

Assessing Trust in the
Web

CM2303 ONE SEMESTER INDIVIDUAL PROJECT – FINAL
REPORT – (40 CREDITS)

AUTHOR: OWAIN CARPANINI (C1315645)

SUPERVISOR: DR FEDERICO CERUTTI

MODERATOR: PROF DAVID WALKER

1
C1315645

Abstract
This project has created a system that uses topic modelling techniques to compare news

articles to find similarities. Similar articles can be placed into an ontology to answer queries,

and share differing levels of trust according to a variety of factors. This can allow users,

whether professional analysts or amateurs, to build their own picture of an event/events

based on the sources available and the trust held in those sources.

The project was started from a rudimentary knowledge of ontologies, and very little

knowledge of machine learning, and through the research and implementation of this

project has improved hugely. At the end of this project, a system is achieved that mixes a

topic modelling approach with a human assisted segment, to produce a system that allows a

user to compare articles and decide whether they should be introduced to the ontology.

Acknowledgements
I would like to thank my supervisor, Dr Federico Cerutti, who has provided fantastic help

and support throughout the project. I would have struggled immensely if I did not have any

advice for some of the topics in this project.

Additionally, I thank my family and friends for their support whilst writing this dissertation.

For helping me get away for much needed breaks throughout the course of this semester,

without which I would have been sat at a computer for far too long.

2
C1315645

1 Contents
1 Introduction .. 6

1.1 The Aims/goals of the project ... 6

1.2 Intended Audience .. 6

2 Background ... 7

2.1 Intelligence .. 7

2.2 Trust .. 7

2.3 Ontologies ... 8

2.3.1 What is an Ontology? ... 8

2.3.2 How are Ontologies created? .. 9

2.4 Machine Learning .. 9

2.4.1 Topic Modelling ... 9

3 Selection of Approach .. 11

3.1 Sources .. 11

3.1.1 Broadcasters .. 11

3.1.2 Print Media .. 11

3.1.3 Social Media ... 12

3.1.4 Sources to be used in the Project .. 12

3.2 Case Studies .. 13

3.2.1 1 – UK politics – Politics news since June 2016 ... 13

3.2.2 2 – Sport – The Premier League in the 2016/17 Season 14

3.3 Ontology Design .. 15

3.3.1 Competency Questions .. 16

3.4 System Design ... 18

3.4.1 Python .. 18

3.4.2 Ontology Manipulation .. 18

3.4.3 Topic Modelling for Comparing Articles .. 19

4 Implementation .. 21

4.1 Ontology .. 21

4.1.1 Implementing Classes .. 21

4.1.2 Implementing Properties ... 22

4.1.3 Populating the Ontology .. 23

4.2 System ... 23

3
C1315645

4.2.1 Installing Python Libraries .. 23

4.2.2 Implementing the System .. 24

4.2.3 Manipulating the Ontology .. 24

4.2.4 Topic Modelling using Gensim ... 29

5 Results and Evaluation.. 33

5.1 Testing the Ontology ... 33

5.2 Testing the System .. 36

5.2.1 Test 1: getContext(inputurl) .. 36

5.2.2 Test 2: getAllUrlsFromOntology() .. 36

5.2.3 Test 3: addToOntology(newurl, filename, oldurl='').. 37

5.2.4 Test 4: getText(url) ... 37

5.2.5 Test 5: singleInputTokenize(text) .. 38

5.2.6 Test 6: createModel(tokeisedtexts, numoftopics) .. 39

5.2.7 Test 7: userCompare(urltocompare) ... 39

5.2.8 Test 8: LDACompare(urllist, currentTokens, newurl) .. 40

5.2.9 Test 9: simpleArticleComparison(urllist, currentTokens, newurl) 41

5.3 Results ... 42

5.3.1 The Experiment .. 42

5.3.2 Inputs ... 42

5.3.3 Output .. 43

5.4 Evaluation .. 45

6 Future Work .. 46

6.1 Further Troubleshooting of LDA querying .. 46

6.2 Dynamic Creation of RDF Triples ... 46

6.3 Implement the Second Case Study ... 46

6.4 Introduce Social Media to the Ontology ... 46

6.5 Use Web Scraping to Populate the Ontology ... 46

6.6 Integrate with NewsAPI .. 47

7 Conclusion .. 48

8 Reflection .. 49

9 Bibliography .. 50

10 Appendix ... 53

10.1 Appendix A: Output from new, similar link ... 53

4
C1315645

10.2 Appendix B: Output from new, identical link .. 56

10.3 Appendix C: Output from dissimilar link ... 59

5
C1315645

Table of Figures
Figure 1: Representing Trust – Table taken from Table 2.3 [1] ... 7

