for even small objects, while
being close to real time performance. Finally, its extensibility means it can be easily
extended to a wide range of differing feature types, with each adding robustness
[19].

2.23 The SIFT algorithm
The SIFT algorithm is one of the most well established in the field of computer vision
and in recent times has been noted as the “classic” approach to image recognition
problems. Although SIFT is scale invariant, it can also handle changes in rotation,
illumination and viewpoint with good results.

Given the following set of training images;

and the following scene;

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

our SIFT algorithm will match to the following points.

The large rectangles mark the matched images, with the smaller squares denoting
individual features in those regions[9].

2.231 How it Works
The first step in the SIFT algorithm is to ensure scale invariance. This can be
achieved by creating an internal representation of the original image by generating a
scale space. Creating a scale space in SIFT involves taking the original image and
iteratively applying a Gaussian blur to it. This will form an octave of images. The
original image will then need to be resized by half, followed by an iterative blur of the
resized image [10]. This process is repeated on smaller variations of the image,
producing several octave layers. The following image provides a visualisation of the
process.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

The next step is to use the blurred images produced earlier and generate a new set
of images, known as the Difference of Gaussians (DoG). These DoG images are
vital for detecting blobs at different scales, however can be computationally
expensive. To address we use scale space to calculate the difference between two
consecutive scales. This process is repeated for all octaves. The following image
illustrates this.

These DoG images are approximately equivalent to the Laplacian of Gaussian, with

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

the added benefit of being scale invariant. Although being an approximation, there
are no negative effects to the accuracy of the algorithm [11]. The next step is to find
the key points in the image. This can be done by detecting the maxima and minima
of the DoG images by comparing neighbouring pixels in the current scale, the scale
above and the scale below. Assuming X is a key point, the diagram illustrates how
the algorithm will compare with its neighbours.

This is followed by mathematically locating the subpixel maxima and minima by
applying Taylor expansion to the approximate keypoint [12]. On solving we’ll have
subpixel key point locations, which increase the chances of matching, and improve
the stability of the algorithm [13].

The next step is to dispose of low contrast keypoints generated in the previous step.
We can achieve this by reapplying the taylor expansion to get the intensity value at
the subpixel locations. If it’s a magnitude less that a certain value the keypoint is
rejected. Keypoints are generally rejected if they had a low contrast or are located on
an edge. The process of rejection helps increase the efficiency and robustness of the
algorithm [14].

Left with a set of legitimate key points, the next phase is to assign an orientation to
each point. This orientation will provide rotation invariance to the detector. This
process involves the collection of gradient directions and magnitudes around each
keypoint, followed by the calculation of the most prominent orientations in the region.
These orientations are then assigned to the keypoint, ensuring rotation invariance.
Generally a histogram is used to identify the most prominent gradient orientations,
with a peak of over 80% marking a new keypoint. If there are multiple peaks above
the 80% mark then they’re all converted to a new keypoint in respect to their
orientations. The following diagram illustrates this;

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

[15]

The final step is to generate the feature by creating a fingerprint for each keypoint.
This will allow us to distinguish keypoints from each other. Given the human face,
one keypoint may represent an ear, one may represent a nose while another may
represent the eyes. To create a fingerprint, one must first take a 16x16 window of
“in-between” pixels around the keypoint, and split that window into sixteen 4x4
windows.

From each 4x4 window you generate a histogram of 8 bins. Each bin corresponds to
0-44, 45-89, … , 315 - 359 degrees. Gradient orientations from the 4x4 windows are
put into these bins, which is then repeated for all 4x4 blocks.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Finally the 128 values you get are normalised to form a 128-dimensional feature
vector, based on the gradient orientations of pixels in 16 local neighbourhoods [16].

2.23 Open Source Computer Vision Library (OpenCV)
Image processing will be achieved using the open source vision library OpenCV [17].
Released under a BSD license, OpenCV is free to use for both academic and
commercial use. OpenCV would be ideal for this project as it has support for
classification techniques such as SIFT, SERF and MESR, along with compatibility
with all major operating systems. Although OpenCV is implemented in C/C++, it has
support for Python and Java wrappers allowing me to implement a Python or Java
image classification system. As the wrappers will be executing the native C/C++
code, there will be no adverse performance calling them from a wrapper. The SIFT
algorithm is patented for commercial use in the USA [18], however licensing should
not be an issue as it’s free to use for academia, coupled with the lack of jurisdiction
of US patents in EU states.

2.3 Natural Language Processing
The AI player does not need complex natural language processing capabilities, as its
exclusively designed to play the SHERLOCK game. As its not designed to be a
general AI, we can limit its natural language processing to the level of that in the
game itself. As the game uses Controlled English to describe its environment, we will
also produce CE to describe the environment. Using an already specified controlled
natural english framework along with an established processing environment for CE,
my AI players can communicate its observations with other players in the
SHERLOCK game. Using the same controlled natural language framework as the
game itself, compatibility has been easily achievable with the AI player.

2.31 Controlled Natural Languages
A Controlled Natural Language (CNL) is a form of Human Computer Collaboration

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

(HCC) focusing on ways humans can best communicate with a machine. The two
traditional channels of HCC involve giving computers human-like abilities, generally
focusing on language; with the second being a machine's ability to work alongside
humans. In Loren G Terveen’s paper, ‘Overview of Human-Computer Collaboration’,
he suggests a combination of both approaches is the most effective way of
encouraging human-computer collaboration [20].

The combined approach to HCC has been widely accepted by computer scientists,
social scientists and linguists, resulting in the development of technologies to
complement it. This view however presents a challenge in regards to communication
between humans and machines. Humans prefer communication via natural
languages and images, whereas machines prefer communication in a strict and
controlled form. While machines can process natural language and images to some
extent, without any form of control it can lead to ambiguity and miscommunication.

A CNL takes onboard the unified research findings of HCC, and provides a
compromise between both humans machines. A CNL is viewed a subset of a natural
language as it introduces restrictions on vocabulary. These restrictions aim for it to
be easily processed by a machine, while also being human-readable and writeable.

In the 2014 paper ‘A Survey and Classification of Controlled Natural Languages’,
[21] Tobias Kuhn attempts to bring order to the variety of english CNLs, by
presenting a general classification scheme. Kuhn provides a comprehensive survey
of existing English based CNLs, listing and describing 100 languages dating from the
1930’s to the present day.

Kuhn explains how CNLs have originated from multiple disciplines (computer
science, philosophy, linguistics, and engineering) and spanned over many decades
(from the 1930’s), with each background continuing to use a different name for the
same kind of language. He adds that many CNLs share similar properties, however
exhibit a wide variety of difference: some CNLs are ambiguous, others are as
precise as formal logic; virtually everything can be expressed in some, only
very little in others; some look perfectly natural, others look more like programming
languages; some are defined by just a handful of grammar rules, others are so
complex that no complete grammar exists.

Kuhn discusses how past attempts at defining a common core language have been
inconclusive, therefore he proposes a definition. Kuhn states;

A language is called a controlled natural language if and only if it has all of the
following four properties:

1. It is based on exactly one natural language (its “base language”).

2. The most important difference between it and its base language (but not
necessarily the only one) is that it is more restrictive concerning lexicon, syntax,
and/or semantics.

3. It preserves most of the natural properties of its base language, so that

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

speakers of the base language can intuitively and correctly understand texts in the
controlled natural language, at least to a substantial degree.

4. It is a constructed language, which means that it is explicitly and
consciously defined, and is not the product of an implicit and natural process (even
though it is based on a natural language that is the product of an implicit and natural
process).

A further shorter definition was also provided;

A controlled natural language is a constructed language that is based on a certain
natural language, being more restrictive concerning lexicon, syntax, and/or
semantics, while preserving most of its natural properties.

One of the most prominent CNLs was developed by IBM, and is defined by the
International Technology Alliance as a form of Controlled English (CE) [22]. Although
inspired by CLCE (Common Logic Controlled English), ITA CE is less strict in terms
of precision: It has an “Informal meaning and a semi-formal mapping to predicate
logic”. The two most common forms of language rules are “logical rules” and
“rationale” statements. A “logical rule” would look similar to the following: “if (the
person X has the person Y as brother) and (the person Z has the person X as
father) then (the person Z has the person Y as uncle) ”. A “rationale” rule may look
like: “(“the plan has failed” because “there was a misunderstanding”.)” [23].

Using ITA CE, the AI player can produce should be able to produce output in the
following format;

The hat colour 'green' is worn by the character 'Elephant'
The sport 'basketball' is played by the character 'Leopard'
The fruit 'banana' is eaten by the character 'Giraffe'
The character 'Lion' is in the room 'Amber Room'

2.32 Controlled English Node (CENode)
CENode is a JavaScript implementation of the ITA project's CEStore system [24]. It
comprises of a knowledge base capable of modelling entities and their relationships,
and a central agent that enables humans and other agents to update and query this
KB directly using ITA CE (Controlled English). CENode instances are capable of
being deployed in a variety of settings, such as web applications, standalone apps
on handheld devices and servers [25].

The following diagram illustrates how one could manipulate the knowledge base
directly or through cards.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

In Will Webberley’s paper “CENode: Enabling Human-Machine Conversations
at the Network Edge” [26], he gives an in depth description on how knowledge base
manipulation takes place.

Each CENode comprises a KB and a local CE agent that maintains the KB, shown
above. A CENode will try to process and update its KB when any CE is received. As
with the CE Store, CENode instances also support the blackboard architecture,
which enables users and agents to submit CE sentences wrapped in CE Cards that
are addressed to the local agent. If a card addressed to the agent is received, then
the agent can find the card and read it. If the card contains valid CE, then the agent
can then use this to modify its KB. If the card is not addressed to the local agent,
then it will remain in the KB unread.

Webberley continues by providing an example interaction with the KB via CE;

Assuming a node’s local agent is named agent1, the following two sentences
received by the node would have equal effect:
‘there is a tell card named ‘msg1’ that is to the agent ‘agent1’ and has ‘there is
a subject named Computing’ as content.’
‘there is a subject named Computing.’

The AI player will take advantage of the rich API provided by CENode to host a CE
local model of the SHERLOCK game. Using a GET call, the AI player can query a
localhost model for information and resources regarding the game environment.
Using the POST call, the AI player can upload a card of their described scene in CE
to the central agent. On a local scale, CENode provides the architecture for
interacting with the declarative memory, by maintaining its own KB as well as being
told other players’ observations. In the context of the AI player, CENode will be
interacted with by the the communication module which shares data with the central
agent and queries data from its local agent. This sharing of data is only possible due
to CENode’s automatic interaction capability with other CEnode nodes on the
network. Using CE policies CENode can inform a node to tell all other CENde nodes
(via HTTP) when information is added to the knowledge base.

3.0 Approach and System Design
In this section I shall give an overview into my approach while developing the AI
node, as well as discussing the system design and decisions associated with it.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

3.1 Approach
The development approach deployed on this project borrowed heavily from the agile
software development methodology. This style was chosen due to its ability to
succeed in a turbulent and changing environment. Further advantages included its
emphasis on developer/ stakeholder interaction, which fit perfectly into the student/
supervisor dynamic. This close interaction allowed for the rapid implementation of
changes and the swift addressing of problems during development. With supervisor
meetings varying from weekly to fortnightly, I could model my development sprints
between the meeting dates, presenting a deliverable each time. Smaller changes
could still be made during sprints via interaction on the real-time messaging service
Slack [28]. Aspects of the agile approach that were not deployed were scrums, as
they were not an applicable tool in an individual project. In its place, I utilised Kanban
which is a method for managing knowledge work. Kanban allowed me to balance
demands for work with the available capacity for new work. I found this method of
organisation a good complement to the agile style of development, due to its use of
visualisation to monitor workflow and set development targets. The following is a
traditional example of the kanban method work management system.

Over the course of the project I utilised 4 sprints, each with its own goals, objectives
and deliverables. Following is an overview of the 4 sprints;

Sprint 1

The first sprint focused on my initial research and implementation of computer vision
techniques. Using the OpenCV vision library, I experimented with the histogram of
gradients texture descriptor, along with the ORB and SIFT keypoint detectors.
Experimentation with each descriptor involved the detection of an easily identifiable
image within a basic non cluttered scene. It was during this sprint that the SIFT
detector was settled on for image recognition. The sprint deliverable focused on the
findings of my initial research along with a discussion on the most effective way of
utilising image recognition in the project.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Sprint 2

The second sprint focused on the design and implementation of the core architecture
of the bot. With cognitive architectures in mind, I outlined the main functions and
interactions between components. This sprint also saw the training of the descriptor
with all game objects within my test environment. Finally the descriptor was
integrated into the previously implemented design, with the implementation able to
recognise objects within scenes. The deliverable focused on the successful
classification of objects within the SHERLOCK scenes.

Sprint 3

The third sprint focused on the use of CENode and the SHERLOCK CE model to
produce CNL output. This sprint saw the default CE model modified to integrate the
training parameters and object images for the AI player to reason with. The
deliverable in this sprint focused on the return of valid ITA CE string following a
classification of an object within a scene.

Sprint 4

The fourth and final sprint focused on communicating the AI players CNL output with
the central agent. This ensured it could satisfy the “one of the crowd” objective. This
sprint saw collaboration with the CENode developer Will Webberley to ensure a
successful integration. The final deliverable saw the finished implementation
demonstrated successfully, with the SHERLOCK dashboard updated by the AI
player.

Development Flow Diagram

The above diagram illustrates the development progress during sprints. The diagram
attempts to visualise the iterative nature of development, with the requirements from

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

the stakeholder being our starting point. Following the requirements comes the
design and analysis of the sprint, where system flows and interactions were
conceptualised. This was followed by the implementation of the design, with small
scale developer tests to accompany. Acceptance tests followed, ensuring I’d met the
deliverables set by my supervisor at the start of the sprint. The final step was to
personally evaluate my work and receive feedback from my supervisor. This phase
would see the deliverable critiqued with improvements, and changes suggested for
for the next sprint. Once all supervisor specifications had been met, the
implementation could be deployed.

3.2 Requirements
As with any software system a Software Requirement Specification is produced from
stakeholder requirements. The SRS for this project includes several functional and
nonfunctional requirements which concern the technical implementation. These
requirements can also be used to evaluate the success of the implementation
compared to the initial design.

3.21 Functional Requirements
1. The system must be prompted to answer a question

 Acceptance Criteria

● A question in the form of valid textual input must be received and processed
by the AI player.

● Only valid questions in the SHERLOCK game must be acted upon.

Justification

This functionality aims to mimic that of the human player being prompted to answer
questions in the SHERLOCK game. It’s important a valid question is provided or the
AI player will be unable to gather the necessary resources to answer the question.

2. The system must produce CNL output with relationships

 Acceptance Criteria

● A CNL output must be constructed in the form of valid ITA CE.
● The CNL output must have the relationship between both objects.

Justification

If the system does not produce a CNL output to answer the questions then it’ll be
unable to communicate what it sees to the shared knowledge base. This is due to
CENode requiring interaction to be in the form of CE sentences wrapped in CE tell
cards.

3. The system must play the game alongside human players
Acceptance Criteria

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

● The system must communicate its perceptions via tell cards to the central
agent.

● An empty SHERLOCK dashboard listening to the central agent must change
from grey to yellow when a valid tell card is posted.

● A human player must also send an observation to the central agent via the
SHERLOCK conversational interface.

● The human player's observation must also change the colour of the
SHERLOCK dashboard, with the ai players observation clearly visible.

● The human agent must “ask” its conversational agent a question regarding
the AI players observation.

Justification

Having dashboard squares change colour from 2 different input sources, implies the
central agent is relaying its knowledge to other players in the game. Operating as a
human player, we should be able to see AI players observations change the status
of the human players local SHERLOCK dashboard. Performing an “ask” to the
conversational agent, will prove other players have access to the AI players
observations.

4. The system should use the same or similar model of the world as human
players.

Acceptance Criteria

● The AI player must have its own local user agent with the a version of the
SHERLOCK CE model on it.

● This local user agent must provide the AI player with the same concepts,
objects, rules and relationships available to human players.

Justification

Having a similar view of the world as a human player would allow the AI player to
identify game objects and build relationships between objects.

5. The system must not launch if a local CENode user agent is not
operational

Acceptance Criteria

● An error must appear informing that a local CENode agent is not operational,
followed by the successfully exit of the system.

Justification

The system relies on a local CENode instance being operational, so queries
regarding the environment can be made. The system can can only perform
reasoning if it has access to the games’ concepts and instances hosted on this
CENode instance. Without access, the system will cease to function correctly.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

6. AI player must use computer vision techniques to accurately perceive
objects in a scene

Acceptance Criteria

● We can deduce whether the computer vision technique has accurately
perceived objects by observing the CNL produced relating to that scene.

● Each question’s output should be manually observed to determine whether
perception has been successful.

Justification

If the system is producing wrong observations then the crowdsourced knowledge
base will contain inconclusive answers. By perceiving correctly, it would prove the
game objects have been correctly trained, and that the shared knowledge is correct.
While testing, each CNL string relating to a question will be manually observed for
accuracy by a human tester.

3.22 Non Functional Requirements
1. Invalid input must be handled gracefully

Acceptance Criteria

● The system should catch invalid input and not proceed until valid input is
given.

● Invalid input must return an informative error, specifying what type of input the
system requires.

Justification

If the system is prompted with invalid input, having an error message informing what
type of input the systems looking for, will save the user time in resolving the error.

2. Unsuccessful HTTP requests must be handled gracefully

Acceptance Criteria

● If a HTTP error is encountered, it must be caught and returned with an
informative message on which endpoint is not responding. eg (If a localhost
instance is not active or has last connection while the AI player is operational)

Justification

Having failed HTTP requests means relevant data isn’t being sent or received into
the system. This can adversely affect the core functionality of the system. Having an
error message informing of the precise component a connection failure occurred in,
can assist in fixing the issue.

3.23 Use Case
Use cases help us define the flow and consequence from a user interaction with the
system. Due to the nature of this system, there is only a single use case from the

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

perspective of a typical user. This use case will include a basic flow and alternative
flows.

User prompts the system with a question

Basic Flow

1. User prompts the system with a valid SHERLOCK question.
2. System acknowledges the question and reasons with it.
3. System scans it’s poster “feeds” with inputs derived from the question.
4. System returns its observation in CNL to the user.
5. System sends its observation to the shared KB.

Alternative flow

1. User prompts the system with invalid input.
2. System rejects the input and raises and error.
3. System returns to a “listening” state where it’s waiting for input.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

3.3 System Architecture
The system architecture provides a conceptual model for defining the structure,
behaviour and views of the system. With the aid of a high level diagram, I’ll attempt
to map the interactions between different components, along with the data
exchanges that take place.

The above diagram illustrates a high level view of the systems architecture, while
incorporating several characteristics found in the ACT-R CA. Each module has its
own buffer which aims to store the state of the module at that time. In the context of
the application, the buffers will be variable arguments passed between modules.
Execution and production rules have been programmed into the application, whereas
declarative memory can be accessed via a HTTP request to the local CENode
agent.

The system’s networking will be performed by the communication module. This

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

module will perform HTTP Get and Post requests to both central and local agents.
External data requests can be invoked by any function in the system by calling the
communication module. The diagram shows 2 CEServer instances; the localhost
CENode and the SHERLOCK CENode. The localhost CENode can will have the
modified CE model posted to it when the AI player is launched. It can then be
queried by the AI player via Get requests and receive a JSON response.The
SHERLOCK CENode represents the central agent, where constructed CE output
can be posted. The SHERLOCK CENode will be the central agent all players will
post to. Centralising all CENode communication has made the module far more
cohesive, and understandable from a developer's perspective. The exception to this
cohesion is the telegram message handler, which handles its communication
through an external API.

The systems visual reasoning will be performed by the visual module. This module
will incorporate the SIFT algorithm previously discussed, and will take trained
parameters and image paths as input. Given the correct inputs, the module will
perform visual reasoning and return found objects.