Figure 2: Class Hierarchy of Pizza Ontology [5] ... 8

Figure 3: Object Property Hierarchy of Pizza Ontology ... 8

Figure 4: Example of a BBC News article [14] .. 11

Figure 5: Example of a Guardian News article [15] ... 12

Figure 6: Example of a Social Media Post [16] ... 12

Figure 7: Table of Sources .. 13

Figure 8: Table of Sources - Secondary case study .. 15

Figure 9: Initial diagram of ontology .. 15

Figure 10: Final diagram of ontology ... 16

Figure 11: A set of example triples detailing two individuals of class 'Class' 18

Figure 12: Pseudocode for SPARQL to get links from ontology... 18

Figure 13: Pseudocode to show process for simple article comparison 20

Figure 14: The final class hierarchy of the ontology .. 21

Figure 15: The final data property hierarchy of the ontology ... 22

Figure 16: The final object property hierarchy of the ontology .. 22

Figure 17: SPARQL query to extract URLs from ontology .. 25

Figure 18: The AnswerBrexitImpactWalesBBC individual in Turtle format 26

Figure 19: The BBC:BrexitWalesImpact individual in Turtle format .. 27

Figure 20: The correct top level classes are present ... 33

Figure 21: The correct subclasses of query are present .. 33

Figure 22: The correct individuals for queries are present ... 33

Figure 23: The correct subclasses of Sources are present ... 33

Figure 24: The correct subclasses of social media are present ... 34

Figure 25: The correct subclasses are present in Websites ... 34

Figure 26: The correct individuals are present in the Trust class .. 35

Figure 27: An example of an answer individual linking to queries and sources 35

Figure 28: The correct subclasses are present in the Answers class 35

Figure 29: Result of Test 1 – getContext .. 36

Figure 30: Result of Test 2 - getAllUrlsFromOntology ... 36

Figure 31: Result of Test 3 - addUrlToOntology .. 37

Figure 32: Result of Test 4 - getText .. 37

Figure 33: Result of Test 5 - singleInputTokenize .. 38

Figure 34: Result of Test 6 – createModel ... 39

Figure 35: Result of Test 7 – userCompare .. 40

Figure 36: Result of Test 8 – LDACompare .. 41

Figure 37: Result of Test 9 – simpleArticleComparison ... 42

Figure 38: Eleventh link in large model ... 43

Figure 39: Model of similar link being compared .. 43

Figure 40: Model of identical link being compared ... 44

Figure 41: Model of dissimilar link being compared ... 44

file:///C:/Users/ojcar/Desktop/Final%20Report%20v1.docx%23_Toc481761965
file:///C:/Users/ojcar/Desktop/Final%20Report%20v1.docx%23_Toc481761966
file:///C:/Users/ojcar/Desktop/Final%20Report%20v1.docx%23_Toc481761976
file:///C:/Users/ojcar/Desktop/Final%20Report%20v1.docx%23_Toc481761977
file:///C:/Users/ojcar/Desktop/Final%20Report%20v1.docx%23_Toc481761979
file:///C:/Users/ojcar/Desktop/Final%20Report%20v1.docx%23_Toc481761987

6
C1315645

1 Introduction

1.1 The Aims/goals of the project
The internet is a massive and rich source of information. By searching the internet, a user

can find information on any subject for almost any level of knowledge – from beginner to

expert. This information can be used to answer the user’s question or simply provide

background knowledge and context. An enduring problem for users is how to estimate the

amount of trust that can placed on information gained from the internet. Due to the ease

with which information can be published on the internet, this information could be

inaccurate or completely false. The amount of trust placed in a source of information can

vary for different reasons:

 The reputation of a source.