The systems linguistic module will handle textual reasoning on NL inputs, and
produce outputs in CE.

3.4 Modified SHERLOCK Model
When a SHERLOCK game is played, users agent will report back to a central
CENode server instance. This instance will be running the SHERLOCK CE model,
containing the SHERLOCK concepts, rules and entities of the game. For this project,
I’ll be using a modified version of the model with extra concepts and concept values,
however the core functionality of the game will still be the same. In the original
version of the model (Appendix 1), not every object had an image associated with it
(eg: hat colour, sport). This is due to them not being labeled a “sherlock thing” which
inherits the “imageable thing” concept. The below table illustrates the changes made
to these non imageable concepts.

Old Model Modified Model

conceptualise a ~ hat colour ~ C
conceptualise a ~ sport ~ S
there is a hat colour named 'green'
there is a sport named 'tennis'

conceptualise a ~ hat colour ~ C that is a sherlock thing
conceptualise a ~ sport ~ S that is a sherlock thing
there is a hat colour named 'green' that has 'green_hat.jpg'
as image
there is a sport named 'tennis' that has 'tennis.jpg' as
image

The old model also contained many legacy concepts from a previous version of the
game. These concepts will need to be removed in the modified model.

My modified model (Appendix 2) clears out the legacy entities and makes every
game object imageable. My model also introduces a new concept known as a “SIFT
Parameter Set”. This parameter set is “related to” the “sherlock thing”, and shares a

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

common name with objects. It is not however bound by an explicit relationship. Not
binding the parameter sets explicitly to images, but still having a common name,
assured the game's core functionality was still intact. The system could access the
image parameter sets by referring to the object's name followed by the “parameters”
keyword. (EG = “Elephant parameters”). The purpose of the parameter set concept
was to store trained values relating to the SIFT classifier, in a single central location
all data could be retrieved from.

SIFT concept

conceptualise a ~ sift parameter set ~ P that has the sherlock thing T as ~ related thing ~ and has
the value K as ~ maximum distance ~ and has the value J as ~ minimum matches ~

there is a sift parameter set named 'Elephant parameters' that has the character 'Elephant' as
related thing and has '45' as maximum distance and has '65' as minimum matches

Following is a conceptual visualising of my modified SHERLOCK model.

The relationship diagram above attempts to describe the model at a conceptual
level, however the CE model differs greatly at the semantic level. The knowledge
base in reality has a monotonic structure meaning cardinality is not possible. When a

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

query is sent to the model, it’ll return every attribute, relationship and value related to
the object instance. The domain model allows the node to reason about its world and
make inferences based on defined rules. It’s this domain model that allows the
knowledge base to be queried.

In total there are 9 core concepts defined within the model, which include: Sherlock
thing, question, sift parameter set, object, room, fruit, character, sport and hat colour.
These concepts represent different entities within the game, with some inheriting
from others, some having relations with others, and some only representing their
own attributes.

Transitive relations can be established between concepts through the use of rules.
For example, a rule can instruct that a fruit “is eaten by” a character, however a
character also “eats” a fruit. These transitive relationships between concept
properties have the added benefit of being bi-directional. This means two different
statements added to the KB can come to the same conclusion. For example “The
character ‘Zebra’ eats the fruit ‘apple’” and “The fruit ‘apple’ is eaten by the character
‘Zebra’” are inverse statements that come to the same conclusion. Following the
declaration of rules and concepts, instances of concepts can be specified. The
model has an instance for every identifiable object within the game, as well as
having a sift parameter set instance for each imageable object. The use of these
instances will be further explained in the implementation.

4.0 Implementation
In this section I will give an in-depth overview of the systems implementation,
including justifications for decisions made and challenges faced along the way. The
code snippets provided aim to give an overview, however some aspects have been
omitted. Each module class within the system will have an accompanying diagram
describing the interactions between the class methods. The full code base can be
found in Appendix 5.

The current implementation described below can play the game just like a human, in
the context it can form impressions of the world and communicate them to a
designated central agent. It however does not maintain its local agent, and instead
interacts with the central agent by directly posting to it. The consequence of this is
that the AI player cannot receive updates from other players in the game, however
other players can receive the AI players observations to their local agent. The local
agent in this implementation is used to gather resources from its CE model to
construct CNL strings relating to the environment. In future versions, the AI player
should able to maintain its local agent while receiving observations from other
agents.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

4.1 Development Environment
This section will see a quick overview into the environment the system was
developed in, including hardware and software.

4.11 Hardware Environment
The hardware environment consisted of a quad-core i7-6700 running at 3.4GHz and
16GB of DIMM running at 2133 Mhz. The CPU supports 8 threads, with L1 cache of
256KB, L2 cache of 1.0MB and L3 cache of 8.0MB. All codes were executed in a
Bash (version 4.3.11) environment running Ubuntu version 14.04. This specification
proved sufficient to execute the SIFT algorithm in an acceptable time, while also
hosting a local CENode server instance.

4.12 Software Environment

4.121 Primary Languages
The primary languages used in development were Python and Node.js. Python was
used to implement the AI player itself, whereas node.js was the language CENode
was implemented in. Bar some variable modifications, the CENode implementation
used in this project was developed by Dr Will Webberley. Communication between
both systems was through the HTTP protocol, specifically the Get and Post
functions.

The 2 languages considered for the AI player implementation were Java and Python
due to their bindings with the OpenCV image library. Although OpenCV is native to
C++, my inexperience with the language along with support for Python and Java
ruled it out for use in development. As these languages were simply wrappers to the
original C++ implementation, there was no loss in performance when the Java or
Python API’s interacted with it.

Java and Python both have object oriented capabilities which is suitable for creating
a modular implementation, however there are several key differences which
influenced my decision to use Python over Java. Firstly Python is a portable
language and is pre-installed on all current Linux distributions. If not for the external
API’s used by my implementation, the Python code could execute natively on all
Linux machines. This is in comparison to Java which does not have the full language
pre-installed on Linux machines, and can take extensive setup to get it working
correctly. Secondly Python is supported by a centralised package management
system known as pip [27], which provides a simple interface for installing external
packages. Installing Java packages on the other hand can be quite difficult due to
the absence of a centralised package manager. To install external resources, the
user would have to download each JAR (Java Archive), and manually add it to the
classpath configuration variable. As this project utilised several external libraries,
having a streamlined and easy to use package manager would be beneficial. Thirdly,
I’ll be using OpenCV version 3.2, whose documentation is currently only up to date

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

for the Python interface [29]. As OpenCV is an extensive package, it was crucial
there was sufficient and up to date documentation available to reference when
implementing it. Finally, from a personal perspective, my experience programming in
Python greatly outweighs that of my development experience in Java; therefore I
was far more confident I could produce quality software using Python rather than
Java.

4.122 Further API’s Used
Excluding OpenCV, the other Python packages deployed in this project were
Requests[30] and Telepot [31].

Python has native HTTP functionality in the form of Urllib and Urllib2, however the
HTTP library Requests was chosen to handle HTTP calls. There were several
factors which influenced my decision to use Requests over the native urllib and
urllib2 libraries. Firstly Requests fully supports the restful API which meant GET,
POST, PUT and DELETE requests could be made to URLs. This was beneficial as
the system will need to make GET and POST requests to CENode. Secondly, unlike
urllib and urllib2, there’s no need to manually encode data parameters. Urllib
requires the ‘urllib.encode()’ function to encode data, whereas Requests simply
requires a dictionary argument and encoding is automatically handled. An example
of a POST request using the Python Requests API is as follows;

user_data = {"firstname": "Robert", "lastname": "Harris", "password": "Hello88"}

post_data = requests.post('http://www.example.com/user', data=user_data)

The code snippet above shows the dictionary defined in user_data set as the data
variable in the POST request. the data in the data variable and will be automatically
converted to unicode and posted to the address. As well as automatic encoding, it
also contains automatic JSON decoding of GET requests. Finally the requests API
contains a more elegant solution for error handling that urllib2. If authentication fails
in urllib2 then a urllib2.Error is raised, however using Requests would see normal
response object returned, omitting the need to implement an exception unless the
developer explicitly wants to.

Telepot is an API used to build applications for the Telegram Bot API and is
supported for Python 2.7 and 3.5. Initially the telepot API was incorporated as an
image relay platform while prototyping with image classification techniques, however
as the project progressed it proved a useful solution for interacting with the AI player.
Using Telegram as a message relay, one could prompt the system to answer
questions within the game and receive a response back. As it’s also a cross platform
messaging service, the system could be interacted with from a desktop or mobile
device. Following are some example interactions with the bot during development;

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

The above screenshot is from early in development when scene images could be
posted to the bot and classifications could be made on the objects present. Below is
a screenshot from a later build where a user can prompt the bot with a question.

4.123 Software Versions

Software Version

Python 2.7.6

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

OpenCV 3.2.0

Node.js 7.9.0

gcc 4.8.4

Requests 2.2.1

Telepot 9.1

Bash 4.3.11

CENode 3.0.7

4.2 Making and Implementing a Telegram Message Relay Bot
To create a bot using the Telegram API, one would have to receive a HTTP API
token generated by Telegram’s BotFather. Interaction with BotFather can be done
through the Telegram App by sending the message /newbot to the username
@BotFather. BotFather will then walk you through the initial steps to setting up your
bot. The following screenshot shows the interaction with BotFather to setup the bot
used in this project.

As we can see from the screenshot, our generated HTTP API key is
353119581:AAGUpjclZ2RjWW-L-OrHU4bTHltqB1SGYFc. Now our bot is set up, we
can implement the telepot API in Python to enable interaction. The following code
snippet shows how the telegram_handle class sets up the bot interaction.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

class telegram_handle:

 def __init__(self):
 # bot API key
 self.bot = telepot.Bot('353119581:AAGUpjclZ2RjWW-L-OrHU4bTHltqB1SGYFc')
 self.bot.message_loop(self.handle)
 self.trusted = ["robbbh"]

In the constructor we specify the HTTP key in the telepot.Bot function, along with
a message looper and trusted users.

The bot.message_loop(self.handle) takes a method as input (in this case
handle) and spawns a new thread. This thread is responsible for handling that
particular message, and will provide the handle method with the msg argument
containing a JSON message packet. The telepot documentation gives the following
explanation on its functionality;

“Spawn a thread to constantly getUpdates or pull updates from a queue. Apply callback to
every message received. Also starts the scheduler thread for internal events.”

If a message is sent to the bot then a message packet will be received by the
system. This packet can be accessed in the msg variable and will be encoded in a
JSON format. Sending the bot the following message,

will produce the following packet;

{u'date': 1492951430, u'text': u'Where is Hippopotamus?', u'from': {u'username': u'robbbh',
u'first_name': u'Robert', u'last_name': u'Harris', u'id': 294991469}, u'message_id': 2411,
u'chat': {u'username': u'robbbh', u'first_name': u'Robert', u'last_name': u'Harris',
u'type': u'private', u'id': 294991469}}

The following screenshot shows the handle method;

 def handle(self, msg):
 self.userName = msg["from"]["username"]
 self.chat_id = msg['chat']['id']

 if self.userName not in self.trusted:
 self.bot.sendMessage(self.chat_id, "Unverified User...\nPlease use a
verified account.")
 return
 else:
 self.check_message_type(msg)

The handle method will retrieve the packets username and chat_id, and check if the
username is in the approved list. For this project, my Telegram username (robbbh)
will be the only name in the approved list. The chat_id variable will contain the
conversations identifier, enabling the bot to send a reply back to the user. A
response can be sent back to the user, using this function and its arguments;

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

self.bot.sendMessage(self, chat_id, “FooBar”)

In the handle method this is used to inform a rejected username that they are not in
the approved list of users. This chat_id is unique between the user and the bot, and
will need to be accessible by all objects to send messages back to the user.

Once the username has been approved, it’s passed to the check_message_type
function which will check the bot has received the correct message type. This is
necessary as it’s possible to send many types of media to the bot, however we’re
only looking for messages of the type text. The packet contains information on the
message type, so we can simply check for the keyword text in the packet. If the
message is of textual type, then it’s passed into the linguistics module for
processing. If not then an error is raised, and the bot will return to a “listening for
input” state. The code snippet below represents this functionality.

 def check_message_type(self, msg):

 if "text" in msg:
 self.message = msg['text']
 print "Recieved text input = '{0}'".format(self.message)

 interpret_text = Linguistic_Module(self.chat_id)
 interpret_text.determine_question_type(str(self.message))

 else:
 error_message = "No valid message type found."
 print error_message
 self.bot.sendMessage(self.chat_id, error_message)
 return

4.3 Setting up CENode Locally
In this section I’ll give an insight into how a local version CENode was installed and
how the system interacted with it as a means of environmental understanding .

The first step was to clone the CENode project onto my system using the following
command git clone git@github.com:flyingsparx/CENode.git. With the
CENode repository successfully cloned, the next step was to launch a local CENode
server instance that could be interacted with. This could be achieved by executing
the CEServer file inside the CENode directory with the following terminal command;
node src/CEServer.js Moira 5000 core. This command would launch a server
instance with an agent named Moira, listening on port 5000, with the core CE model
launched. The core model in this context contains basic model concepts such as
cards, policies and rules. With the server instance operational on port 5000, I could
now query it from the terminal with the curl command.

Executing curl http://localhost:5000/concepts will return all concepts in the
core model in JSON-encoded format;

[{"name":"entity","id":1},{"name":"imageable thing","id":2},
{"name":"timestamp","id":3}, {"name":"agent","id":4}, {"name":"individual","id":5},

Cardiff University School of Computer Science and Informatics

http://localhost:5000/concepts
mailto:git@github.com

C1334989 – Robert Harris CM3203 – One Semester Individual Project

{"name":"card","id":6}, {"name":"tell card","id":7}, {"name":"ask card","id":8},
{"name":"gist card","id":9}, {"name":"nl card","id":10}, {"name":"confirm
card","id":11}, {"name":"location","id":12}, {"name":"locatable thing","id":13},
{"name":"rule","id":14}, {"name":"policy","id":15}, {"name":"tell policy","id":16},
{"name":"ask policy","id":17}, {"name":"listen policy","id":18}, {"name":"listen
onbehalfof policy","id":19}, {"name":"forwardall policy","id":20}, {"name":"feedback
policy","id":21}]

Executing curl http://localhost:5000/instances will return all instances in
the core model in a JSON-encoded format;

[{"name":"Moira","id":1,"conceptName":"agent","conceptId":4}]

Now we have verified the server is launched and can be successfully contacted, we
can upload our SHERLOCK model to it. Executing the following command will POST
the model to the local server.

curl --form "fileupload=@sherlock.ce http://localhost:5000/sentences

Re-executing the query for concepts and instances should return a far more
extensive JSON output.

curl http://localhost:5000/concepts will now return;

[{"name":"entity","id":1}, {"name":"imageable thing","id":2},
{"name":"timestamp","id":3}, {"name":"agent","id":4}, {"name":"individual","id":5},
{"name":"card","id":6}, {"name":"tell card","id":7}, {"name":"ask card","id":8},
{"name":"gist card","id":9}, {"name":"nl card","id":10}, {"name":"confirm
card","id":11}, {"name":"location","id":12}, {"name":"locatable thing","id":13},
{"name":"rule","id":14}, {"name":"policy","id":15}, {"name":"tell policy","id":16},
{"name":"ask policy","id":17}, {"name":"listen policy","id":18}, {"name":"listen
onbehalfof policy","id":19}, {"name":"forwardall policy","id":20}, {"name":"feedback
policy","id":21}, {"name":"sherlock thing","id":22}, {"name":"fruit","id":23},
{"name":"room","id":24}, {"name":"hat colour","id":25}, {"name":"sport","id":26},
{"name":"character","id":27}, {"name":"object","id":28}, {"name":"question","id":29},
{"name":"sift parameter set","id":30}]

whereas curl http://localhost:5000/instances will return an extensive output
which can be seen in Appendix 3.

It’s this process of querying instances and concepts, that the system can gather the
correct resources it needs to reason with game objects and its environment. For
example, querying the Giraffe character by its instance ID of 13 can be achieved with
the following command curl http://localhost:5000/instance?id=13. It will
then return the following JSON-encoded response.

{"name":"Giraffe", "conceptName":"character", "conceptId":27, "ce":"there is a character
named 'Giraffe' that has 'giraffe.jpg' as image.", "synonyms":[], "subConcepts":[],
"values":[{"label":"image", "targetName":"giraffe.jpg"}], "relationships":[]}

By querying the Giraffe instance we now have such information as concept type,
concept id and image path. The system can reason with this type of information and

Cardiff University School of Computer Science and Informatics

http://localhost:5000/concepts
mailto:fileupload=@sherlock.ce
http://localhost:5000/sentences
http://localhost:5000/concepts
http://localhost:5000/concepts
http://localhost:5000/instance?id=13

C1334989 – Robert Harris CM3203 – One Semester Individual Project

attempt to build inputs for the image classifier and resources for building CNL
strings.

4.4 The Communication Module
In the previous section I demonstrated how CENode could be interacted with through
shell HTTP commands to gather game resources. In this section I’ll be applying the
same concept, but within the Python environment, and using the Requests API to
execute HTTP commands. The communication module is where all interaction with
CENode is handled by the system. The following diagram attempts to give a high
level view of the communication modules interactions with external data resources.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

In this implementation, the communication module is responsible for posting models,
posting to the central agent and performing various get requests for model data. It
consists of a single POST call to the central agent (by-passing the players “user
agent”), along with a POST and 4 GET requests to the local agent. Each request is
encapsulated with the requests.exceptions.RequestException to provide a
concise error output for connection failures.

The module contains a simple constructor containing the port number for the
localhost instance.

class Communincation_Module:

 def __init__(self):
 """ Performs system communication through the Requests API"""
 self.port = 8004

The first POST call is performed when the system is launched, and takes the form of
the post_model method.

if __name__ == "__main__":
 Communincation_Module().post_model()

This method attempts to post the CE SHERLOCK model to the local CENode server
instance. If the POST is unsuccessful then the system will not launch and an error
will be thrown. User prompts and game data reasoning wouldn’t be possible without
a the local CENode hosting the game model, therefore the system will shutdown if
one is not operational.

 def post_model(self):
 try:
 with open('sherlock.ce', 'r') as sherlock_model:
 model = sherlock_model.read()
 requests.post('http://localhost:' + str(self.port) + '/sentences', data =
model)
 except requests.exceptions.RequestException as e:
 error_message = "Error posting model to instance. Please launch the
localhost CEServer to continue."
 print error_message
 print e
 sys.exit(1)

The above code snippet illustrates how this functionality was implemented using the
Requests API. We can see the method reads the model from the sherlock.ce file,
and proceeds to post it to the local CENode server instance.

The second POST call regards the posting of CE tell cards to the central CENode
agent. It’s this agent all players report their observations too. The current central
agent is hosted on http://explorer.cenode.io with the agent name ‘sherlock’,
operating on port 6789. The below code represents this posting functionality to the

Cardiff University School of Computer Science and Informatics

http://explorer.cenode.io/

C1334989 – Robert Harris CM3203 – One Semester Individual Project

shared KB using the requests API.

 def post_to_shared_kb(self, tellcard):
 try:
 requests.post("http://explorer.cenode.io:" + "6789" + "/sentences", data =
tellcard)
 except requests.exceptions.RequestException as e:
 print "Posting to shared knowledge base failed. Please check the instance
exists at http://explorer.cenode.io."
 print e

The communication module contains 4 GET requests which the system regularly
calls to retrieve data. The below code demonstrates the 4 GET calls using the
Requests API. The first two return all instances and concepts within the model,
whereas the latter two return unique instances and concepts specified by an ID.

 def get_instances(self):
 try:
 response = requests.get('http://localhost:' + str(self.port) +
'/instances').json()
 return response
 except requests.exceptions.RequestException as e:
 print "Unable to get instances. Please check the localhost CENode is
operational"
 print e
 os_.exit(0)

 def get_concepts(self):
 try:
 response = requests.get('http://localhost:' + str(self.port) +
'/concepts').json()
 return response
 except requests.exceptions.RequestException as e:
 print "Unable to get concepts. Please check the localhost CENode is
operational"
 print e
 os_.exit(0)

 def get_model_concept_with_id(self, id):
 try:
 response = requests.get("http://localhost:" + str(self.port) + "/concept" +
"?id=" + str(id)).json()
 return response
 except requests.exceptions.RequestException as e:
 print "Unable to get concept ID. Please check the localhost CENode is
operational and the concept ID exists."
 print e
 os_.exit(0)

 def get_model_instance_with_id(self, id):
 try:
 response = requests.get("http://localhost:" + str(self.port) + "/instance" +
"?id=" + str(id)).json()
 return response
 except requests.exceptions.RequestException as e:
 print "Unable to get instance ID. Please check the localhost CENode is
operational and the instance ID exists."
 print e

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 os_.exit(0)

These calls would all return JSON-encoded responses as demonstrated in the
previous section.