 The language with which a source is written. For example, factual language will be

more trustworthy than purely emotive language.

 The audience a source is targeted at. For example, a source targeted at experts in a

field may be more trustworthy than a source targeted at the general public.

Over the course of this project, a method to provide trustworthy information back to a user

by providing an ontology of trust across sources will be investigated. Additionally, the

project will investigate the use of machine learning techniques to identify similarity between

articles. This will enable a system to find which article is a better fit to answer a particular

query. This will be compared against a simple (no machine learning) similarity check to

assess the effectiveness of such a method.

The aim of this project is to provide a foundation for investigations into specific case studies,

such as analysing the results and effects caused by political change, such as the recent vote

for the United Kingdom to leave the European Union. Depending on time constraints, the

project will also aim to look into a slightly smaller case study – looking at some simpler

information such as the results in a sports league over a short period of time. Case studies

like these will show the feasibility of far more complex case studies

These will show the feasibility of such future studies by the end of this project, which could

allow for a system that aggregates results on controversial topics. For example, the impact

humans have on the Earth through global warming, or the efficacy of new vaccinations.

1.2 Intended Audience
The intended audience of this project is not casual users, but users who need to ensure the

information they receive can be trusted. A good example of this could be an intelligence

analyst, trying to pull together a variety of sources to gain an accurate picture of current

events. Alternatively, it could be a campaign director for a political party, who could be

trying to assess the effect their campaign is having on the general public. Therefore, the

audience for this project is anyone who requires a method of querying and aggregating

results for reliable intelligence gathering.

7
C1315645

2 Background

2.1 Intelligence
Before carrying out an investigation into how trust can be linked to information, we must

first understand intelligence and it’s uses, and how it can be related to trust and

information. Prunckun defines intelligence as knowledge, or insight, that has been acquired

through actions and processes. He says that intelligence can be equated to the ability to

‘reduce uncertainty’ in an area. Intelligence helps inform decisions that need to be made

when some parameters are unknown [1, p. 3]. We are interested in open source

intelligence. As stated in the book ‘Automating Open Source Intelligence’, open source

intelligence is intelligence created through the use of publicly available data [2].

This project will research the process of acquiring open source intelligence from news

articles. In this case, the action or process behind acquiring a piece of intelligence is

downloading an article, and comparing it to others in a database to answer a query.

Intelligence is gained where the article found can provide new insight into a topic. A query

is a statement that aims to find out some intelligence about a subject. It could be a simple

‘yes’ or ‘no’ question, or a more complex statement that could return multiple pieces of

intelligence covering different viewpoints on a topic.

2.2 Trust
In Chapter 2 of the book Handbook of Scientific Methods of Inquiry for Intelligence Analysis

[1, p. 30], the author talks about applying information reliability codes to intelligence that

has been gathered. Depending on the past reliability of a source, it is given a code that

represents it’s reliability. In this project, we will apply the same principle to our sources of

information. The same codes will be used that can be found in the book (Table 2.3) and are

shown below as Figure 1:

Code Description Estimated Probability of
Trust

A Completely Reliable 100%

B Usually Reliable 80%

C Fairly Reliable 60%

D Not Usually Reliable 40%

E Unreliable 20%

F Cannot be Judged 50%
Figure 1: Representing Trust – Table taken from Table 2.3 [1]

Therefore, we can say that for this project, the trust in a source is the level of reliability that

source commands. A trustworthy source will have a high estimated probability of trust,

whereas a source that cannot be trusted (and hence is unreliable) will have a low estimated

probability of trust. In this project, we will arbitrarily define the trust for each source when

implementing the trust in an ontology.