I was pleased with the implementation of the communication module as it abided by
the single responsibility principle. This object-orientated principle states that a
module or class should have responsibility over a single part of functionality. By
following this principle, I’ve made the class more robust, maintainable and recyclable
to other classes calling it.

4.5 The Visual Module
In this section I’ll discuss implementation of the visual module, including the
installation of the OpenCV package, the training of the descriptor and the
implementation of the matcher. The visual module incorporates a forward chaining
approach to perceiving the environment, rather than backward chaining. The system
is task focused meaning it’ll only remember an object if it’s asked to look for it.
Although a backward chaining approach would work in principle, the forward
chaining approach was chosen due to its dynamic nature. For example, in a real
world setting, the visual module may be connected to a live feed of an environment.
As a real world environment can be changeable, a dynamic approach could catch
these changeable events, whereas a backward chaining approach may miss them.

4.51 Installing OpenCV
Installing OpenCV was quite a difficult task due to the numerous dependencies the
package relies on. Following a guide found at pyimagesearch.com [32] I did manage
successfully install version 3.2.0 of the OpenCV package. Originally I had installed
OpenCV version 3.1.0, however the Python bindings contained a bug when calling
the Flann matcher function used in my implementation. The following error was
thrown;

OpenCV Error: Assertion failed (The data should normally be NULL!) in allocate, file
opencv/modules/python/src2/cv2.cpp, line 163
Traceback (most recent call last):
 File "test.py", line 21, in <module>
 matches = flann.knnMatch(des1, des2, k=2)
cv2.error: opencv/modules/python/src2/cv2.cpp:163: error: (-215) The data should
normally be NULL! in function allocate

Following research online, the bug was traced to the Python wrapper calling the
FlannBasedMatcher::add overload in the C++ source code [33]. With the bug
patched in OpenCV 3.2.0, updating my package to 3.2.0 addressed the issue.

4.52 Training the Images
One of the key elements to achieving an accurate classification for game objects,
was training the classifier. My implementation used a maximum distance parameter

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

and a minimum matches parameter as thresholds.

The maximum distance parameter refers to the maximum squared euclidean
distance between the query image and training image. The lower the distance value,
the more likely it is that the 2 images have similar properties. The matcher used in
this implementation is the FLANN (Fast Library for Approximate Nearest Neighbors)
matcher [35] which provides a collection of optimised algorithms for fast nearest
neighbor search in large datasets. The Brute Force matcher was considered for this
implementation, however the FLANN matcher was chosen due to its superior speed.
The FLANN matcher yields its speed from an efficient k-dimensional tree data
structure, and its use of an approximate nearest neighbour form of matching.
Although it’s not as accurate as the brute force approach, it has proved sufficient for
this implementation.

Having a maximum distance threshold, allowed me to filter out dissimilar descriptors.
The overall distance value is calculated by taking the sum of the top 20 best
distances (shortest distances) and dividing them by 20. Following some
experimentation, the top 20 distances were chosen, as it contained a good sample of
best distances while filtering out false positives. Although some classifications
contained less than 20 matches, their average distance was still too high to be
considered a positive match.

The minimum matches parameter refers to the number of matches the Flann
matcher produces. Generally a positive match will have a higher number of matches,
however is not a conclusive measurement by itself. Coupling this with the distance
parameter has allowed me to successfully identify game objects within scenes.

Following are the distances and matches produced by the apple object when tested
against all poster scenes.

Query Image Name Training
Image

Number of
Matches

Distance

elephant_orange.JPG apple.jpg 8 92.903792572

elephant_orange_room.JPG apple.jpg 10 135.497565079

elephant_tennis_greenhat.JPG apple.jpg 11 123.690659904

giraffe_banana_redhat.JPG apple.jpg 15 154.159870148

giraffe_room_redhat_robot.JPG apple.jpg 21 220.922873306

giraffe_rugby.JPG apple.jpg 17 171.832937622

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

hippo_pineapple.JPG apple.jpg 16 198.512023163

hippo_room_bluehat.JPG apple.jpg 20 267.396146393

hippo_soccer.JPG apple.jpg 9 119.771272278

lion_golf.JPG apple.jpg 23 186.96775341

lion_pinkhat.JPG apple.jpg 34 133.380025291

lion_room_lemon_ape.JPG apple.jpg 50 151.138672829

tiger_basketball_yellowhat.JPG apple.jpg 16 172.676062393

tiger_pear_green_baloon.JPG apple.jpg 37 122.598890114

tiger_pear.JPG apple.jpg 38 116.710225105

zebra_apple_purplehat.JPG apple.jpg 56 19.2249680042

zebra_apple_room_ghost.JPG apple.jpg 33 67.7635392189

zebra_cricket.JPG apple.jpg 22 213.569628906

The apple object is present in the zebra_apple_purplehat.JPG and
zebra_apple_room_ghost.JPG scenes. Observing the table we can see both scenes
have a much lower distance value of 19.2 and 67.8, followed by a match count of 56
and 33 respectively. We can see that zebra_apple_purplehat.JPG has a higher
match count and a lower distance measurement than the
zebra_apple_room_ghost.JPG scene even though they contain the same apple
object. This is due to the apple object present in the zebra_apple_room_ghost.JPG
scene having a smaller resolution than the apple training image. There is enough
disparity however, between the other scenes that the apple object can be classified
successfully. A successful classification could be achieved with a maximum distance
of 90 and a minimum match count of 30. This process was repeated for every object
in the game, until all objects had been trained for the descriptor.

The following images visualise the zebra_apple_purplehat.JPG and
zebra_apple_room_ghost.JPG keypoints being matched to the apple object. The
images are processed in greyscale as the detector relies on the luminance of the
image for detecting visual features. A greyscale image is just as good for detecting

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

intensity as an RGB image, however its processing costs are greatly reduced due to
it only comparing simple scalar algebraic operators (+ , -).

We can see that keypoints are being matched between the apple training image on
the right and the apple object within the scene to the left, however there are several
false positives present on the Zebra character in both scenes. Taking the top 20 best
distances as discussed earlier, we can attempt to filter out these false positives.

The table contains classifications for all scenes, with the majority not containing the
apple object. The SIFT descriptor still however, attempts to match with keypoints
present in both scenes. We can see in the image below how the SIFT descriptor has
matched keypoints found in the apple image to keypoints found in the
hippo_room_bluehat.JPG. The matcher found a total of 20 matches between the 2
images, with a distance average of 267.4. Using the trained parameters discussed
above, the system can conclude that the apple object is not present in the
hippo_room_bluehat.JPG scene. Training parameters for all objects can be found in
the modified CE model in Appendix 2.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

4.53 The Visual Module Class
The visual module class contains 4 methods overall, with each method interacting
with each other to produce a classification. In this implementation, the system can
access its “feed” to the posters through the ./scenes directory in the codes
repository. In a real life environment we could assume this “feed” will be a
connection to a camera system with access to the environment. (eg: A CCTV
camera in an inaccessible location).

The interaction between methods can be visualised by the following diagram;

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

The module takes 2 inputs in the form of Object and Subject Data. These inputs will
be in a tuple data structure containing an object image path, object image name,
maximum average flann distance and minimum match value. The subject data will
contain a single tuple with information about a single entity within the game (eg: The
Elephant Character). The object data will contain a list of tuples containing
information about a specific object within the game (eg: Fruit object = Apple,
Pineapple, Bananas, Orange, Lemon, Pear).

The system will first interact with the find_scenes_with_objects method, which
searches the environment in an attempt to find scenes containing the subject image.
To do this, it’ll extract the data contained in the subject_data tuple, and pass it to
the test_image method. The test_image method will classify the subject image

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

and scene images with the SIFT detector, before passing it on to the
get_best_match method. The get_best_match method will return all scenes
containing the subject image. A total of 18 iterations to the SIFT classifier will be
completed in this first step, as there are 18 individual scenes in the game.

Now all positive scenes have been found, they’re passed to the
find_objects_with_refined_scenes method along with the object data. As
mentioned previously, object_data contains a list of tuples where each tuple will
have be iterated over and have its data extracted. Each iteration will extract the tuple
data and pass it to the test_image method. As we have refined the scenes, the
SIFT descriptor will have to iterate over a maximum of 3 scenes searching for a
single object. Once the get_best_match has found a positive object, the object can
be returned to the external module which requested classification.

Generally there will be 6 different objects the system will search for within the refined
set of scenes. Assuming there are 3 scenes in the set of refined scenes, this process
will complete a maximum of 18 iterations over the SIFT descriptor. Overall the SIFT
descriptor will be utilised a maximum of 36 times when answering a question,
however this number is relative to the number of refined scenes. Questions can
produce up to 3 refined scenes, meaning the SIFT descriptor can be utilised 24, 30
or 36 times depending on the question.

4.54 Example Case
Given the question ‘Where is Hippopotamus?’ the visual module would receive the
following object_data and subject_data variables.

subject_data = ('hippo.jpg', u'35', u'105', 'Hippopotamus')

object_data = [('ruby_room.jpg', u'10', u'155', 'Ruby Room'),
('saphire_room.jpg', u'5', u'200', 'Sapphire Room'),
('gold_room.jpg', u'30', u'155', 'Gold Room'), ('amber_room.jpg',
u'32', u'175', 'Amber Room'), ('emerald_room.jpg', u'35', u'190',
'Emerald Room'), ('silver_room.jpg', u'5', u'190', 'Silver Room')]

Observing the subject_data output, we can see it contains a tuple regarding the
‘Hippopotamus’ character. As the question has prompted for information about the
Hippopotamus character, the system has determined that it is our “subject”. The
object_data variable on the other hand contains a list of objects that are concerned
with the subject . As the question is prompting for a location, all of the game's
locations have been returned. We can see the tuples returned in both variables have
data concerning the object image, minimum matches, maximum distance and object
name.

Now our variables have been determined, they can be sent for classification. The
first step sees the system search for the Hippopotamus character within the
environment. This would involve iterating through every poster scene, and returning

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

each scene containing the subject. This example returned the following scenes;

scenes_with_object = ['scenes/hippo_pineapple.JPG',

'scenes/hippo_room_bluehat.JPG', 'scenes/hippo_soccer.JPG']

hippo_pineapple.JPG hippo_room_bluehat.JPG hippo_soccer.JPG

The next step sees the above scenes classified against the locations in
object_data. This would ultimately produce the final classification, which would
answer the initial question. The answer of ‘Gold Room’ is produced in this example.

4.55 Descriptor and Matcher Code
In this section I’ll discuss the implementation of the SIFT descriptor and FLANN
matcher, along with the process of finding the best matches. The initial
implementation took influence from the feature detection tutorials found in the
OpenCV documentation [34].

Following is the test_image method which applies the SIFT algorithm and FLANN
matcher.

 def test_image(self, test, train, min_match, min_dist, input_image_name):
 """ Performs image classification with the SIFT descriptor """
 # opens query and train image in grayscale
 query_image = cv2.imread(test,0)
 train_image = cv2.imread(train,0)

 # Initiate SIFT detector
 sift = cv2.xfeatures2d.SIFT_create()

 # find the keypoints and descriptors with SIFT
 kp1, des1 = sift.detectAndCompute(query_image,None)
 kp2, des2 = sift.detectAndCompute(train_image,None)

 FLANN_INDEX_KDTREE = 0
 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
 search_params = dict(checks = 50)

 flann = cv2.FlannBasedMatcher(index_params, search_params)

 matches = flann.knnMatch(des1,des2,k=2)

 return self.get_best_match(matches, test, train, min_dist, min_match,

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

input_image_name)

The initial step is is to read in the query and training image into the system, and
convert them to greyscale. This is done by using the cv2.imread() function while
supplying the image path and integer flag. We use the flag value of 0 which specifies
greyscale conversion. The next step is to initiate the SIFT detector with the
cv2.xfeatures2d.SIFT_create() function. Initiating this function allows us to
access its detectAndCompute() methods which will find keypoints and descriptors
within the images in a single step.

The next step is to perform descriptor matching with the FLANN based matcher. The
FLANN based matcher requires two dictionaries; one to specify which algorithm to
be used, and one to specify related parameters. The index_params variable
specifies that the FLANN_INDEX_KDTREE algorithm is to be used along with a set of 5
parallel kd-trees. The search_params variable specifies the number of times the
trees in the index should be recursively traversed. The higher the value, the more
precise the matching will be, however it’ll increase the run time. 50 was deemed an
acceptable number of checks as it was precise, and relatively quick. Now our
parameters has been specified, the FLANN based matcher along with its arguments
can be called with cv2.FlannBasedMatcher(index_params, search_params).
We could perform the matches with the knnSearch function available in the Flann
Based matcher object. Using matches=flann.knnMatch(des1,des2,k=2) we can
perform a K-nearest neighbour search for given query points. The k=2 specified is
the count of best matches found per query descriptor, and allows us to perform
Lowe’s ratio test which will be discussed below. The matches between both
descriptors are saved to the matches variable ready to be filtered and reasoned with
for positive and negative matches. This would be performed in the
get_best_match() method as specified below.

 def get_best_match(self, matches, test, train, min_dist, min_match,
input_image_name):
 """ Works out the best match based on training data and ratio test. """

 # store all the good matches as per Lowe's ratio test.
 good = []
 for m,n in matches:
 if m.distance < 0.7*n.distance:
 good.append(m)

 if len(good) >= int(min_match):
 match_array = [matches.distance for matches in good]
 # sorts matches by size
 matches = sorted(match_array, key = lambda x:x)
 # gets average of 20 best matches
 distance = sum(matches[:20])/20

 if distance <= int(min_dist):
 scene_path = test
 image = input_image_name
 return scene_path, input_image_name

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

There are 3 main steps the get_best_match() method executes to come to a
conclusion. The first step is to perform Lowe’s ratio test which is specified in David
G. Lowe’s paper, Distinctive Image Features from Scale-Invariant Keypoints [36].
Lowe states that many features from an image will not have any correct match with a
training database, due to background clutter or were not detected in the training
images. Lowe continues, saying it would be useful to have a way to discard features
that do not have a match to the database. He suggests an effective measure to
achieve this by comparing the distance of the closest neighbour to that of the
second-closest neighbour. Lowe claims, that this measure performs well because
correct matches need to have the closest neighbor significantly closer than the
closest incorrect match to achieve reliable matching. For false matches, there will
likely be a number of other false matches within similar distances due to the high
dimensionality of the feature space. Lowe rejects all matches with a distance ratio
greater than 0.8, and claims it eliminates 90% of false matches while disregarding
5% of correct matches. The OpenCV documentation specifies a distance ratio of 0.7,
therefore my implementation follows suit.

When good matches (matches that have passed Lowe’s test) have been filtered,
they are placed into the good array. The number of matches in this array are then
checked against the minimum matches training parameter. If the length of the array
satisfies the minimum matches parameter, then it advances to be checked by the
maximum distance parameter. This will take the 20 best matches and take the
average distance. If this parameter is satisfied then a positive match is returned.

4.6 The Linguistics Module
In this section I’ll give an overview into the implementation of the linguistics module.
The systems linguistic module is responsible for processing user input, reasoning
with it and producing CNL outputs. This module interacts closely with the
communication module, and makes many resource requests to the local CENode
agent. It also interacts with the visual module when data from the environment is
required.

4.61 The Linguistics Class
The linguistics class is initialised with the following constructor.

class Linguistic_Module:

 def __init__(self, chat_id):

 self.sherlock_model = Communincation_Module()
 self.instance_data = self.sherlock_model.get_instances()
 self.concept_data = self.sherlock_model.get_concepts()
 self.sift_parameters = self.get_sift_parameters()

This constructor will initialise the communication module as well as load instance
data, concept data and sift parameters into cache. These datasets are frequently
accessed by the class methods, meaning caching them would speed up overall

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

access.

An overview of the linguistics class can be illustrated by the following diagram.

4.62 Check Question Existence
The linguistics class takes a textual input in the form of a question. This will be fed to
the check_if_questions_exist method, where the question is checked against
known questions in the model. This method will retrieve its question data from the
get_model_questions method, which queries each question instance for the
matching question string. As we are not solving complex natural language problems,

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

this solution was deemed acceptable to achieve the goal of the functionality. This
solution does have its disadvantages however. As queryable data is limited to the
questions in the model, knowledge about non questionable objects such as the
ghost, balloon, robot and Gorilla cannot be added to the knowledge base. These
objects will only be brought to the systems attention if there is a specific question
regarding them. The system has been trained to spot these objects, so a future
version of the AI player has the scope to solve this issue.

Given the question ‘What character plays rugby?’, get_model_questions will return
the following JSON dataset.

{"name":"q19","conceptName":"question","conceptId":29,"ce":"there is a question named
'q19' that has 'What character plays rugby?' as text and has 'is played by' as
relationship and concerns the sport
'rugby'.","synonyms":[],"subConcepts":[],"values":[{"label":"text","targetName":"What
character plays rugby?"},{"label":"relationship","targetName":"is played
by"}],"relationships":[{"label":"concerns","targetName":"rugby","targetId":37,"targetCon
ceptName":"sport","targetConceptId":26}]}

The code that completes this is as follows;

 def check_if_question_exists(self, input_string):
 """ Take question and check if it exists in the model. If it exists, extract
 useful data. """
 input_string = input_string.lower()
 question_data = self.get_model_questions()
 found = False
 for question in question_data:
 if str(question["values"][0]["targetName"]).lower() == input_string:
 subjectType = question["relationships"][0]["targetConceptName"]
 subjectName = question["relationships"][0]["targetName"]
 relationship = question["values"][1]["targetName"]
 questionID = question["name"]
 found = True

 if found:
 self.process_question_data(subjectType, subjectName, relationship,
questionID)
 else:
 print "Invalid Question"
 self.bot.sendMessage(self.chat_id, "Invalid Question")
 return

 def get_model_questions(self):
 """ gets the questions associated with the sherlock game. """
 question_data = []
 for instance in self.instance_data:
 if instance["conceptName"] == "question":

question_data.append(self.sherlock_model.get_model_instance_with_id(str(instance["id"]))
)

 return question_data

Observing the check_if_question_exists method, we can see how a valid
question is found by comparing the ["values"][0]["targetName"] JSON location
with the question contained in input_string. If this statement is true, then the

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

subjectType, subjectName, relationship and questionID will be extracted from the
dataset. The found flag will also be set to True to indicate the question exists, and
that the system can proceed to process the extracted data.

In our JSON dataset accompanying the ‘What character plays rugby?’ question, the
extracted data would be as follows;

subjectType = ‘sport’

subjectName = ‘rugby’

relationship = ‘is played by’

questionID = ‘q19’

4.63 Process Question Data
These values will then passed to the process_question_data method, with the aim
of finding the object type. To find the object type, the system will traverse the model
with its known resources (subjectType, subjectName, relationship) unstil it’s found
the correct object type.

This was quite a cumbersome task overall, as numerous data sets had to be iterated
through to arrive at the correct object type. This was complicated by certain question
types having their object type in different areas of the model. To address this, there
are 4 different cases for finding the correct object type, which are dependent on the
questionID passed in from the previous method. Some cases have to traverse
concepts several times when attempting to come to a conclusion. This consequently
results in an increase of data requests to the communication module. In a future
implementation, attempts will be made to condense the process_question_data
method and decrease the number of external resource calls. The code for all 4 cases
can be found in Appendix 4.

The most common case for finding the object type can be found below.

 # All other questions
 else:
 for concepts in self.concept_data:
 if concepts["name"] == subjectType:
 subjectTypeID = concepts["id"]

 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(subjectTypeID)

 for conceptValues in subjectTypeConcept["relationships"]:
 if conceptValues["label"] == relationship:
 objectType = conceptValues["targetName"]
 break

This case will firstly find the subjectType within the game concepts. Once a concept
has been matched, its ID is extracted. The get_model_concept_with_id method is
then called with the extracted ID as input. This will return the specified concepts
JSON dataset. Given our subjectType of ‘Sport’, its concept ID will passed to the

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

get_model_concept_with_id method, with the following JSON dataset returned.

{u'relationships': [{u'targetId': 27, u'targetName': u'character', u'label': u'is played
by'}, {u'targetId': 24, u'targetName': u'room', u'label': u'is in'}, {u'targetId': 27,
u'targetName': u'character', u'label': u'is played by'}, {u'targetId': 24,
u'targetName': u'room', u'label': u'is in'}, {u'targetId': 27, u'targetName':
u'character', u'label': u'is played by'}, {u'targetId': 24, u'targetName': u'room',
u'label': u'is in'}, {u'targetId': 27, u'targetName': u'character', u'label': u'is
played by'}, {u'targetId': 24, u'targetName': u'room', u'label': u'is in'}], u'name':
u'sport', u'ce': u'conceptualise a ~ sport ~ S that is a sherlock thing and ~ is played
by ~ the character A and ~ is in ~ the room B and ~ is played by ~ the character C and ~
is in ~ the room D and ~ is played by ~ the character E and ~ is in ~ the room F and ~
is played by ~ the character G and ~ is in ~ the room H.', u'instances': [{u'name':
u'tennis', u'id': 36}, {u'name': u'rugby', u'id': 37}, {u'name': u'soccer', u'id': 38},
{u'name': u'cricket', u'id': 39}, {u'name': u'golf', u'id': 40}, {u'name':
u'basketball', u'id': 41}], u'values': [], u'parents': [{u'name': u'sherlock thing',
u'id': 22}], u'children': []}

Iterating through the 'relationships' key, we’re now searching for the ‘is
played by’ relationship in its 'label' subkey. If this relationship is found, then its
accompanying 'targetName' is returned. In our example case, the 'targetName'
value ‘Character’ is found and set as our objectType.

Finally the method will output a string informing the user about the objects it’ll be
searching for in the environment. In our example the following string will be
outputted.

We're looking for 'character' associated with 'rugby'

4.64 Searching the Environment
By now the linguistics module would have figured out the subject name, subject type,
object type and the relationship between both objects. The missing piece of
information is now the object name.

The method search_environment is where the linguistics module interacts with the
visual module. This interaction has the aim of to resolving the object name and to
complete the resources needed to concatenate a CNL string. Using both the subject
name and object type, the search_environment method will retrieve the appropriate
SIFT parameter training sets ready for classification. This can be achieved by calling
the get_subjectName_image_path_and_params and
get_object_image_paths_and_params methods.

The get_subjectName_image_path_and_params will take a subject name as an
input and return the subject name image path, maximum distance, minimum
matches and image name in a tuple variable. It is called with the following statement;

 subject_data = self.get_subjectName_image_path_and_params(subjectName)

and will interact with the following method;

 def get_subjectName_image_path_and_params(self, subjectName):
 """ Gets the subjectName image path and get training parameters
 for the image"""

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 for index_entry in self.instance_data:
 if index_entry["name"] == subjectName:
 objectID = index_entry["id"]

 instance_id_data = self.sherlock_model.get_model_instance_with_id(objectID)

 subject_image_path = str(instance_id_data["values"][0]["targetName"])
 subject_image_name = str(instance_id_data["name"])

 for sift_obj in self.sift_parameters["instances"]:
 if str(sift_obj["name"]).lower() == subjectName.lower() + " parameters":
 siftID = sift_obj["id"]

 instance_id_data = self.sherlock_model.get_model_instance_with_id(siftID)

 for value in instance_id_data["values"]:
 if value["label"] == "maximum distance":
 max_distance = value["targetName"]
 elif value["label"] == "minimum matches":
 min_matches = value["targetName"]

 parameters = (subject_image_path, max_distance, min_matches, subject_image_name)
 return parameters

This method will initially find the subject name’s ID from the instance data cache, and
call get_model_instance_with_id with the ID input. Assuming our subject name is
‘Rugby’ we’d receive the following JSON response.

{u'relationships': [], u'conceptId': 26, u'name': u'rugby', u'conceptName': u'sport',
u'ce': u"there is a sport named 'rugby' that has 'rugby.jpg' as image.", u'synonyms':
[], u'values': [{u'targetName': u'rugby.jpg', u'label': u'image'}], u'subConcepts': []}

From this dataset we can extract the subject's training image path by accessing the
instance_id_data["values"][0]["targetName"] JSON location. The next step
is to query the SIFT parameters associated with the training image. Assuming our
SIFT parameter set is called ‘rugby parameters’, we would retrieve its instance ID
from cache and query the get_model_instance_with_id with it. This would return
the following JSON response.

{u'relationships': [], u'conceptId': 30, u'name': u'rugby parameters', u'conceptName':
u'sift parameter set', u'ce': u"there is a sift parameter set named 'rugby parameters'
that has the sport 'rugby' as related thing and has '30' as maximum distance and has
'125' as minimum matches.", u'synonyms': [], u'values': [{u'targetConceptId': 26,
u'targetId': 37, u'targetName': u'rugby', u'targetConceptName': u'sport', u'label':
u'related thing'}, {u'targetName': u'30', u'label': u'maximum distance'},
{u'targetName': u'125', u'label': u'minimum matches'}], u'subConcepts': []}

Iterating through the 'values' key, the strings ‘maximum distance’ and ‘minimum
matches’ must be matched to their 'label' subkey. The values will then be
available in the accompanying 'targetName' key, and set to the max_distance and
min_matches variable.

This process was repeated for the get_object_image_paths_and_params method
with an input of object type. With the object type in our example being ‘Character’,

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

this method would return the SIFT parameters relating to all 6 characters within the
game. With both parameter sets now determined, the linguistics module can now
prompt the visual module to find the missing object name. The following code
represents this call.

image_recognition = Visual_Module(self.chat_id)
found_object = image_recognition.find_scenes_with_objects(subject_data, object_data)

Our example will return the character ‘Giraffe’ and store it in the found_object
variable.

4.65 Constructing Output
Our system would now have all the resources it needs to construct a CNL string
containing an answer to the question. This CNL string will be constructed and
outputted in the construct_output method, followed by its insertion into a tell card.

Taking the inputs subjectType, subjectName, relationship, objectType and
found_object, the CNL string is concatenated with the following code;

message_to_output = "The {0} \\'{1}\\' {2} the {3} \\'{4}\\'".format(subjectType,
subjectName, relationship, objectType, found_object)

message_to_print = "The {0} '{1}' {2} the {3} '{4}'".format(subjectType, subjectName,
relationship, objectType, found_object)

The message_to_output variable is concatenated into a tell card, whereas
message_to_print is outputted to standard out. The message_to_output string
contains escaped symbols ‘\\’, to ensure the single quotes aren’t misinterpreted
when integrated with the tell card string and by extension to the central CENode
agent.

For our question example, the two following strings will be produced.

message_to_output = The sport \\'rugby\\' is played by the character \\'Giraffe\\'
message_to_print = The sport 'rugby' is played by the character 'Giraffe'

The final step in our implementation is to construct the tell card and to post it to the
shared knowledge base.

Cards are defined in CENode as a delivery mechanism for CE, and are
recommended as primary means for human-node and node-node communication.
Cards wrap CE contain a value property and enable the information within to be
shipped to different agents. This system will be using a subclass of the card concept
known as a tell card to communicate its observations. Tell cards act as a vehicle to
post valid CE to a node, and they’re the only card whose contents can modify a
knowledge base.

Our example will produce the following tell card.

there is a tell card named 'msg_{uid}' that has 'The sport \'rugby\' is played by the
character \'Giraffe\'' as content and is to the agent 'sherlock' and is from the agent
'sherBot' and has the timestamp '{now}' as timestamp

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

With the card ready to be posted, the system calls the communication module and
posts the card with the post_to_shared_kb method.

self.sherlock_model.post_to_shared_kb(tellcard)

4.7 SHERLOCK Dashboard
One of the key deliverables of this project is to see the SHERLOCK dashboard
‘change colour’, indicating the central agent has received new knowledge. The
dashboard is available at http://rob.cenode.io/ and is listening the
‘sherlock’ agent being hosted on http://explorer.cenode.io:6789. The
system posts its tell cards to http://explorer.cenode.io:6789, which in turn
saves them as card instances. The tell card in our example case is represented by
the following JSON dataset.

{"name":"msg_sherlock2","conceptName":"tell card","conceptId":7,"ce":"there is a tell
card named 'msg_sherlock2' that has 'The sport \\'rugby\\' is played by the character
\\'Giraffe\\'' as content and has the timestamp '1493422086125' as timestamp and is to
the agent 'sherlock' and is from the agent 'sherBot' and is to the agent
'Moira'.","synonyms":[],"subConcepts":[],"values":[{"label":"content","targetName":"The
sport 'rugby' is played by the character
'Giraffe'"},{"label":"timestamp","targetName":"1493422086125","targetId":7,"targetConcep
tName":"timestamp","targetConceptId":3}],"relationships":[{"label":"is
to","targetName":"sherlock","targetId":4,"targetConceptName":"agent","targetConceptId":4
},{"label":"is
from","targetName":"sherBot","targetId":6,"targetConceptName":"agent","targetConceptId":
4},{"label":"is
to","targetName":"Moira","targetId":3,"targetConceptName":"agent","targetConceptId":4}]}

The SHERLOCK agent operational at http://rob.cenode.io/ is running the same
modified SHERLOCK model we’ve been using, however it also contains some extra
instructional statements.

var SHERLOCK_NODE_MODEL = [
 "there is an agent named 'sherlock' that has 'http://explorer.cenode.io:6789' as
address",
 "there is a tell policy named 'p2' that has 'true' as enabled and has the agent
'sherlock' as target",
 "there is a listen policy named 'p4' that has 'true' as enabled and has the agent
'sherlock' as target"
];

These statement inform the dashboard agent about the central agent named
‘sherlock’ at the address http://explorer.cenode.io:6789. It then sets both its
tell policy and listen policies to true, along with the ‘sherlock’ agent as a target. It’s
these statements that enable http://rob.cenode.io/ to listen for incoming
knowledge and to update the dashboard accordingly. The SHERLOCK instance will
see our tell card within the shared knowledge base and update its accompanying
tile(s). Here’s the dashboard following the addition of our example case tell card.

Cardiff University School of Computer Science and Informatics

http://explorer.cenode.io:6789/
http://rob.cenode.io/
http://explorer.cenode.io:6789/
http://rob.cenode.io/
http://explorer.cenode.io:6789/
http://rob.cenode.io/

C1334989 – Robert Harris CM3203 – One Semester Individual Project

We can see that square 13 and 24 have changed their colours from grey to orange.
This indicates that some knowledge has been entered regarding these questions,
however there are not enough statements to form a conclusive answer. As human
players add knowledge regarding the questions, the tiles will change to green
(conclusive) or red (un-conclusive).

Tile 13 represents the question ‘What character plays rugby?’, whereas tile 34
represents ‘What sport does Giraffe play?’. As the CE model is bidirectional, the
knowledge we’ve added has provided an answer to both questions.

5.0 Testing
In this section I’ll be testing the system against the requirements and use case
outlined in the part 3.2.

5.1 The system must be prompted to answer a question
 Acceptance Criteria

● A question in the form of valid textual input must be received and processed
by the AI player.

● Only valid questions in the SHERLOCK game must be acted upon.

The system can be prompted to answer a question by sending a message to the
user @cf_sher_bot via the telegram messaging service. Textual input will be
forwarded to the system, where its validity will be determined. A valid question is
determined as one within the SHERLOCK game. All valid questions can be found in
Appendix 6.

Asking the valid question eg: ‘What fruit does Leopard eat?’, will return the
following;

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Asking an invalid question e.g: ‘What’s the weather like today?’, ‘Hello World’, ‘My
name is Rob’ will return the following;

As we can see, the system can be prompted to answer textual input by via the
telegram messaging service, while also filtering out invalid input.

5.2 The system must produce CNL output with relationships
 Acceptance Criteria

● A CNL output must be constructed in the form of valid ITA CE.
● The CNL output must have the relationship between both objects.

The system must produce a valid CNL string in ITA CE in order to communicate
what it’s observed to the central agent. This string must contain two objects, the type
of objects and an adjoining relationship between both objects. Following a valid
question input, a CNL string with a relation between two objects will be produced.
Given the following question “What fruit does Leopard eat”;

The system will produce the CNL string “The character 'Leopard' eats the fruit 'pear'”.
The string contains 2 objects (Leopard, Pear), 2 object types (Character, fruit) and a
combining relationship (eats).

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

5.3 The system must play the game alongside human players
Acceptance Criteria

● The system must communicate its perceptions via tell cards to the central
agent.

● An empty SHERLOCK dashboard listening to the central agent must change
from grey to yellow when a valid tell card is posted.

● A human player must also send an observation to the central agent via the
SHERLOCK conversational interface.

● The human player's observation must also change the colour of the
SHERLOCK dashboard, with the ai players observation clearly visible.

● The human agent must “ask” its conversational agent a question regarding
the AI players observation.

When cards are submitted to the shared knowledge base, the users local agent
updates its SHERLOCK dashboard by listening for instances of tell cards in the
central agent.

Tell cards are constructed by the linguistics module and posted by the
communication module. The following is an example of a tell card;

there is a tell card named 'msg_{uid}' that has 'The sport \'rugby\' is played by the
character \'Giraffe\'' as content and is to the agent 'sherlock' and is from the agent
'sherBot' and has the timestamp '{now}' as timestamp

If this card is successfully posted, its instance on the central agent will take the form
of the following JSON dataset;

{"name":"msg_sherlock2","conceptName":"tell card","conceptId":7,"ce":"there is a tell
card named 'msg_sherlock2' that has 'The sport \\'rugby\\' is played by the character
\\'Giraffe\\'' as content and has the timestamp '1493422086125' as timestamp and is to
the agent 'sherlock' and is from the agent 'sherBot' and is to the agent
'Moira'.","synonyms":[],"subConcepts":[],"values":[{"label":"content","targetName":"The
sport 'rugby' is played by the character
'Giraffe'"},{"label":"timestamp","targetName":"1493422086125","targetId":7,"targetConcep
tName":"timestamp","targetConceptId":3}],"relationships":[{"label":"is
to","targetName":"sherlock","targetId":4,"targetConceptName":"agent","targetConceptId":4
},{"label":"is
from","targetName":"sherBot","targetId":6,"targetConceptName":"agent","targetConceptId":
4},{"label":"is
to","targetName":"Moira","targetId":3,"targetConceptName":"agent","targetConceptId":4}]}

The user agents local SHERLOCK dashboard will react to this tell card and update
the appropriate squares from grey to yellow. Observing from a human player's
perspective we can see the dashboard has changed from being fully grey to having 2
squares contain some knowledge. These represent the tell card observations from
the AI player.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

As the human player we can add our own observations which will update the same
dashboard.

Note: Although 2 observations have been inputted, they’ve both answered 2
questions each; hence there are 4 squares lit up.

A human player can then perform an ask prompt regarding the AI players answered
question to the central agent.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

This proves that observations from the AI player are being received and
communicated by the central node, with other players able access them.

5.4 The system should use the same or similar model of the world as human
players.
Acceptance Criteria

● The AI player must have its own local user agent with the a version of the
SHERLOCK CE model on it.

● This local user agent must provide the AI player with the same concepts,
objects, rules and relationships available to human players.

The communication module is responsible for querying the local host CENode
instance for game instances and concepts. It contains 4 different GET calls to
achieve this. Accessing this data implies the AI player has access to the same
resources a human player agent would have.

Calling get_concepts in the communication model will return all concepts;

[{"name":"entity","id":1},{"name":"imageable
thing","id":2},{"name":"timestamp","id":3},{"name":"agent","id":4},{"name":"individual",
"id":5},{"name":"card","id":6},{"name":"tell card","id":7},{"name":"ask
card","id":8},{"name":"gist card","id":9},{"name":"nl card","id":10},{"name":"confirm
card","id":11},{"name":"location","id":12},{"name":"locatable
thing","id":13},{"name":"rule","id":14},{"name":"policy","id":15},{"name":"tell
policy","id":16},{"name":"ask policy","id":17},{"name":"listen
policy","id":18},{"name":"listen onbehalfof policy","id":19},{"name":"forwardall
policy","id":20},{"name":"feedback policy","id":21},{"name":"sherlock
thing","id":22},{"name":"fruit","id":23},{"name":"room","id":24},{"name":"hat
colour","id":25},{"name":"sport","id":26},{"name":"character","id":27},{"name":"object",

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

"id":28},{"name":"question","id":29},{"name":"sift parameter set","id":30}]

Calling get_instances in the communication module will return all instances;

See Appendix 3

Calling get_model_concept_with_id with an id argument will return a specific
concepts attributes. (eg: {"name":"location","id":12})

{"name":"location","ce":"conceptualise a ~ location ~ L that is a
entity.","parents":[{"name":"entity","id":1}],"children":[{"name":"room","id":24}],"inst
ances":[],"values":[],"relationships":[]}

Calling get_model_instances_with_id with an id argument will return a specific
instances attributes. (eg: {"name":"Zebra","id":17})

{"name":"Zebra","conceptName":"character","conceptId":27,"ce":"there is a character
named 'Zebra' that has 'zebra.jpg' as
image.","synonyms":[],"subConcepts":[],"values":[{"label":"image","targetName":"zebra.jp
g"}],"relationships":[]}

5.5 The system must not launch if a local CENode instance is not operational
Acceptance Criteria

● An error must appear informing that a local CENode instance is not
operational, followed by the system exiting successfully.

The system can be launched by executing the ai_player.py file in a terminal
window from our working directory.

python ai_player.py

If the local CENode instance is not operation, the following error message will be
thrown.

(cv) rob@ROB-PC:/mnt/c/Users/JME/git/scene_recognition$ python ai_player.py

Error posting model to instance. Please launch the localhost CEServer to continue.
HTTPConnectionPool(host='localhost', port=8004): Max retries exceeded with url:
/sentences (Caused by
NewConnectionError('<requests.packages.urllib3.connection.HTTPConnection object at
0x7fb88b64d650>: Failed to establish a new connection: [Errno 111] Connection
refused',))

(cv) rob@ROB-PC:/mnt/c/Users/JME/git/scene_recognition$

The message above throws a requests API exception informing the user of a failed
attempt in contacting a URL. The error message informs the user to launch the
localhost CEServer to continue. The system has exited successfully as no stack
traceback has been thrown, and control has been returned to the terminal.

Alternatively, a successful launch would look like the following;

(cv) rob@ROB-PC:/mnt/c/Users/JME/git/scene_recognition$ python ai_player.py
AI Player Launched!

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

_

5.6 The AI player must use computer vision techniques to accurately perceive
objects in a scene
It is vital that knowledge produced by the AI player is accurate or we’d risk polluting
the shared knowledge base with inaccurate knowledge. Producing accurate
observations would also support the viability of an artificial system in contributing to
crowdsourced datasets. To test the accuracy of the system I’ll produce table
containing the questions, CNL string produced from the questions, a scene relating
to the question and an accuracy indicator.