8
C1315645

2.3 Ontologies

2.3.1 What is an Ontology?

A computational ontology, as defined by Guarino, Oberle and Staab, is a means to model

the structure of a system [3]. Essentially, this means that an ontology describes concepts,

using two main structures: Classes, and Properties. Classes describe the concepts

themselves, and can provide a hierarchical class structure that represent a whole set of

related concepts. Classes are populated with Individuals, which are members of a class or

subclass. Properties represent the attributes of the individuals described by concepts, and

can be either object properties or data properties. An object property describes attributes

between two or more individuals, and a data property describes values attributed to an

individual. The University of Manchester have an excellent tutorial to introduce ontologies,

representing pizzas and related ingredients as a set of classes and properties [4]:

Figure 2: Class Hierarchy of Pizza Ontology [5]

Figure 3: Object Property Hierarchy of Pizza Ontology

9
C1315645

2.3.2 How are Ontologies created?

Ontologies can be created through a number of methods. For example, they can be written

using an XML syntax such as OWL (Web Ontology Language), as ‘triples’ using RDF (Resource

Description Framework), or through an Ontology editor such as Protégé [6].

RDF is an important part of the Semantic Web, the W3C standard for linked data on the

internet [7]. It is a model for representing data, which it does using the concept of triples. A

triple is a set of three pieces of information that represent a node in the model. A triple is

made up of a subject, a predicate and an object:

 The subject is the resource, or individual, being described by the triple.

 The predicate is the relationship between the subject and the object. In an ontology,

this is the data or object property that is to be represented.

 The object is the resource, or individual, being related to the subject. In an ontology,

depending on whether the predicate is a data or object property, the object could be

either a resource or a data-typed value.

In a RDF model, every resource is represented by a URI, or Uniform Resource Identifier.

These look identical to URLs, but do not always point to webpages, as they are purely a

unique identifier for the resource. Each subject, predicate, and object defined in a set of

triples must have a URI assigned to it. [7]

A RDF model can be queried using SPARQL. SPARQL (SPARQL Protocol and RDF Query

Language) is a language used to query and manipulate RDF triples stored in a RDF model [8].

When using SPARQL to query for data, the main components of a query are ‘Select’ clause

and a ‘where’ clause.

2.4 Machine Learning
Machine Learning is the use of computers and statistics to solve a problem. A machine

learning algorithm completes tasks by using previous experience of completing that task to

improve its performance. As such, machine learning algorithms will typically run a number

of iterations on a dataset to calculate the best possible result. A machine learning algorithm

is able to learn from data [9].

2.4.1 Topic Modelling

Topic Modelling is a form of machine learning in which a statistical model is created to learn

about topics that are present in a series of articles or documents [10]. A form of topic

modelling is Latent Dirichlet Allocation, or LDA. LDA is a model of the distributions of topics

in a set of model, as a random mixture of words [11]. The algorithm takes in a set of

documents, and returns a trained model, containing a number of topics. These topics

correspond to the document taken in, so each document will correspond to a single topic.

When passing text into a LDA model, it first needs to be split into individual words. A good

algorithm, will also remove ‘stop words’ from the text, and then stem the words. Stop

words are simply very common words that do not add value to text. An excellent list of stop

words can be found at ranks.nl [12]. When these words are removed from the text, the

remaining words should be far more focused on the meaning and context of the text. Once

10
C1315645

removed, the remaining words should have a stemming algorithm applied. The process of

stemming is to ‘stem’ the suffixes of words in order to have an identical base form for

related words [13]. For example, the words ‘surprise’ and ‘surprising’ when stemmed would

both become ‘surpris’. Whilst this makes no sense to a human reader, to a computer this

would enable both ‘surprise’ and ‘surprising’ to be represented as a single weighting in a

topic model.

11
C1315645

3 Selection of Approach
In this section, we will decide on an approach for carrying out this project. The project will

consist of four main parts. These parts are:

 Defining potential sources to be used in case studies.

 Describing some case studies.

 An ontology of queries, sources, and trust.

 Some scripts to manipulate the ontology and carry out comparisons between

articles.

In this step, we will define the sources and case studies to be used in the project. We will

also design an ontology of trust, which will form the backbone of this project. Finally, we

will look at the methods to be used to create a prototype system that uses our ontology.

3.1 Sources
In the project, a source is anywhere which holds information that can be used to answer

queries in the case studies that will be defined. Sources can usually be divided into different

categories, depending on the organisation that owns the source. As mentioned above,

sources may or may not be trustworthy – the trust of a source can depend on many factors,

such as where it was published or who published it. For the project, we will look at sources

in several different categories:

3.1.1 Broadcasters

Broadcasters are organisations that broadcast their information on at least one television

channel. They usually create online articles that link to stories that have been or will be

broadcast. Additionally, larger broadcasting organisations also write standalone articles

such that may not be broadcasted on a television channel.