Question CNL Output Scene Relating to Question Correct
Observatio

n

What character eats
pineapples?

The fruit 'pineapple' is
eaten by the character
'Hippopotamus'

Yes

What character eats
apples?

The fruit 'apple' is
eaten by the character
'Zebra'

Yes

What character eats
bananas?

The fruit 'banana' is
eaten by the character
'Giraffe'

Yes

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 What character eats
lemons?

The fruit 'lemon' is
eaten by the character
'Lion'

Yes

 What character eats
oranges?

The fruit 'orange' is
eaten by the character
'Elephant'

Yes

 What fruit does
Elephant eat?

The character
'Elephant' eats the fruit
'orange'

Yes

 What fruit does
Leopard eat?

The character
'Leopard' eats the fruit
'pear'

Yes

 What fruit does
Giraffe eat?

The character 'Giraffe'
eats the fruit 'banana'

Yes

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 What fruit does Lion
eat?

The character 'Lion'
eats the fruit 'lemon'

Yes

What sport does Zebra
play?

The character 'Zebra'
plays the sport 'cricket'

Yes

What sport does Lion
play?

The character 'Lion'
plays the sport 'golf'

Yes

What sport does
Giraffe play?

The character 'Giraffe'
plays the sport 'rugby'

Yes

What sport does
Hippopotamus play?

The character
'Hippopotamus' plays
the sport 'soccer'

Yes

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

What sport does
Elephant play?

The character
'Elephant' plays the
sport 'tennis'

Yes

What character plays
rugby?

 The sport 'rugby' is
played by the
character 'Giraffe'

Yes

What character plays
basketball?

The sport 'basketball'
is played by the
character 'Leopard'

Yes

What character plays
soccer?

The sport 'soccer' is
played by the
character
'Hippopotamus'

Yes

What character plays
golf?

The sport 'golf' is
played by the
character 'Lion'

Yes

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Where is the apple? The fruit 'apple' is in
the room 'Silver Room'

Yes

Where is the pear? The fruit 'pear' is in the
room 'Emerald Room'

Yes

Where is
Hippopotamus?

The character
'Hippopotamus' is in
the room 'Gold Room'

Yes

Where is Lion? The character 'Lion' is
in the room 'Amber
Room'

Yes

Where is Giraffe? The character 'Giraffe'
is in the room
'Sapphire Room'

Yes

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Where is Elephant? The character
'Elephant' is in the
location 'Ruby Room'

Yes

What fruit is in the
silver room?

The fruit 'apple' is in
the room 'Silver Room'

Yes

Which character is in
the emerald room?

The character
'Leopard' is in the
room 'Emerald Room'

Yes

 What character is in
the sapphire room?

The character 'Giraffe'
is in the room
'Sapphire Room'

Yes

What character is in
the ruby room?

The character
'Elephant' is in the
room 'Ruby Room'

Yes

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

What character is in
the amber room?

The character 'Lion' is
in the room 'Amber
Room'

Yes

What colour hat is
Elephant wearing?

The hat colour 'green'
is worn by the
character 'Elephant'

Yes

What colour hat is Lion
wearing?

The hat colour 'pink' is
worn by the character
'Lion'

Yes

What colour hat is
Zebra wearing?

The hat colour 'purple'
is worn by the
character 'Zebra'

Yes

What colour hat is
Hippopotamus
wearing?

The hat colour 'blue' is
worn by the character
'Hippopotamus'

Yes

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

What character is
wearing a yellow hat?

The hat colour 'yellow'
is worn by the
character 'Leopard'

Yes

What character is
wearing a blue hat?

The hat colour 'blue' is
worn by the character
'Hippopotamus'

Yes

What character is
wearing a red hat?

The hat colour 'red' is
worn by the character
'Giraffe'

Yes

The system has a 100% success rate when classifying objects using the computer
vision solution inside the visual module.

5.7 Invalid input must be handled gracefully
Acceptance Criteria

● The system should catch invalid input and not proceed until valid input is
given.

● Invalid input must return an informative error, specifying what type of input the
system requires.

Using the telegram as a message relay it is possible to send non textual messages
to the system (eg: Images/ file attachments). The system must be able to handle and
reject these non textual inputs and provide an informative error message.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

The above images represent the system's response to an image input and a voice
message input. The error message reads;

Messages must be in a text format, consisting of a SHERLOCK question.

5.8 Unsuccessful HTTP requests must be handled gracefully
Acceptance Criteria

● If a HTTP error is encountered, it must be caught and returned with an
informative message on which endpoint is not responding. eg (If a localhost
agent instance is not active)

The system performs several HTTP requests for external sources while reasoning
with game questions. It is important that unexpected connection issues are handled
sensibly and gracefully so the issue can be solved swiftly. Each method in the
communication module contains its own unique error message and requests API
exception.

post_model error message;

Error posting model to instance. Please check your connection with the localhost CEServer.

HTTPConnectionPool(host='localhost', port=8004): Max retries exceeded with url: /sentences
(Caused by NewConnectionError('<requests.packages.urllib3.connection.HTTPConnection object
at 0x7fb88b64d650>: Failed to establish a new connection: [Errno 111] Connection
refused',))

post_to_shared_kb error message;

Posting to shared knowledge base failed. Please check your connection with the external
instance at http://explorer.cenode.io.

HTTPConnectionPool(host='explorer.cenode.io', port=6789): Max retries exceeded with url:
/sentences (Caused by
NewConnectionError('<requests.packages.urllib3.connection.HTTPConnection object at
0x7fb9ed696350>: Failed to establish a new connection: [Errno 111] Connection

Cardiff University School of Computer Science and Informatics

http://explorer.cenode.io/

C1334989 – Robert Harris CM3203 – One Semester Individual Project

refused',))
get_instances error message;

Unable to get instances. Please check your connection with the localhost CEServer.

HTTPConnectionPool(host='localhost', port=8004): Max retries exceeded with url:
/instances (Caused by
NewConnectionError('<requests.packages.urllib3.connection.HTTPConnection object at
0x7f79ab2cded0>: Failed to establish a new connection: [Errno 111] Connection
refused',))
get_concepts error message;

Unable to get concepts. Please check your connection with the localhost CEServer.

HTTPConnectionPool(host='localhost', port=8004): Max retries exceeded with url:
/concepts (Caused by
NewConnectionError('<requests.packages.urllib3.connection.HTTPConnection object at
0x7f68876bf150>: Failed to establish a new connection: [Errno 111] Connection
refused',))

get_model_concept_with_id error message;

Unable to get concept with ID. Please check the concept ID exists and your connection

with the localhost CENode exists.

HTTPConnectionPool(host='localhost', port=8004): Max retries exceeded with url:

/concept?id=30 (Caused by

NewConnectionError('<requests.packages.urllib3.connection.HTTPConnection object at

0x7ff0a7d7e250>: Failed to establish a new connection: [Errno 111] Connection

refused',))

get_model_instance_with_id error message;

Unable to get instance ID. Please check the instance ID exists and your connection with
the localhost CENode exists.

HTTPConnectionPool(host='localhost', port=8004): Max retries exceeded with url:
/instance?id=47 (Caused by
NewConnectionError('<requests.packages.urllib3.connection.HTTPConnection object at
0x7fe460b7e590>: Failed to establish a new connection: [Errno 111] Connection
refused',))

5.9 Use Case
User prompts the system with a question

Basic Flow

1. User prompts the system with a valid SHERLOCK question.

Prompting the system with the question “What character eats pineapples?”

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

2. System acknowledges the question and reasons with it.

3. System scans it’s poster “feeds” with inputs derived from the question.

4. System returns its observation in CNL to the user.

5. System sends its observation to the shared KB.

The dashboard acknowledges the posted observation;

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Alternative flow

Prompting the system with invalid input “What’s the weather like today?”

1. User prompts the system with invalid input.

2. System rejects the input and raises and error.

3. System returns to a “listening” state where it’s waiting for input.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

The “_” icon in the terminal window indicates the system is “listening” for input.

6.0 Future work
There is much scope for future work based off this project, especially in expanding
system to be compatible with different problem domains. Different problem domains
could entail different environments requiring different cognitive abilities such as
sound and sensing (temperature, light, chemical). The problem domain could also
extend to non english controlled language models, such as controlled natural welsh.
Perceiving the world in Welsh, the node could produce CNW output, and report
Welsh observations to a central agent.

Although the system currently possesses many cognitive architecture attributes, it’s
declarative long term memory is currently missing. In the context of this project, the
declarative memory would be the AI players local agent maintaining its knowledge
base with its own observations, and receive external observations from the central
node. The AI players current implementation does not maintain its local agent, and
can only communicate what it observes with the central agent. Future work would
focus on enabling this bilateral communication between the AI players local agent
and the central agent. Once it’s implemented the AI players local agent can receive
up to date knowledge on the state of the environment from other players, as well as
post its own observations.

The initial purpose of the SHERLOCK game was to research human behaviour,
while interacting with a CNL agent. Provided with limited information about the initial
world, humans are tasked with collecting information they have observed locally.
Using the CNL agent, humans must collect additional information about the world by
working as a team. Experimenting in a controlled environment, observations about
human interaction and the quality of collected information are made. It would be
interesting having the AI player operate alongside the human players while one of
these experiments is taking place. I suspect the AI player may have the biggest
impact on the mean score, relating to the certainty of answered questions. This is
because the AI player has shown 100% accuracy so far in observing its
environment. The AI player can operate by being prompted or could be configured to
run autonomously in the background. The AI player could perform all of its
observations instantly, or it can be spaced to intervals in the game (eg: every 30
seconds). Once the players declarative memory is working correctly it could behave
dynamically, searching for gaps in knowledge and attempting to fill them.

The system currently relies on a feed to environmental posters, with this feed
currently being a directory containing images of game posters. A future version could
contain a connection to a camera or multiple cameras, which have live feeds to a
specific environment. These visual feeds could then be processed by our visual
module to determine the contents of the environment in real time. This live feed
could potentially be in an inaccessible environment, which can only be perceived
through CCTV cameras. Our AI player could monitor several feeds concurrently, or

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

we could have multiple AI players monitoring a single camera, each reporting its
observations to the central agent.

From an implementation standpoint, the visual module would need a more efficient
computer vision solution to perform image recognition in real time. For example the
ORB, FAST and SURF descriptors could be investigated as possible solutions. This
is due to their superior speed and similar performance to the SIFT descriptor.

Further research into computer vision could allow me to experiment with classifiers
that can detect on the HSV (Hue, Saturation, Values) spectrum in images. The
current implementation focuses on the intensity of the image in grayscale,
disregarding RGB values. A HSV classifier has the ability to detect colour space by
separating luma (image intensity) from chroma (colourfulness). Using a HSV
detector may be beneficial when performing real time image detection in dynamic
environments. This is due to its robustness to lighting changes relating to shadows,
and differing levels of brightness during the day.

A final area that could be extended on is the extraction of knowledge that does not
have an explicit question relating to it. Currently only questions within the game can
be answered, meaning the extra objects (Gorilla, Robot, Balloon, Ghost) cannot be
reported on. These objects have been trained to be recognised with the SIFT
descriptor however, with their parameters present in the model.

7.0 Reflection
In this section I’ll provide a reflection on the development of the AI player, including
implementation, development processes and technologies used.

I utilised an agile approach to developing this project, and on reflection this was the
correct decision. The agile approach allowed me to efficiently deal with specification
and functionality changes which were expected following supervisor meetings. For
example, an early implementation of the AI player focused on taking images of
scenes with a smartphone camera. Acting more as a cognitive assistant at the time,
a prototype of this system was made and demonstrated. Following a supervisor
meeting, the decision was taken to adapt the system into a full player, taking
questions as input and receiving “feeds” to the scenes. The agile approach allowed
me to succeed when responding to specification changes.

In hindsight, I believe CENode and its components were introduced far too late into
the project lifecycle. This resulted in me having to re-implement some of the same
functionality, but in a slightly different way. For example, the original training data
was saved to a local JSON file and read into the system. Doing further research into
CENode, I discovered that querying the CE models concepts and instances returns
JSON encoded packets. I concluded it made sense to try and integrate my training
data into the model itself, thus providing a unified location for retrieving external data.
I believe this was the correct decision, as it provided a level of modularity between
the system itself and its data sources.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

The main disadvantage of receiving all model data in JSON however, is its flat
structure made it difficult to find the correct resources for some types of question.
Questions asking about location required extensive traversal of the model, and
required some inelegant code to arrive at the correct answer. This code can be
specifically found in the process_question_data method in the linguistics module.
Implementing this method again, I would decouple functionality and explore more
efficient ways of coming to the same answer.

I believe using Python was the correct decision to implement the AI player, however
due to the system's dependency on the OpenCV package, portability is proving to be
difficult. OpenCV is an extensive package and can take a significant amount of time
to set up. For the AI player to be hosted on a system that’s not my development
machine, time will need to be taken to install all OpenCV dependencies. In the
future, knowing the system is using the SIFT algorithm, I could try and bypass the
OpenCV package, and implement a stand alone version of SIFT. This may prove
difficult as there are no guarantees it’ll interface easily with Python. In the meantime.
the AI player can be launched externally by connecting via ssh into my development
machine.

Reflecting on the visual module, I noticed a logical error while determining the best
match of an object within a scene. Although it produced the correct result in this
implementation, it is something I would change in a future version. The error relates
to the processing of 20 best matches to determine a positive match. All objects
maximum distance parameter were determined by the top 20 closest matches, being
summed and then divided by 20. The correct classification for the lemon object
however only produced 15 matches. This meant all 15 matches of the lemon object
were divided by 20, producing an invalid average. In a future version I’ll remove the
dependency on 20 matches, and instead implement a more dynamic approach. This
dynamic approach would use percentages (eg: 80% of best matches) so a valid
average is always produced.

8.0 Conclusion
To conclude, it is possible for an AI player to play the SHERLOCK tactical
intelligence game alongside human players. It successfully achieves this by
perceiving its environment, reasoning, describing and articulating what it observes in
CNL strings. It can then communicate its observation to the central agent, which’ll be
relayed to other players.

In the most part the system components have been successfully modelled off the
ACT-R cognitive architecture, implementing a linguistic module, visual module and
communication module. Although we are missing a declarative memory, the system
still possess a short term memory which it’ll use to communicate an observation
before forgetting it. The system can also perceive its immediate visual environment,
and receive direct question input, however it cannot currently receive other players’
environmental observations.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

The implementation of the AI player has left much room for future work. The most
immediate area of future work I would like to explore is having the AI player, play
alongside real humans in a controlled SHERLOCK experiment in the Queens
Building. Having it operational in a controlled environment, I’ll be able to monitor its
effectiveness when playing alongside human players. To make it more realistic, we
could limit the scenes the AI player has access to, limiting its scope to only answer a
subset of game questions. If we envision the AI player only has access to a certain
amount of visual information, then in a real life setting it can only answer questions
within its visual scope.

Overall I believe this project has proved there is scope to implement virtual entities
when crowdsourcing knowledge. Although there is much work to be done in
monitoring its effectiveness, this project proves it’s possible.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

9.0 References

[1] A Preece, W Webberley, D Braines, N Hu, T La Porta, E Zaroukian,and J Z Bakdash,
SHERLOCK: Simple Human Experiments Regarding Locally Observed Collective Knowledge,
December 2015.

[2] "ACT-R", Act-r.psy.cmu.edu, 2017. [Online]. Available: http://act-r.psy.cmu.edu/about/.
[Accessed: 07- Apr- 2017].

[3] P. Langley, J. Laird and S. Rogers, "Cognitive architectures: Research issues and
challenges", Cognitive Systems Research, vol. 10, no. 2, pp. 141-160, 2009.

[4] P. Rosenbloom, "Cognitive/Virtual Human Architecture", http://ict.usc.edu, 2017. [Online].
Available:
http://ict.usc.edu/wp-content/uploads/overviews/CognitiveVirtual%20Human%20Architecture_Overvie
w.pdf. [Accessed: 07- Apr- 2017].

[5] "Soar Home - Soar Cognitive Architecture", Soar.eecs.umich.edu, 2017. [Online]. Available:
http://soar.eecs.umich.edu/. [Accessed: 08- Apr- 2017].

[6] "The CLARION Cognitive Architecture Project", Sites.google.com, 2017. [Online]. Available:
https://sites.google.com/site/clarioncognitivearchitecture/. [Accessed: 08- Apr- 2017].

[7] “ACT-R diagram.”,
http://act-r.psy.cmu.edu/wordpress/wp-content/uploads/2012/09/buffers.gif. 2017.

[8] "What is computer vision?", Bmva.org, 2017. [Online]. Available:
http://www.bmva.org/visionoverview. [Accessed: 09- Apr- 2017].

[9] U. Sinha, "SIFT: Theory and Practice: Introduction - AI Shack - Tutorials for OpenCV,
computer vision, deep learning, image processing, neural networks and artificial intelligence.",
Aishack.in, 2017. [Online]. Available:
http://www.aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/. [Accessed: 12- Apr-
2017].

[10] U. Sinha, "SIFT: Theory and Practice: The scale space - AI Shack - Tutorials for OpenCV,
computer vision, deep learning, image processing, neural networks and artificial intelligence.",
Aishack.in, 2017. [Online]. Available:
http://www.aishack.in/tutorials/sift-scale-invariant-feature-transform-scale-space/. [Accessed: 12- Apr-
2017].

[11] U. Sinha, "SIFT: Theory and Practice: LoG approximations - AI Shack - Tutorials for OpenCV,
computer vision, deep learning, image processing, neural networks and artificial intelligence.",
Aishack.in, 2017. [Online]. Available:
http://www.aishack.in/tutorials/sift-scale-invariant-feature-transform-log-approximation/. [Accessed:
12- Apr- 2017].

[12] "Taylor Series -- from Wolfram MathWorld", Mathworld.wolfram.com, 2017. [Online].
Available: http://mathworld.wolfram.com/TaylorSeries.html. [Accessed: 12- Apr- 2017].

[13] U. Sinha, "SIFT: Theory and Practice: Finding keypoints - AI Shack - Tutorials for OpenCV,
computer vision, deep learning, image processing, neural networks and artificial intelligence.",
Aishack.in, 2017. [Online]. Available:
http://www.aishack.in/tutorials/sift-scale-invariant-feature-transform-keypoints/. [Accessed: 12- Apr-
2017].

[14] U. Sinha, "SIFT: Theory and Practice: Getting rid of low contrast keypoints - AI Shack -

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Tutorials for OpenCV, computer vision, deep learning, image processing, neural networks and
artificial intelligence.", Aishack.in, 2017. [Online]. Available:
http://www.aishack.in/tutorials/sift-scale-invariant-feature-transform-eliminate-low-contrast/.
[Accessed: 12- Apr- 2017].

[15] U. Sinha, "SIFT: Theory and Practice: Keypoint orientations - AI Shack - Tutorials for
OpenCV, computer vision, deep learning, image processing, neural networks and artificial
intelligence.", Aishack.in, 2017. [Online]. Available:
http://www.aishack.in/tutorials/sift-scale-invariant-feature-transform-keypoint-orientation/. [Accessed:
12- Apr- 2017].

[16] U. Sinha, "SIFT: Theory and Practice: Generating a feature - AI Shack - Tutorials for
OpenCV, computer vision, deep learning, image processing, neural networks and artificial
intelligence.", Aishack.in, 2017. [Online]. Available:
http://aishack.in/tutorials/sift-scale-invariant-feature-transform-features/. [Accessed: 12- Apr- 2017].

[17] "OpenCV library", Opencv.org, 2017. [Online]. Available: http://opencv.org/. [Accessed: 12-
Apr- 2017].