An example of this category of source is a news article from the BBC:

Figure 4: Example of a BBC News article [14]

3.1.2 Print Media

The Print Media are organisations that publish newspapers and magazines. They post

articles from their published copies onto their website. Newspapers are typically either

local or cover news from the whole of the UK. Specialist magazines may be focused on a

single form of news, such as technology news over a regular period.

12
C1315645

An example of this category of source is a news article from the Guardian:

Figure 5: Example of a Guardian News article [15]

3.1.3 Social Media

Social Media allows anyone to post about a topic in various formats. Users of social media

can be from the general public or ‘official’ representatives. For example, a political party will

have their own social media pages to share information about their party, and a member of

the public may have a page on which they share their opinions on a topic raised by that

party.

An example of this category of source is a Tweet by the Express:

Figure 6: Example of a Social Media Post [16]

3.1.4 Sources to be used in the Project

There are several sources that could be useful for the project. The following are sources

found in the book ‘Open Source Intelligence Techniques’ [17]:

 Facebook

 Twitter

 LinkedIn

 Reddit

 Instagram

There are also plenty of other sources that can be used in the project, other than the five

just mentioned. These are primarily in the categories of Broadcasters and Print Media,

rather than Social Media which is represented in the above list.

13
C1315645

All the potential sources have been collated in the table below:

Source URL Category

BBC http://www.bbc.co.uk/ Broadcasters

ITV http://www.itv.com/news/ Broadcasters

Channel 4 https://www.channel4.com/news/ Broadcasters

The
Economist

http://www.economist.com/ Print Media

The Financial
Times

https://www.ft.com/ Print Media

The Guardian https://www.theguardian.com/uk Print Media

The
Independent

http://www.independent.co.uk/ Print Media

The
Telegraph

http://www.telegraph.co.uk/ Print Media

The Times https://www.thetimes.co.uk/ Print Media

The Daily
Mail

http://www.dailymail.co.uk/home/index.html Print Media

The Mirror http://www.mirror.co.uk/ Print Media

The Daily
Express

http://www.express.co.uk/ Print Media

Facebook https://www.facebook.com/ Social Media

Reddit https://www.reddit.com/ Social Media

Twitter https://twitter.com/ Social Media

LinkedIn https://www.linkedin.com/ Social Media

Instagram https://www.instagram.com/?hl=en Social Media
Figure 7: Table of Sources

3.2 Case Studies
As mentioned above, this project will be based on one main case study. A second case

study will also be described as a means of demonstrating a slightly different path the project

could take. These will cover completely different topics to ensure that the ontology can be

tested under different scenarios.

3.2.1 1 – UK politics – Politics news since June 2016

3.2.1.1 Domain

This Case study will be the main case study for this project, covering a much broader area. It

will look at news in politics since June 2016. This date is important as on the 23rd June 2016,

the people of the United Kingdom took part in a vote on the UK’s membership of the

European Union. This was referred to as the Brexit vote. As a decision that will affect every

aspect of life in the UK, the vote and the subsequent result and following events have

received substantial coverage in the media.

The case study could cover a wide range of events and areas, with the main ones being the

following:

 The vote itself – both the build-up and the result.

14
C1315645

 The effect the vote will have on different regions and people in the UK

 The effect the vote will have on the UK itself.

 The Prime Minister stepping down after the result and being replaced.

 The changes in the political landscape over the course of the period described.

As mentioned above, these areas have all received significant coverage in the media, across

a variety of sources. In this case study, we will need to define the sources from which we

will gather information so that we can then use these in our ontology.

This case study is useful to us as an example of a ‘real-world’ use of a system such as the

one researched in this project. An analyst may want to query a system for information

about the vote, and this could be for a variety of reasons. The analyst may want to simply

find out news or information about the vote, such as who is leading the vote or the results

of the vote. On the other hand, the analyst may wish to do a more in depth analysis, by

querying the system for underlying information behind the vote, such as the effects the vote

could have on voters.

3.2.1.2 Sources of Information Considered

As the main case study for the project, all the sources named in the Sources section could be

relevant. As such, see Figure 7 for a list of the sources that will be included in this case

study.

3.2.1.3 Queries

Below are the queries that will be implemented for this case study:

1. What is the impact of Brexit on EU funding in Wales?

2. What was the final result of last year’s Brexit Referendum?

3. How did Wales vote in the Brexit Referendum?

4. Who replaced David Cameron as the Prime Minister of the United Kingdom?

3.2.2 2 – Sport – The Premier League in the 2016/17 Season

3.2.2.1 Domain

This case study is the secondary case study for the project. This case study will be a smaller

case study, smaller in scope than the above case study. This will allow for the evaluation of

This case study will look at the fixtures, results and table from the 2016/17 season of the

premier league. The Premier League is the top level of football in England, at the top of a

pyramid containing all professional football teams in the country, including four teams from

Wales. The league consists of twenty teams, who play each other both home and away. At

the end of the season, the top four teams are rewarded with qualification to the European

Champions League, and the bottom three teams are relegated to the next tier of the league

system. This case study will focus on the teams within the league, as a means of

determining their position in the table at a certain point, or assessing which teams could

finish where. The case study could be useful to anyone interested in following the league

casually, or even to those who make use of this kind of data in a professional application.

15
C1315645

3.2.2.2 Sources of Information Considered

As this is a smaller, secondary case study, the number of sources considered will be

reduced. As such, the list of sources can be seen in the following table:

Source URL Category

BBC http://www.bbc.co.uk/ Broadcasters

The Guardian https://www.theguardian.com/uk Print Media

The Independent http://www.independent.co.uk/ Print Media

The Telegraph http://www.telegraph.co.uk/ Print Media

The Daily Mail http://www.dailymail.co.uk/home/index.html Print Media

The Mirror http://www.mirror.co.uk/ Print Media

Facebook https://www.facebook.com/ Social Media

Twitter https://twitter.com/ Social Media
Figure 8: Table of Sources - Secondary case study

3.2.2.3 Queries

These are the queries that sources in this case study will try and answer. As this is a

secondary case study, the queries have been kept simple. This will ensure that the ontology

can be kept simple when dealing with this case study – no changes will need to be made

from the implementation for the main case study.

1. Which team was at the top of the Premier League at Christmas?

2. Which team has scored the most goals so far in the season?

3. Which teams are most likely to finish in the top 4 places of the league at the end of

the current season?

3.3 Ontology Design
As described in the Background, the ontology will be developed using Protégé, a tool

developed at Stanford University for the creation and updating of ontologies [6]. It allows

for the definitions of classes, to represent individuals, and properties. Properties can be

either object properties or data properties. Object properties represent relationships

between individuals in an ontology, and data properties tie individuals to data as ‘Literals’.

A Literal is a pair containing an item of data and the datatype of the data.

The ontology to be created in this project will be an ontology of sources, trust and queries.

The ontology will be used alongside the case studies shown above to populate it with

sources and queries.

See the below figure of the initial conceptual diagram on which this ontology is based:

Sources

Trust

Queries

Figure 9: Initial diagram of ontology

16
C1315645

This diagram shows the three classes that will be needed for the ontology. The sources and

queries classes will have a many to many relationship, where more than one source could

be related to a single query and vice versa. The trust to be shown in the individuals of the

ontology will be represented by a property linking trust to an instance between the other

two classes.

However, this initial model contains no way of answering any queries. To remedy this, an

extra class Answers will be implemented in the ontology. This extra class will bring the

other three classes together, so that trust can be varied on answers independently of the

source it is linked to. The figure below shows the final conceptual model for the ontology:

3.3.1 Competency Questions

With this final model, the next step is to define a set of competency questions. Competency

questions are conditions that state what the ontology will and will not be capable of [18].

Similar to the initial phase of application or system design, they are essentially the

requirements the ontology must meet. In this case, in addition to being the requirements,

they are also the design of the ontology. This is because these competency questions cover

every use of the ontology, and through the use of Protégé the ontology can be created by

using the questions as definitions for the classes and properties. In the Testing section of

this report, we will evaluate our final ontology against these competency questions to

ensure that it has met the requirements of the project.