[18] "Patent US6711293 - Method and apparatus for identifying scale invariant features in an
image and use of same for locating an object in an image", Google Books, 2017. [Online]. Available:
https://www.google.com/patents/US6711293. [Accessed: 12- Apr- 2017].

[19] D. Lowe, "The SIFT (Scale Invariant Feature Transform) Detector and Descriptor", University
of British Columbia, 1999.

[20] L. Terveen. Overview of human-computer collaboration. Knowledge-Based Systems, 67–69,
1995.

[21] T. Kuhn, "A Survey and Classification of Controlled Natural Languages", Computational
Linguistics, vol. 40, no. 1, pp. 121-170, 2014.

[22] "IBM Controlled Natural Language Processing Environment", Ibm.com, 2017. [Online].
Available:
https://www.ibm.com/developerworks/community/groups/service/html/communitystart?communityUuid
=558d55b6-78b6-43e6-9c14-0792481e4532. [Accessed: 13- Apr- 2017].

[23] T. Kuhn, A Survey and Classification of Controlled Natural Languages. [Online].
Available: http://www.aclweb.org/anthology/J14-1005. [Accessed: 13- Apr- 2017].

[24] "CE Store", developerWorks Open, 2017. [Online]. Available:
https://developer.ibm.com/open/openprojects/ce-store/. [Accessed: 14- Apr- 2017].

[25] "CENode", Cenode.io, 2017. [Online]. Available: http://cenode.io/. [Accessed: 14- Apr- 2017]

[26] W. Webberley, A. Preece and D. Braines, "CENode: Enabling Human-Machine Conversations
at the Network Edge", 2015.

[27] "pip 9.0.1 : Python Package Index", Pypi.python.org, 2017. [Online]. Available:
https://pypi.python.org/pypi/pip. [Accessed: 20- Apr- 2017].

[28] Slack, "Slack: Where work happens," Slack. [Online]. Available: https://slack.com/. [Accessed:
20- Apr- 2017].

[29] "OpenCV: OpenCV-Python Tutorials", Docs.opencv.org, 2017. [Online]. Available:
http://docs.opencv.org/3.2.0/d6/d00/tutorial_py_root.html. [Accessed: 21- Apr- 2017].

[30] "Requests: HTTP for Humans — Requests 2.13.0 documentation", Docs.python-requests.org,
2017. [Online]. Available: http://docs.python-requests.org/en/master/. [Accessed: 21- Apr- 2017].

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

[31] "Introduction — telepot 10.5 documentation", Telepot.readthedocs.io, 2017. [Online].
Available: http://telepot.readthedocs.io/en/latest/. [Accessed: 21- Apr- 2017].

[32] A. Rosebrock, "Ubuntu 16.04: How to install OpenCV - PyImageSearch", PyImageSearch,
2017. [Online]. Available:
http://www.pyimagesearch.com/2016/10/24/ubuntu-16-04-how-to-install-opencv/. [Accessed: 24- Apr-
2017].

[33] "FlannBasedMatcher Python Fix (Fixes #5667) by patricksnape · Pull Request #6009 ·
opencv/opencv", GitHub, 2017. [Online]. Available: https://github.com/opencv/opencv/pull/6009.
[Accessed: 24- Apr- 2017].

[34] "Feature Matching — OpenCV-Python Tutorials 1 documentation",
Opencv-python-tutroals.readthedocs.io, 2017. [Online]. Available:
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matc
her.html#flann-based-matcher. [Accessed: 26- Apr- 2017].

[35] D. Marius Muja, "Fast approximate nearest neighbors with automatic algorithm configuration",
Citeseer.ist.psu.edu, 2017. [Online]. Available:
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.1721. [Accessed: 26- Apr- 2017].

[36] D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of
Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

10.0 Appendices

Appendix 1 - Original SHERLOCK CE model

 conceptualise a ~ sherlock thing ~ S that is an entity and is an imageable thing
 conceptualise an ~ organisation ~ O that is a sherlock thing
 conceptualise a ~ fruit ~ F that is a sherlock thing and is a locatable thing
 conceptualise a ~ room ~ R that is a location and is a sherlock thing
 conceptualise a ~ hat colour ~ C
 conceptualise a ~ sport ~ S
 conceptualise a ~ character ~ C that is a sherlock thing and is a locatable thing and has the hat colour C as ~ hat colour ~
 conceptualise the character C ~ works for ~ the organisation O and ~ eats ~ the fruit F and ~ plays ~ the sport S
 conceptualise the hat colour C ~ is worn by ~ the character C
 conceptualise an ~ object ~ O that is an entity
 conceptualise the object O ~ resides in ~ the room R
 conceptualise the room R ~ contains ~ the fruit F and has the character C as ~ contents ~ and has the object O as ~ additional contents ~
 conceptualise the fruit F ~ is eaten by ~ the character C
 conceptualise the sport S ~ is played by ~ the character C and ~ is in ~ the room R
 conceptualise a ~ question ~ Q that has the value V as ~ text ~ and has the value W as ~ value ~ and has the value X as ~ relationship ~
 conceptualise the question Q ~ concerns ~ the sherlock thing C
 there is a rule named r1 that has 'if the character C ~ eats ~ the fruit F then the fruit F ~ is eaten by ~ the character C' as instruction
 there is a rule named r2 that has 'if the character C ~ plays ~ the sport S then the sport S ~ is played by ~ the character C' as instruction
 there is a rule named r3 that has 'if the character C has the hat colour S as ~ hat colour ~ then the hat colour S ~ is worn by ~ the character C' as instruction
 there is a rule named r4 that has 'if the character C ~ is in ~ the room R then the room R has the character C as ~ contents ~' as instruction
 there is a rule named r5 that has 'if the fruit F ~ is in ~ the room R then the room R ~ contains ~ the fruit F' as instruction
 there is a rule named r6 that has 'if the fruit F ~ is eaten by ~ the character C then the character C ~ eats ~ the fruit F' as instruction
 there is a rule named r7 that has 'if the sport S ~ is played by ~ the character C then the character C ~ plays ~ the sport S' as instruction
 there is a rule named r8 that has 'if the hat colour S ~ is worn by ~ the character C then the character C has the hat colour S as ~ hat colour ~' as instruction
 there is a rule named r9 that has 'if the room R has the character C as ~ contents ~ then the character C ~ is in ~ the room R' as instruction
 there is a rule named r10 that has 'if the room R ~ contains ~ the fruit F then the fruit F ~ is in ~ the room R' as instruction
 there is a character named 'Prof Crane' that has 'http://sherlock.cenode.io/media/crane.png' as image
 there is a character named 'Dr Finch' that has 'http://sherlock.cenode.io/media/finch.png' as image
 there is a character named 'Col Robin' that has 'http://sherlock.cenode.io/media/robin.png' as image
 there is a character named 'Sgt Stork' that has 'http://sherlock.cenode.io/media/stork.png' as image
 there is a character named 'Rev Hawk' that has 'http://sherlock.cenode.io/media/hawk.png' as image

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 there is a character named 'Capt Falcon' that has 'http://sherlock.cenode.io/media/falcon.png' as image
 there is a character named 'Elephant' that has 'http://sherlock.cenode.io/media/Elephant.png' as image
 there is a character named 'Giraffe' that has 'http://sherlock.cenode.io/media/Giraffe.png' as image
 there is a character named 'Hippopotamus' that has 'http://sherlock.cenode.io/media/Hippopotamus.png' as image
 there is a character named 'Leopard' that has 'http://sherlock.cenode.io/media/Leopard.png' as image
 there is a character named 'Lion' that has 'http://sherlock.cenode.io/media/Lion.png' as image
 there is a character named 'Zebra' that has 'http://sherlock.cenode.io/media/Zebra.png' as image
 there is a room named 'Ruby Room'
 there is a room named 'Sapphire Room'
 there is a room named 'Gold Room'
 there is a room named 'Amber Room'
 there is a room named 'Emerald Room'
 there is a room named 'Silver Room'
 there is a fruit named 'pineapple'
 there is a fruit named 'apple'
 there is a fruit named 'banana'
 there is a fruit named 'orange'
 there is a fruit named 'lemon'
 there is a fruit named 'pear'
 there is a fruit named 'grape'
 there is a fruit named 'kiwi'
 there is a fruit named 'tomato'
 there is a hat colour named 'green'
 there is a hat colour named 'red'
 there is a hat colour named 'yellow'
 there is a hat colour named 'black'
 there is a hat colour named 'white'
 there is a hat colour named 'purple'
 there is a hat colour named 'pink'
 there is a hat colour named 'blue'
 there is a hat colour named 'brown'
 there is a hat colour named 'grey'
 there is a sport named 'tennis'
 there is a sport named 'badminton'
 there is a sport named 'rugby'
 there is a sport named 'football'
 there is a sport named 'soccer'
 there is a sport named 'running'
 there is a sport named 'swimming'
 there is a sport named 'athletics'
 there is a sport named 'baseball'
 there is a sport named 'rounders'
 there is a sport named 'softball'
 there is a sport named 'cricket'
 there is a sport named 'golf'
 there is a sport named 'basketball'
 there is a rule named objectrule1 that has 'if the object O ~ resides in ~ the room R then the room R has the object O as ~ additional contents ~' as instruction
 there is an object named 'gorilla'
 there is an object named 'dinosaur'
 there is an object named 'robot'
 there is an object named 'ghost'
 there is an object named 'balloon'
 there is a question named 'q1' that has 'What character eats pineapples?' as text and has 'is eaten by' as relationship and concerns the fruit 'pineapple'
 there is a question named 'q2' that has 'What sport does Zebra play?' as text and has 'plays' as relationship and concerns the character 'Zebra'
 there is a question named 'q3' that has 'What character eats apples?' as text and has 'is eaten by' as relationship and concerns the fruit 'apple'
 there is a question named 'q4' that has 'What colour hat is Elephant wearing?' as text and has 'hat colour' as value and concerns the character 'Elephant'
 there is a question named 'q6' that has 'Where is Giraffe?' as text and has 'is in' as relationship and concerns the character 'Giraffe'
 there is a question named 'q7' that has 'What colour hat is Lion wearing?' as text and has 'hat colour' as value and concerns the character 'Lion'
 there is a question named 'q8' that has 'Where is Lion?' as text and has 'is in' as relationship and concerns the character 'Lion'
 there is a question named 'q9' that has 'Which character is in the emerald room?' as text and has 'contents' as value and concerns the room 'Emerald Room'
 there is a question named 'q12' that has 'What character eats bananas?' as text and has 'is eaten by' as relationship and concerns the fruit 'banana'
 there is a question named 'q13' that has 'What character is in the sapphire room?' as text and has 'contents' as value and concerns the room 'Sapphire Room'
 there is a question named 'q17' that has 'What sport does Elephant play?' as text and has 'plays' as relationship and concerns the character 'Elephant'
 there is a question named 'q18' that has 'What character is wearing a red hat?' as text and has 'is worn by' as relationship and concerns the hat colour 'red'
 there is a question named 'q19' that has 'What character plays rugby?' as text and has 'is played by' as relationship and concerns the sport 'rugby'
 there is a question named 'q20' that has 'What fruit does Leopard eat?' as text and has 'eats' as relationship and concerns the character 'Leopard'
 there is a question named 'q23' that has 'What fruit does Giraffe eat?' as text and has 'eats' as relationship and concerns the character 'Giraffe'
 there is a question named 'q24' that has 'What colour hat is Zebra wearing?' as text and has 'hat colour' as value and concerns the character 'Zebra'
 there is a question named 'q25' that has 'Where is the apple?' as text and has 'is in' as relationship and concerns the fruit 'apple'
 there is a question named 'q26' that has 'What character is wearing a yellow hat?' as text and has 'is worn by' as relationship and concerns the hat colour 'yellow'
 there is a question named 'q28' that has 'What fruit is in the silver room?' as text and has 'contains' as relationship and concerns the room 'Silver Room'
 there is a question named 'q30' that has 'What character is wearing a blue hat?' as text and has 'is worn by' as relationship and concerns the hat colour 'blue'
 there is a question named 'q31' that has 'What character eats lemons?' as text and has 'is eaten by' as relationship and concerns the fruit 'lemon'
 there is a question named 'q33' that has 'What fruit does Elephant eat?' as text and has 'eats' as relationship and concerns the character 'Elephant'
 there is a question named 'q34' that has 'What character plays basketball?' as text and has 'is played by' as relationship and concerns the sport 'basketball'
 there is a question named 'q35' that has 'What character plays soccer?' as text and has 'is played by' as relationship and concerns the sport 'soccer'
 there is a question named 'q36' that has 'What sport does Lion play?' as text and has 'plays' as relationship and concerns the character 'Lion'
 there is a question named 'q37' that has 'What character is in the ruby room?' as text and has 'contents' as value and concerns the room 'Ruby Room'
 there is a question named 'q39' that has 'What character plays golf?' as text and has 'is played by' as relationship and concerns the sport 'golf'
 there is a question named 'q40' that has 'What character eats oranges?' as text and has 'is eaten by' as relationship and concerns the fruit 'orange'
 there is a question named 'q41' that has 'What colour hat is Hippopotamus wearing?' as text and has 'hat colour' as value and concerns the character
'Hippopotamus'
 there is a question named 'q45' that has 'What character is in the amber room?' as text and has 'contents' as value and concerns the room 'Amber Room'
 there is a question named 'q47' that has 'Where is Elephant?' as text and has 'is in' as relationship and concerns the character 'Elephant'
 there is a question named 'q48' that has 'Where is the pear?' as text and has 'is in' as relationship and concerns the fruit 'pear'
 there is a question named 'q50' that has 'What fruit does Lion eat?' as text and has 'eats' as relationship and concerns the character 'Lion'
 there is a question named 'q52' that has 'What sport does Giraffe play?' as text and has 'plays' as relationship and concerns the character 'Giraffe'
 there is a question named 'q53' that has 'Where is Hippopotamus?' as text and has 'is in' as relationship and concerns the character 'Hippopotamus'
 there is a question named 'q54' that has 'What sport does Hippopotamus play?' as text and has 'plays' as relationship and concerns the character 'Hippopotamus'

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Appendix 2 - Modified SHERLOCK CE model

 conceptualise a ~ sherlock thing ~ S that is an entity and is an imageable thing
 conceptualise a ~ fruit ~ F that is a sherlock thing and is a locatable thing
 conceptualise a ~ room ~ R that is a location and is a sherlock thing
 conceptualise a ~ hat colour ~ C that is a sherlock thing
 conceptualise a ~ sport ~ S that is a sherlock thing
 conceptualise a ~ character ~ C that is a sherlock thing and is a locatable thing and has the hat colour C as ~ hat colour ~
 conceptualise the character C ~ eats ~ the fruit F and ~ plays ~ the sport S
 conceptualise the hat colour C ~ is worn by ~ the character C
 conceptualise an ~ object ~ O that is an entity and is a sherlock thing
 conceptualise the object O ~ resides in ~ the room R
 conceptualise the room R ~ contains ~ the fruit F and has the character C as ~ contents ~ and has the object O as ~ additional contents ~
 conceptualise the fruit F ~ is eaten by ~ the character C
 conceptualise the sport S ~ is played by ~ the character C and ~ is in ~ the room R
 conceptualise a ~ question ~ Q that has the value V as ~ text ~ and has the value W as ~ value ~ and has the value X as ~ relationship ~
 conceptualise the question Q ~ concerns ~ the sherlock thing C
 conceptualise a ~ sift parameter set ~ P that has the sherlock thing T as ~ related thing ~ and has the value K as ~ maximum distance ~ and has the value J as ~
minimum matches ~
 there is a rule named r1 that has 'if the character C ~ eats ~ the fruit F then the fruit F ~ is eaten by ~ the character C' as instruction
 there is a rule named r2 that has 'if the character C ~ plays ~ the sport S then the sport S ~ is played by ~ the character C' as instruction
 there is a rule named r3 that has 'if the character C has the hat colour S as ~ hat colour ~ then the hat colour S ~ is worn by ~ the character C' as instruction
 there is a rule named r4 that has 'if the character C ~ is in ~ the room R then the room R has the character C as ~ contents ~' as instruction
 there is a rule named r5 that has 'if the fruit F ~ is in ~ the room R then the room R ~ contains ~ the fruit F' as instruction
 there is a rule named r6 that has 'if the fruit F ~ is eaten by ~ the character C then the character C ~ eats ~ the fruit F' as instruction
 there is a rule named r7 that has 'if the sport S ~ is played by ~ the character C then the character C ~ plays ~ the sport S' as instruction
 there is a rule named r8 that has 'if the hat colour S ~ is worn by ~ the character C then the character C has the hat colour S as ~ hat colour ~' as instruction
 there is a rule named r9 that has 'if the room R has the character C as ~ contents ~ then the character C ~ is in ~ the room R' as instruction
 there is a rule named r10 that has 'if the room R ~ contains ~ the fruit F then the fruit F ~ is in ~ the room R' as instruction
 there is a character named 'Elephant' that has 'elephant.jpg' as image
 there is a character named 'Giraffe' that has 'giraffe.jpg' as image
 there is a character named 'Hippopotamus' that has 'hippo.jpg' as image
 there is a character named 'Leopard' that has 'leopard.jpg' as image
 there is a character named 'Lion' that has 'lion.jpg' as image
 there is a character named 'Zebra' that has 'zebra.jpg' as image
 there is a room named 'Ruby Room' that has 'ruby_room.jpg' as image
 there is a room named 'Sapphire Room' that has 'saphire_room.jpg' as image
 there is a room named 'Gold Room' that has 'gold_room.jpg' as image
 there is a room named 'Amber Room' that has 'amber_room.jpg' as image
 there is a room named 'Emerald Room' that has 'emerald_room.jpg' as image
 there is a room named 'Silver Room' that has 'silver_room.jpg' as image
 there is a fruit named 'pineapple' that has 'pineapple.jpg' as image
 there is a fruit named 'apple' that has 'apple.jpg' as image
 there is a fruit named 'banana' that has 'bananas.jpg' as image
 there is a fruit named 'orange' that has 'orange.jpg' as image
 there is a fruit named 'lemon' that has 'lemon.jpg' as image
 there is a fruit named 'pear' that has 'pear.JPG' as image
 there is a hat colour named 'green' that has 'green_hat.jpg' as image
 there is a hat colour named 'red' that has 'red_hat.jpg' as image
 there is a hat colour named 'yellow' that has 'yellow_hat.jpg' as image
 there is a hat colour named 'purple' that has 'purple_hat.jpg' as image
 there is a hat colour named 'pink' that has 'pink_hat.jpg' as image
 there is a hat colour named 'blue' that has 'blue_hat.jpg' as image
 there is a sport named 'tennis' that has 'tennis.jpg' as image
 there is a sport named 'rugby' that has 'rugby.jpg' as image
 there is a sport named 'soccer' that has 'football.jpg' as image
 there is a sport named 'cricket' that has 'cricket.jpg' as image
 there is a sport named 'golf' that has 'golf.jpg' as image
 there is a sport named 'basketball' that has 'basketball.jpg' as image
 there is a rule named objectrule1 that has 'if the object O ~ resides in ~ the room R then the room R has the object O as ~ additional contents ~' as instruction
 there is an object named 'gorilla' that has 'gorilla.jpg' as image
 there is an object named 'robot' that has 'robot.jpg' as image
 there is an object named 'ghost' that has 'ghost.jpg' as image
 there is an object named 'balloon' that has 'balloon.jpg' as image
 there is a question named 'q1' that has 'What character eats pineapples?' as text and has 'is eaten by' as relationship and concerns the fruit 'pineapple'
 there is a question named 'q2' that has 'What sport does Zebra play?' as text and has 'plays' as relationship and concerns the character 'Zebra'
 there is a question named 'q3' that has 'What character eats apples?' as text and has 'is eaten by' as relationship and concerns the fruit 'apple'
 there is a question named 'q4' that has 'What colour hat is Elephant wearing?' as text and has 'hat colour' as value and concerns the character 'Elephant'
 there is a question named 'q6' that has 'Where is Giraffe?' as text and has 'is in' as relationship and concerns the character 'Giraffe'
 there is a question named 'q7' that has 'What colour hat is Lion wearing?' as text and has 'hat colour' as value and concerns the character 'Lion'
 there is a question named 'q8' that has 'Where is Lion?' as text and has 'is in' as relationship and concerns the character 'Lion'
 there is a question named 'q9' that has 'Which character is in the emerald room?' as text and has 'contents' as value and concerns the room 'Emerald Room'
 there is a question named 'q12' that has 'What character eats bananas?' as text and has 'is eaten by' as relationship and concerns the fruit 'banana'
 there is a question named 'q13' that has 'What character is in the sapphire room?' as text and has 'contents' as value and concerns the room 'Sapphire Room'
 there is a question named 'q17' that has 'What sport does Elephant play?' as text and has 'plays' as relationship and concerns the character 'Elephant'
 there is a question named 'q18' that has 'What character is wearing a red hat?' as text and has 'is worn by' as relationship and concerns the hat colour 'red'
 there is a question named 'q19' that has 'What character plays rugby?' as text and has 'is played by' as relationship and concerns the sport 'rugby'
 there is a question named 'q20' that has 'What fruit does Leopard eat?' as text and has 'eats' as relationship and concerns the character 'Leopard'
 there is a question named 'q23' that has 'What fruit does Giraffe eat?' as text and has 'eats' as relationship and concerns the character 'Giraffe'
 there is a question named 'q24' that has 'What colour hat is Zebra wearing?' as text and has 'hat colour' as value and concerns the character 'Zebra'
 there is a question named 'q25' that has 'Where is the apple?' as text and has 'is in' as relationship and concerns the fruit 'apple'
 there is a question named 'q26' that has 'What character is wearing a yellow hat?' as text and has 'is worn by' as relationship and concerns the hat colour 'yellow'
 there is a question named 'q28' that has 'What fruit is in the silver room?' as text and has 'contains' as relationship and concerns the room 'Silver Room'

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 there is a question named 'q30' that has 'What character is wearing a blue hat?' as text and has 'is worn by' as relationship and concerns the hat colour 'blue'
 there is a question named 'q31' that has 'What character eats lemons?' as text and has 'is eaten by' as relationship and concerns the fruit 'lemon'
 there is a question named 'q33' that has 'What fruit does Elephant eat?' as text and has 'eats' as relationship and concerns the character 'Elephant'
 there is a question named 'q34' that has 'What character plays basketball?' as text and has 'is played by' as relationship and concerns the sport 'basketball'
 there is a question named 'q35' that has 'What character plays soccer?' as text and has 'is played by' as relationship and concerns the sport 'soccer'
 there is a question named 'q36' that has 'What sport does Lion play?' as text and has 'plays' as relationship and concerns the character 'Lion'
 there is a question named 'q37' that has 'What character is in the ruby room?' as text and has 'contents' as value and concerns the room 'Ruby Room'
 there is a question named 'q39' that has 'What character plays golf?' as text and has 'is played by' as relationship and concerns the sport 'golf'
 there is a question named 'q40' that has 'What character eats oranges?' as text and has 'is eaten by' as relationship and concerns the fruit 'orange'
 there is a question named 'q41' that has 'What colour hat is Hippopotamus wearing?' as text and has 'hat colour' as value and concerns the character
'Hippopotamus'
 there is a question named 'q45' that has 'What character is in the amber room?' as text and has 'contents' as value and concerns the room 'Amber Room'
 there is a question named 'q47' that has 'Where is Elephant?' as text and has 'is in' as relationship and concerns the character 'Elephant'
 there is a question named 'q48' that has 'Where is the pear?' as text and has 'is in' as relationship and concerns the fruit 'pear'
 there is a question named 'q50' that has 'What fruit does Lion eat?' as text and has 'eats' as relationship and concerns the character 'Lion'
 there is a question named 'q52' that has 'What sport does Giraffe play?' as text and has 'plays' as relationship and concerns the character 'Giraffe'
 there is a question named 'q53' that has 'Where is Hippopotamus?' as text and has 'is in' as relationship and concerns the character 'Hippopotamus'
 there is a question named 'q54' that has 'What sport does Hippopotamus play?' as text and has 'plays' as relationship and concerns the character 'Hippopotamus'
 there is a sift parameter set named 'Elephant parameters' that has the character 'Elephant' as related thing and has '45' as maximum distance and has '65' as
minimum matches
 there is a sift parameter set named 'Giraffe parameters' that has the character 'Giraffe' as related thing and has '40' as maximum distance and has '130' as minimum
matches
 there is a sift parameter set named 'Hippopotamus parameters' that has the character 'Hippopotamus' as related thing and has '35' as maximum distance and has
'105' as minimum matches
 there is a sift parameter set named 'Leopard parameters' that has the character 'Leopard' as related thing and has '55' as maximum distance and has '200' as
minimum matches
 there is a sift parameter set named 'Lion parameters' that has the character 'Lion' as related thing and has '55' as maximum distance and has '95' as minimum
matches
 there is a sift parameter set named 'Zebra parameters' that has the character 'Zebra' as related thing and has '35' as maximum distance and has '185' as minimum
matches
 there is a sift parameter set named 'amber room parameters' that has the room 'amber room' as related thing and has '32' as maximum distance and has '175' as
minimum matches
 there is a sift parameter set named 'emerald room parameters' that has the room 'emerald room' as related thing and has '35' as maximum distance and has '190' as
minimum matches
 there is a sift parameter set named 'gold room parameters' that has the room 'gold room' as related thing and has '30' as maximum distance and has '155' as
minimum matches
 there is a sift parameter set named 'ruby room parameters' that has the room 'ruby room' as related thing and has '10' as maximum distance and has '155' as
minimum matches
 there is a sift parameter set named 'sapphire room parameters' that has the room 'sapphire room' as related thing and has '5' as maximum distance and has '200' as
minimum matches
 there is a sift parameter set named 'silver room parameters' that has the room 'silver room' as related thing and has '5' as maximum distance and has '190' as
minimum matches
 there is a sift parameter set named 'apple parameters' that has the fruit 'apple' as related thing and has '90' as maximum distance and has '30' as minimum matches
 there is a sift parameter set named 'banana parameters' that has the fruit 'banana' as related thing and has '40' as maximum distance and has '70' as minimum
matches
 there is a sift parameter set named 'lemon parameters' that has the fruit 'lemon' as related thing and has '26' as maximum distance and has '12' as minimum
matches
 there is a sift parameter set named 'orange parameters' that has the fruit 'orange' as related thing and has '55' as maximum distance and has '30' as minimum
matches
 there is a sift parameter set named 'pineapple parameters' that has the fruit 'pineapple' as related thing and has '20' as maximum distance and has '45' as minimum
matches
 there is a sift parameter set named 'pear parameters' that has the fruit 'pear' as related thing and has '75' as maximum distance and has '55' as minimum matches
 there is a sift parameter set named 'basketball parameters' that has the sport 'basketball' as related thing and has '15' as maximum distance and has '35' as
minimum matches
 there is a sift parameter set named 'cricket parameters' that has the sport 'cricket' as related thing and has '45' as maximum distance and has '55' as minimum
matches
 there is a sift parameter set named 'soccer parameters' that has the sport 'soccer' as related thing and has '65' as maximum distance and has '40' as minimum
matches
 there is a sift parameter set named 'golf parameters' that has the sport 'golf' as related thing and has '35' as maximum distance and has '50' as minimum matches
 there is a sift parameter set named 'rugby parameters' that has the sport 'rugby' as related thing and has '30' as maximum distance and has '125' as minimum
matches
 there is a sift parameter set named 'tennis parameters' that has the sport 'tennis' as related thing and has '30' as maximum distance and has '110' as minimum
matches
 there is a sift parameter set named 'red parameters' that has the hat colour 'red' as related thing and has '55' as maximum distance and has '50' as minimum
matches
 there is a sift parameter set named 'green parameters' that has the colour 'green' as related thing and has '85' as maximum distance and has '25' as minimum
matches
 there is a sift parameter set named 'yellow parameters' that has the colour 'yellow' as related thing and has '20' as maximum distance and has '40' as minimum
matches
 there is a sift parameter set named 'blue parameters' that has the colour 'blue' as related thing and has '25' as maximum distance and has '55' as minimum matches
 there is a sift parameter set named 'pink parameters' that has the colour 'pink' as related thing and has '40' as maximum distance and has '50' as minimum matches
 there is a sift parameter set named 'purple parameters' that has the colour 'purple' as related thing and has '65' as maximum distance and has '45' as minimum
matches
 there is a sift parameter set named 'balloon parameters' that has the object 'balloon' as related thing and has '65' as maximum distance and has '120' as minimum
matches
 there is a sift parameter set named 'ghost parameters' that has the object 'ghost' as related thing and has '220' as maximum distance and has '18' as minimum
matches
 there is a sift parameter set named 'gorilla parameters' that has the object 'gorilla' as related thing and has '30' as maximum distance and has '115' as minimum
matches
 there is a sift parameter set named 'robot parameters' that has the object 'robot' as related thing and has '20' as maximum distance and has '220' as minimum
matches

Appendix 3 - Query of instances with SHERLOCK CE model uploaded

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

[{"name":"Moira","id":1,"conceptName":"agent","conceptId":4},{"name":"r1","id":2,"conceptName":"rule","conceptId":14},{"name":"r2","i
d":3,"conceptName":"rule","conceptId":14},{"name":"r3","id":4,"conceptName":"rule","conceptId":14},{"name":"r4","id":5,"conceptName":
"rule","conceptId":14},{"name":"r5","id":6,"conceptName":"rule","conceptId":14},{"name":"r6","id":7,"conceptName":"rule","conceptId":
14},{"name":"r7","id":8,"conceptName":"rule","conceptId":14},{"name":"r8","id":9,"conceptName":"rule","conceptId":14},{"name":"r9","i
d":10,"conceptName":"rule","conceptId":14},{"name":"r10","id":11,"conceptName":"rule","conceptId":14},{"name":"Elephant","id":12,"con
ceptName":"character","conceptId":27},{"name":"Giraffe","id":13,"conceptName":"character","conceptId":27},{"name":"Hippopotamus","id"
:14,"conceptName":"character","conceptId":27},{"name":"Leopard","id":15,"conceptName":"character","conceptId":27},{"name":"Lion","id"
:16,"conceptName":"character","conceptId":27},{"name":"Zebra","id":17,"conceptName":"character","conceptId":27},{"name":"Ruby
Room","id":18,"conceptName":"room","conceptId":24},{"name":"Sapphire Room","id":19,"conceptName":"room","conceptId":24},{"name":"Gold
Room","id":20,"conceptName":"room","conceptId":24},{"name":"Amber Room","id":21,"conceptName":"room","conceptId":24},{"name":"Emerald
Room","id":22,"conceptName":"room","conceptId":24},{"name":"Silver
Room","id":23,"conceptName":"room","conceptId":24},{"name":"pineapple","id":24,"conceptName":"fruit","conceptId":23},{"name":"apple",
"id":25,"conceptName":"fruit","conceptId":23},{"name":"banana","id":26,"conceptName":"fruit","conceptId":23},{"name":"orange","id":27
,"conceptName":"fruit","conceptId":23},{"name":"lemon","id":28,"conceptName":"fruit","conceptId":23},{"name":"pear","id":29,"conceptN
ame":"fruit","conceptId":23},{"name":"green","id":30,"conceptName":"hat
colour","conceptId":25},{"name":"red","id":31,"conceptName":"hat colour","conceptId":25},{"name":"yellow","id":32,"conceptName":"hat
colour","conceptId":25},{"name":"purple","id":33,"conceptName":"hat colour","conceptId":25},{"name":"pink","id":34,"conceptName":"hat
colour","conceptId":25},{"name":"blue","id":35,"conceptName":"hat
colour","conceptId":25},{"name":"tennis","id":36,"conceptName":"sport","conceptId":26},{"name":"rugby","id":37,"conceptName":"sport",
"conceptId":26},{"name":"soccer","id":38,"conceptName":"sport","conceptId":26},{"name":"cricket","id":39,"conceptName":"sport","conce
ptId":26},{"name":"golf","id":40,"conceptName":"sport","conceptId":26},{"name":"basketball","id":41,"conceptName":"sport","conceptId"
:26},{"name":"objectrule1","id":42,"conceptName":"rule","conceptId":14},{"name":"gorilla","id":43,"conceptName":"object","conceptId":
28},{"name":"robot","id":44,"conceptName":"object","conceptId":28},{"name":"ghost","id":45,"conceptName":"object","conceptId":28},{"n
ame":"balloon","id":46,"conceptName":"object","conceptId":28},{"name":"q1","id":47,"conceptName":"question","conceptId":29},{"name":"
q2","id":48,"conceptName":"question","conceptId":29},{"name":"q3","id":49,"conceptName":"question","conceptId":29},{"name":"q4","id":
50,"conceptName":"question","conceptId":29},{"name":"q6","id":51,"conceptName":"question","conceptId":29},{"name":"q7","id":52,"conce
ptName":"question","conceptId":29},{"name":"q8","id":53,"conceptName":"question","conceptId":29},{"name":"q9","id":54,"conceptName":"
question","conceptId":29},{"name":"q12","id":55,"conceptName":"question","conceptId":29},{"name":"q13","id":56,"conceptName":"questio
n","conceptId":29},{"name":"q17","id":57,"conceptName":"question","conceptId":29},{"name":"q18","id":58,"conceptName":"question","con
ceptId":29},{"name":"q19","id":59,"conceptName":"question","conceptId":29},{"name":"q20","id":60,"conceptName":"question","conceptId"
:29},{"name":"q23","id":61,"conceptName":"question","conceptId":29},{"name":"q24","id":62,"conceptName":"question","conceptId":29},{"
name":"q25","id":63,"conceptName":"question","conceptId":29},{"name":"q26","id":64,"conceptName":"question","conceptId":29},{"name":"
q28","id":65,"conceptName":"question","conceptId":29},{"name":"q30","id":66,"conceptName":"question","conceptId":29},{"name":"q31","i
d":67,"conceptName":"question","conceptId":29},{"name":"q33","id":68,"conceptName":"question","conceptId":29},{"name":"q34","id":69,"
conceptName":"question","conceptId":29},{"name":"q35","id":70,"conceptName":"question","conceptId":29},{"name":"q36","id":71,"concept
Name":"question","conceptId":29},{"name":"q37","id":72,"conceptName":"question","conceptId":29},{"name":"q39","id":73,"conceptName":"
question","conceptId":29},{"name":"q40","id":74,"conceptName":"question","conceptId":29},{"name":"q41","id":75,"conceptName":"questio
n","conceptId":29},{"name":"q45","id":76,"conceptName":"question","conceptId":29},{"name":"q47","id":77,"conceptName":"question","con
ceptId":29},{"name":"q48","id":78,"conceptName":"question","conceptId":29},{"name":"q50","id":79,"conceptName":"question","conceptId"
:29},{"name":"q52","id":80,"conceptName":"question","conceptId":29},{"name":"q53","id":81,"conceptName":"question","conceptId":29},{"
name":"q54","id":82,"conceptName":"question","conceptId":29},{"name":"Elephant parameters","id":83,"conceptName":"sift parameter
set","conceptId":30},{"name":"Giraffe parameters","id":84,"conceptName":"sift parameter set","conceptId":30},{"name":"Hippopotamus
parameters","id":85,"conceptName":"sift parameter set","conceptId":30},{"name":"Leopard parameters","id":86,"conceptName":"sift
parameter set","conceptId":30},{"name":"Lion parameters","id":87,"conceptName":"sift parameter set","conceptId":30},{"name":"Zebra
parameters","id":88,"conceptName":"sift parameter set","conceptId":30},{"name":"amber room parameters","id":89,"conceptName":"sift
parameter set","conceptId":30},{"name":"emerald room parameters","id":90,"conceptName":"sift parameter
set","conceptId":30},{"name":"gold room parameters","id":91,"conceptName":"sift parameter set","conceptId":30},{"name":"ruby room
parameters","id":92,"conceptName":"sift parameter set","conceptId":30},{"name":"sapphire room parameters","id":93,"conceptName":"sift
parameter set","conceptId":30},{"name":"silver room parameters","id":94,"conceptName":"sift parameter
set","conceptId":30},{"name":"apple parameters","id":95,"conceptName":"sift parameter set","conceptId":30},{"name":"banana
parameters","id":96,"conceptName":"sift parameter set","conceptId":30},{"name":"lemon parameters","id":97,"conceptName":"sift
parameter set","conceptId":30},{"name":"orange parameters","id":98,"conceptName":"sift parameter
set","conceptId":30},{"name":"pineapple parameters","id":99,"conceptName":"sift parameter set","conceptId":30},{"name":"pear
parameters","id":100,"conceptName":"sift parameter set","conceptId":30},{"name":"basketball parameters","id":101,"conceptName":"sift
parameter set","conceptId":30},{"name":"cricket parameters","id":102,"conceptName":"sift parameter
set","conceptId":30},{"name":"soccer parameters","id":103,"conceptName":"sift parameter set","conceptId":30},{"name":"golf
parameters","id":104,"conceptName":"sift parameter set","conceptId":30},{"name":"rugby parameters","id":105,"conceptName":"sift
parameter set","conceptId":30},{"name":"tennis parameters","id":106,"conceptName":"sift parameter set","conceptId":30},{"name":"red
parameters","id":107,"conceptName":"sift parameter set","conceptId":30},{"name":"green parameters","id":108,"conceptName":"sift
parameter set","conceptId":30},{"name":"yellow parameters","id":109,"conceptName":"sift parameter set","conceptId":30},{"name":"blue
parameters","id":110,"conceptName":"sift parameter set","conceptId":30},{"name":"pink parameters","id":111,"conceptName":"sift
parameter set","conceptId":30},{"name":"purple parameters","id":112,"conceptName":"sift parameter
set","conceptId":30},{"name":"balloon parameters","id":113,"conceptName":"sift parameter set","conceptId":30},{"name":"ghost
parameters","id":114,"conceptName":"sift parameter set","conceptId":30},{"name":"gorilla parameters","id":115,"conceptName":"sift
parameter set","conceptId":30},{"name":"robot parameters","id":116,"conceptName":"sift parameter set","conceptId":30}]

Appendix 4 - Process Question Data Method
 def process_question_data(self, subjectType, subjectName, relationship, questionID):
 """ Searches the model for other useful data relating to the question.
 different question formats have a different method of retreiving data.
 These questions ids have been placed in groups in the constructor. """

 objectType = ""

 try:

 # 'What colour hat is Elephant wearing?' type question
 if questionID in self.question_group_1:
 objectType = relationship
 for concepts in self.concept_data:
 if concepts["name"] == relationship:

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 subjectTypeID = concepts["id"]
 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(subjectTypeID)
 relationship = subjectTypeConcept["relationships"][0]["label"]

 # "Where is the apple?"" type question
 elif questionID in self.question_group_2:
 for concepts in self.concept_data:
 if concepts["name"] == subjectType:
 concept_id = concepts["id"]

 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(concept_id)

 for concepts in subjectTypeConcept["parents"]:
 if concepts["name"] == "locatable thing":
 concept_id = concepts["id"]

 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(concept_id)

 for objectTypeValue in subjectTypeConcept["relationships"]:
 locatableID = objectTypeValue["targetId"]

 objectTypeConcept =
self.sherlock_model.get_model_concept_with_id(locatableID)

 for objectTypeValue in objectTypeConcept["children"]:
 objectType = objectTypeValue["name"]

 # 'Which character is in the emerald room?' type question
 elif questionID in self.question_group_3:
 for concepts in self.concept_data:
 if concepts["name"] == subjectType:
 subjectTypeID = concepts["id"]

 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(subjectTypeID)

 for conceptValues in subjectTypeConcept["values"]:
 if conceptValues["label"] == relationship:
 objectType = conceptValues["targetName"]
 objectTypeID = conceptValues["targetId"]
 break

 for conceptValues in subjectTypeConcept["relationships"]:
 if conceptValues["label"] == relationship:
 objectType = conceptValues["targetName"]
 objectTypeID = conceptValues["targetId"]
 break

 objectTypeConcept =
self.sherlock_model.get_model_concept_with_id(objectTypeID)

 for objectTypeValue in objectTypeConcept["parents"]:
 if objectTypeValue["name"] == "locatable thing":
 locatableID = objectTypeValue["id"]

 objectTypeConcept =
self.sherlock_model.get_model_concept_with_id(locatableID)

 for objectTypeValue in objectTypeConcept["relationships"]:
 relationship = objectTypeValue["label"]

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 locatableID = objectTypeValue["targetId"]

 objectTypeConcept =
self.sherlock_model.get_model_concept_with_id(locatableID)

 for objectTypeValue in objectTypeConcept["children"]:
 subjectType = objectTypeValue["name"]

 # All other questions
 else:
 for concepts in self.concept_data:
 if concepts["name"] == subjectType:
 subjectTypeID = concepts["id"]

 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(subjectTypeID)

 for conceptValues in subjectTypeConcept["relationships"]:
 if conceptValues["label"] == relationship:
 objectType = conceptValues["targetName"]
 break

 self.bot.sendMessage(self.chat_id, "We're looking for {0} associated with
'{1}'".format(objectType, subjectName))
 print "We're looking for '{0}' associated with '{1}'".format(objectType,
subjectName)

 except:
 print "Could not gather all data from the model"
 tb = traceback.format_exc()
 print tb
 return

 self.search_environment(objectType, subjectName, subjectType, relationship,
questionID)

Appendix 5 - Full Code Base
#!usr/bin/python
import telepot
import time
import sys
import numpy as np
import cv2
import os
from os import listdir
from os.path import isfile, join, dirname, realpath
import json
import requests
import traceback

class telegram_handle:

 def __init__(self):
 # bot API key
 self.bot = telepot.Bot('353119581:AAGUpjclZ2RjWW-L-OrHU4bTHltqB1SGYFc')
 self.bot.message_loop(self.handle)
 self.trusted = ["robbbh"]

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 def handle(self, msg):
 self.userName = msg["from"]["username"]
 self.chat_id = msg['chat']['id']

 if self.userName not in self.trusted:
 self.bot.sendMessage(self.chat_id, "Unverified User...\nPlease use a
verified account.")
 return
 else:
 self.check_message_type(msg)

 def check_message_type(self, msg):

 if "text" in msg:
 self.message = msg['text'].encode('utf-8').strip()
 recieved_text = "Recieved text input = '{0}'".format(self.message)
 print recieved_text

 interpret_text = Linguistic_Module(self.chat_id)
 interpret_text.check_if_question_exists(str(self.message))

 else:
 error_message = "Messages must be in a text format, consisting of a SHERLOCK
question."
 print error_message
 self.bot.sendMessage(self.chat_id, error_message)
 return

 def run(self):
 while True:
 time.sleep(1)

class Visual_Module:

 def __init__(self, chat_id):
 """ Apply's the SIFT algoriothm for object classification based off
 training images. """

 self.current_directory = dirname(realpath(__file__))
 self.bot = telepot.Bot('353119581:AAGUpjclZ2RjWW-L-OrHU4bTHltqB1SGYFc')
 self.train_scene_direc = "scenes/"
 self.train_obj_direc = "objects/"
 self.scenes_direc = join(self.current_directory, self.train_scene_direc)
 self.scenes = [f for f in listdir(self.scenes_direc) if
isfile(join(self.scenes_direc, f))]
 self.chat_id = chat_id

 def find_scenes_with_objects(self, subject_data, object_data):
 """ Searches for Objects within scenes. """
 positive_scenes = []
 object_to_find = subject_data[0]
 maximum_distance = subject_data[1]
 minimum_matches = subject_data[2]
 input_image_name = subject_data[3]

 for scene in self.scenes:
 positive_scenes.append(self.test_image(self.train_scene_direc + scene,
self.train_obj_direc + object_to_find, minimum_matches, maximum_distance,
input_image_name))

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 scenes_with_object = [i[0] for i in positive_scenes if i != None]

 if len(scenes_with_object) is 0:
 print "No Scenes found with object."
 self.bot.sendMessage(self.chat_id, "No Scenes found with object.")
 else:
 subject = self.find_objects_within_refined_scenes(scenes_with_object,
object_data)
 return subject

 def find_objects_within_refined_scenes(self, scenes_with_object, object_data):
 """ Searches for objects within refined scenes. """
 answer_list = []

 for details in object_data:
 input_image = details[0]
 maximum_distance = details[1]
 minimum_matches = details[2]
 input_image_name = details[3]

 for scene in scenes_with_object:
 answer_list.append(self.test_image(scene, self.train_obj_direc +
input_image, minimum_matches, maximum_distance, input_image_name))

 answer = "\n".join(set([i[1] for i in answer_list if i != None]))

 if len(answer) is 0:
 print "No Scenes found with object."
 self.bot.sendMessage(self.chat_id, "No objects found in scene.")
 else:
 return answer

 def test_image(self, test, train, min_match, max_dist, input_image_name):
 """ Performs image classification with the SIFT descriptor """
 # opens query and train iamge in grayscale
 query_image = cv2.imread(test,0)
 train_image = cv2.imread(train,0)

 # Initiate SIFT detector
 sift = cv2.xfeatures2d.SIFT_create()

 # find the keypoints and descriptors with SIFT
 kp1, des1 = sift.detectAndCompute(query_image,None)
 kp2, des2 = sift.detectAndCompute(train_image,None)

 FLANN_INDEX_KDTREE = 0
 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
 search_params = dict(checks = 50)

 flann = cv2.FlannBasedMatcher(index_params, search_params)

 matches = flann.knnMatch(des1,des2,k=2)

 return self.get_best_match(matches, test, train, max_dist, min_match,
input_image_name)

 def get_best_match(self, matches, test, train, max_dist, min_match,
input_image_name):
 """ Works out the best match based on training data. """

 # store all the good matches as per Lowe's ratio test.

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 good = []
 for m,n in matches:
 if m.distance < 0.7*n.distance:
 good.append(m)

 if len(good) >= int(min_match):
 match_array = [matches.distance for matches in good]
 # sorts matches by size
 matches = sorted(match_array, key = lambda x:x)
 # gets average of 20 best matches
 distance = sum(matches[:20])/20

 if distance <= int(max_dist):
 scene_path = test
 image = input_image_name
 return scene_path, input_image_name

class Communincation_Module:

 def __init__(self):
 """ Performs system communication through the Requests API"""
 self.port = 8004

 def post_model(self):
 try:
 with open('sherlock.ce', 'r') as sherlock_model:
 model = sherlock_model.read()
 requests.post('http://localhost:' + str(self.port) + '/sentences', data =
model)
 except requests.exceptions.RequestException as e:
 error_message = "Error posting model to instance. Please check your
connection with the localhost CEServer.\n"
 print error_message
 print e
 sys.exit(0)

 def post_to_shared_kb(self, tellcard):
 try:
 requests.post("http://explorer.cenode.io:" + "6789" + "/sentences", data =
tellcard)
 except requests.exceptions.RequestException as e:
 print "Posting to shared knowledge base failed. Please check your connection
with the external instance at http://explorer.cenode.io.\n"
 print e

 def get_instances(self):
 try:
 response = requests.get('http://localhost:' + str(self.port) +
'/instances').json()
 return response
 except requests.exceptions.RequestException as e:
 print "Unable to get instances. Please check your connection with the
localhost CEServer.\n"
 print e
 os._exit(0)

 def get_concepts(self):
 try:
 response = requests.get('http://localhost:' + str(self.port) +
'/concepts').json()

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 return response
 except requests.exceptions.RequestException as e:
 print "Unable to get concepts. Please check your connection with the
localhost CEServer.\n"
 print e
 os._exit(0)

 def get_model_concept_with_id(self, id):
 try:
 response = requests.get("http://localhost:" + str(self.port) + "/concept" +
"?id=" + str(id)).json()
 return response
 except requests.exceptions.RequestException as e:
 print "Unable to get concept with ID. Please check the concept ID exists and
your connection with the localhost CENode exists.\n"
 print e
 os._exit(0)

 def get_model_instance_with_id(self, id):
 try:
 response = requests.get("http://localhost:" + str(self.port) + "/instance" +
"?id=" + str(id)).json()
 return response
 except requests.exceptions.RequestException as e:
 print "Unable to get instance ID. Please check the instance ID exists and
your connection with the localhost CENode exists.\n"
 print e
 os._exit(0)

class Linguistic_Module:

 def __init__(self, chat_id):

 self.sherlock_model = Communincation_Module()
 self.instance_data = self.sherlock_model.get_instances()
 self.concept_data = self.sherlock_model.get_concepts()
 self.sift_parameters = self.get_sift_parameters()

 self.bot = telepot.Bot('353119581:AAGUpjclZ2RjWW-L-OrHU4bTHltqB1SGYFc')
 self.chat_id = chat_id
 # 'What colour hat is Elephant wearing?' type question
 self.question_group_1 = ["q4", "q7", "q24", "q41"]
 # "Where is the apple?"" type question
 self.question_group_2 = ["q6", "q8", "q25", "q47", "q48", "q53"]
 # 'Which character is in the emerald room?' type question
 self.question_group_3 = ["q9", "q13", "q37", "q45", "q28"]

 def get_sift_parameters(self):
 """ Gets SIFT parameters relating to game objects"""
 concepts = self.concept_data
 for concept_name in self.concept_data:
 if concept_name["name"] == "sift parameter set":
 concept_id = concept_name["id"]
 self.sift_parameters =
self.sherlock_model.get_model_concept_with_id(concept_id)
 return self.sift_parameters

 def check_if_question_exists(self, input_string):
 """ Take question and check if it exists in the model. If it exists, extract

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 useful data. """
 input_string = input_string.lower()
 question_data = self.get_model_questions()
 found = False
 for question in question_data:
 if str(question["values"][0]["targetName"]).lower() == input_string:
 subjectType = question["relationships"][0]["targetConceptName"]
 subjectName = question["relationships"][0]["targetName"]
 relationship = question["values"][1]["targetName"]
 questionID = question["name"]
 found = True

 if found:
 self.bot.sendMessage(self.chat_id, "Valid question found, forwarding for
processing.")
 self.process_question_data(subjectType, subjectName, relationship,
questionID)
 else:
 print "Invalid Question"
 self.bot.sendMessage(self.chat_id, "Invalid question, please enter a valid
SHERLOCK question.")
 return

 def get_model_questions(self):
 """ gets the questions associated with the sherlock game. """
 question_data = []
 for instance in self.instance_data:
 if instance["conceptName"] == "question":

question_data.append(self.sherlock_model.get_model_instance_with_id(str(instance["id"]))
)

 return question_data

 def process_question_data(self, subjectType, subjectName, relationship, questionID):
 """ Searches the model for other useful data relating to the question.
 different question formats have a different method of retreiving data.
 These questions ids have been placed in groups in the constructor. """

 objectType = ""

 try:

 # 'What colour hat is Elephant wearing?' type question
 if questionID in self.question_group_1:
 objectType = relationship
 for concepts in self.concept_data:
 if concepts["name"] == relationship:
 subjectTypeID = concepts["id"]
 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(subjectTypeID)
 relationship = subjectTypeConcept["relationships"][0]["label"]

 # "Where is the apple?"" type question
 elif questionID in self.question_group_2:
 for concepts in self.concept_data:
 if concepts["name"] == subjectType:
 concept_id = concepts["id"]

 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(concept_id)

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 for concepts in subjectTypeConcept["parents"]:
 if concepts["name"] == "locatable thing":
 concept_id = concepts["id"]

 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(concept_id)

 for objectTypeValue in subjectTypeConcept["relationships"]:
 locatableID = objectTypeValue["targetId"]

 objectTypeConcept =
self.sherlock_model.get_model_concept_with_id(locatableID)

 for objectTypeValue in objectTypeConcept["children"]:
 objectType = objectTypeValue["name"]

 # 'Which character is in the emerald room?' type question
 elif questionID in self.question_group_3:
 for concepts in self.concept_data:
 if concepts["name"] == subjectType:
 subjectTypeID = concepts["id"]

 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(subjectTypeID)

 for conceptValues in subjectTypeConcept["values"]:
 if conceptValues["label"] == relationship:
 objectType = conceptValues["targetName"]
 objectTypeID = conceptValues["targetId"]
 break

 for conceptValues in subjectTypeConcept["relationships"]:
 if conceptValues["label"] == relationship:
 objectType = conceptValues["targetName"]
 objectTypeID = conceptValues["targetId"]
 break

 objectTypeConcept =
self.sherlock_model.get_model_concept_with_id(objectTypeID)

 for objectTypeValue in objectTypeConcept["parents"]:
 if objectTypeValue["name"] == "locatable thing":
 locatableID = objectTypeValue["id"]

 objectTypeConcept =
self.sherlock_model.get_model_concept_with_id(locatableID)

 for objectTypeValue in objectTypeConcept["relationships"]:
 relationship = objectTypeValue["label"]
 locatableID = objectTypeValue["targetId"]

 objectTypeConcept =
self.sherlock_model.get_model_concept_with_id(locatableID)

 for objectTypeValue in objectTypeConcept["children"]:
 subjectType = objectTypeValue["name"]

 # All other questions
 else:
 for concepts in self.concept_data:
 if concepts["name"] == subjectType:
 subjectTypeID = concepts["id"]

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 subjectTypeConcept =
self.sherlock_model.get_model_concept_with_id(subjectTypeID)

 for conceptValues in subjectTypeConcept["relationships"]:
 if conceptValues["label"] == relationship:
 objectType = conceptValues["targetName"]
 break

 self.bot.sendMessage(self.chat_id, "We're looking for {0} associated with
'{1}'".format(objectType, subjectName))
 print "We're looking for '{0}' associated with '{1}'".format(objectType,
subjectName)

 except:
 print "Could not gather all data from the model"
 tb = traceback.format_exc()
 print tb
 return

 self.search_environment(objectType, subjectName, subjectType, relationship,
questionID)

 def search_environment(self, objectType, subjectName, subjectType, relationship,
questionID):
 """ Searches the environment of posters for objects"""

 subject_data = self.get_subjectName_image_path_and_params(subjectName)
 object_data = self.get_object_image_paths_and_params(objectType)

 image_recognition = Visual_Module(self.chat_id)
 found_object = image_recognition.find_scenes_with_objects(subject_data,
object_data)

 self.construct_output(subjectType, subjectName, relationship, objectType,
found_object, questionID)

 def get_subjectName_image_path_and_params(self, subjectName):
 """ Gets the subjectName image path and get training parameters
 for the image"""

 for index_entry in self.instance_data:
 if index_entry["name"] == subjectName:
 objectID = index_entry["id"]

 instance_id_data = self.sherlock_model.get_model_instance_with_id(objectID)

 subject_image_path = str(instance_id_data["values"][0]["targetName"])
 subject_image_name = str(instance_id_data["name"])

 for sift_obj in self.sift_parameters["instances"]:
 if str(sift_obj["name"]).lower() == subjectName.lower() + " parameters":
 siftID = sift_obj["id"]

 instance_id_data = self.sherlock_model.get_model_instance_with_id(siftID)

 for value in instance_id_data["values"]:
 if value["label"] == "maximum distance":
 max_distance = value["targetName"]
 elif value["label"] == "minimum matches":

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 min_matches = value["targetName"]

 parameters = (subject_image_path, max_distance, min_matches, subject_image_name)
 return parameters

 def get_object_image_paths_and_params(self, objectType):
 """ Gets the objectType image paths and get training parameters
 for each of the images. """

 objectID_list = []
 object_name_list = []
 object_image_path = []
 object_image_name = []
 max_distance = []
 min_matches = []
 parameters = []

 for index_entry in self.instance_data:
 if index_entry["conceptName"] == objectType:
 objectID_list.append(index_entry["id"])
 object_name_list.append(index_entry["name"])

 for id_value in objectID_list:
 instance_id_data = self.sherlock_model.get_model_instance_with_id(id_value)
 object_image_path.append(str(instance_id_data["values"][0]["targetName"]))
 object_image_name.append(str(instance_id_data["name"]))

 for obj_name in object_name_list:
 for sift_obj in self.sift_parameters["instances"]:
 if str(sift_obj["name"]).lower() == obj_name.lower() + " parameters":
 siftID = sift_obj["id"]

 instance_id_data = self.sherlock_model.get_model_instance_with_id(siftID)

 for value in instance_id_data["values"]:
 if value["label"] == "maximum distance":
 max_distance.append(value["targetName"])
 elif value["label"] == "minimum matches":
 min_matches.append(value["targetName"])

 for x, y, z, n in zip(object_image_path, max_distance, min_matches,
object_image_name):
 parameters.append((x,y,z,n))

 return parameters

 def construct_output(self, subjectType, subjectName, relationship, objectType,
found_object, questionID):
 """ Prints the output to the bot and to terminal """
 if questionID in self.question_group_1 or questionID in self.question_group_3:
 message_to_output = "The {3} \\'{4}\\' {2} the {0}
\\'{1}\\'".format(subjectType, subjectName, relationship, objectType, found_object)
 message_to_print = "The {3} '{4}' {2} the {0} '{1}'".format(subjectType,
subjectName, relationship, objectType, found_object)
 else:
 message_to_output = "The {0} \\'{1}\\' {2} the {3}
\\'{4}\\'".format(subjectType, subjectName, relationship, objectType, found_object)
 message_to_print = "The {0} '{1}' {2} the {3} '{4}'".format(subjectType,
subjectName, relationship, objectType, found_object)

 print "CNL: {0}".format(message_to_print)
 self.bot.sendMessage(self.chat_id, message_to_print)

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

 agentName = "sherlock"
 botName = "sherBot"
 tellcard = """there is a tell card named 'msg_{{uid}}' that has '{0}' as content
and is to the agent '{1}' and is from the agent '{2}' and has the timestamp '{{now}}' as
timestamp""".format(message_to_output, agentName, botName)

 self.sherlock_model.post_to_shared_kb(tellcard)

 final_message = "Observation posted to shared KB."
 print final_message
 self.bot.sendMessage(self.chat_id, final_message)

if __name__ == "__main__":
 Communincation_Module().post_model()
 go = telegram_handle()
 print "AI Player Launched!"
 go.run()

Appendix 6 - SHERLOCK Questions

Fruit related questions
 What character eats pineapples?
 What character eats apples?
 What character eats bananas?
 What character eats lemons?
 What character eats oranges?
 What fruit does Elephant eat?
 What fruit does Leopard eat?
 What fruit does Giraffe eat?
 What fruit does Lion eat?

Sports related questions
What sport does Zebra play?
What sport does Lion play?
What sport does Giraffe play?
What sport does Hippopotamus play?
What sport does Elephant play?
What character plays rugby?
What character plays basketball?
What character plays soccer?
What character plays golf?
Location Questions
Where is the apple?
Where is the pear?
Where is Hippopotamus?
Where is Lion?
Where is Giraffe?
Where is Elephant?
What fruit is in the silver room?
Which character is in the emerald room?

 What character is in the sapphire room?

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

10. What character is in the ruby room?
11. What character is in the amber room?

Hat Questions
What colour hat is Elephant wearing?
What colour hat is Lion wearing?
What colour hat is Zebra wearing?
What colour hat is Hippopotamus wearing?
What character is wearing a yellow hat?
What character is wearing a blue hat?
What character is wearing a red hat?

Appendix 7 - Objects

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Appendix 8 - Scenes

Cardiff University School of Computer Science and Informatics

C1334989 – Robert Harris CM3203 – One Semester Individual Project

Cardiff University School of Computer Science and Informatics