1. There are classes that represent the following:

a. Queries

b. Sources

c. Trust

d. Answers to queries

2. The class Queries contains subclasses for each case study we wish to represent:

a. A Politics case study for queries about politics.

b. A Sports case study for queries about sports.

3. Each subclass of Queries will contain the following individuals representing a query:

(For now we are populating only the politics subclass)

a. What was the final result of last year’s Brexit Referendum?

b. What is the impact of Brexit on EU funding in Wales?

c. How did Wales vote in the Brexit Referendum?

d. Who replaced David Cameron as the Prime Minister of the United Kingdom?

4. The class Sources contains a subclass for every type of source we wish to represent:

Sources

Answers

Queries

Trust

Figure 10: Final diagram of ontology

17
C1315645

a. Social Media

b. Websites

5. The subclass SocialMedia contains subclasses to represent social media sources

a. Facebook

b. Twitter

c. Reddit

6. The subclass Websites contains subclasses for websites we wish to represent:

a. There is a Broadcasters subclass for websites of television broadcasters

b. There is Print Media subclass for websites of newspapers and magazines

7. The Broadcasters subclass contains subclasses to represent the following

broadcasters:

a. BBC

b. ITV

c. Channel 4

8. The Print Media subclass contains subclasses to represent the following

newspapers/magazines:

a. The Guardian

b. The Telegraph

c. The Times

d. The Economist

e. The Financial Times

9. Every individual stored within the Source class or one of its subclasses represents

one of the following:

a. Article

b. Post

c. Page

d. (Social Media) Account

10. The Trust class contains only individuals to represent the level of trust in a source.

This consists of six individuals (see Figure 1 or [1, p. 30]):

a. Completely Reliable

b. Usually Reliable

c. Fairly Reliable

d. Not Usually Reliable

e. Unreliable

f. Cannot Be Judged

11. The Answers class contains the answers to instances of queries contained in the

Queries class.

12. The individuals in the Answers class link individuals from the Sources, Queries and

Trust classes to create answers to a query.

a. Each answer is linked to a single source, so each query can have multiple

answers from different sources.

13. The Answers class contains the following subclasses:

a. A subclass containing all complete answers.

b. A subclass containing templates to represent generic answers.

18
C1315645

3.4 System Design
The final part of this section is to decide how to approach the problems of manipulating our

above ontology, and how to use topic modelling to compare articles. Therefore, this section

covers the approach that will be taken to develop this system, with an overview of the main

libraries that will be required to implement it.

3.4.1 Python

Python will be used to implement this system. This is because of Python’s relatively simple

syntax and the wide array of available modules, both built-in and from third parties. This

ease of use will allow for rapid prototyping of a system, which is just that – a prototype as a

proof of concept for using an ontology to assess trust.

3.4.2 Ontology Manipulation

To implement functions for manipulating our ontology, there is one library that seems to

cover all the areas required: Rdflib [19]. These areas are to be able to load an ontology into

python, query the ontology for data, and add new individuals to the ontology. The Rdflib

functionality covers these in great detail. It uses a custom graph object as the main focus

for the library, which represents the ontology as a series of RDF triples. Once a graph has

been loaded, there are many operations which can be executed to manipulate an ontology.

These include:

3.4.2.1 Graph()

This is the main function of Rdflib. The function is used to instantiate a new graph object,

which can then be populated with an existing ontology or with new triples. A graph can

have an ontology loaded into it with the ‘parse()’ function, which takes either an Ontology

URI, or a filename as input. This will then populate the graph object with the contents of

that ontology, in the form of triples.

3.4.2.2 Query()

This function of Rdflib uses SPARQL queries to carry out a wide range of tasks. The two

main tasks we may need for the project are selecting data, used in the same manner as the

select clause in SQL, and inserting data into the ontology. Inserting data using SPARQL may

not be necessary, due to the ‘add()’ function available in Rdflib, but using the select clause

will be very useful for collecting the links from the ontology. To collect links from the

ontology, a SPARQL query similar to the below will be required:

 (Individual1, hasLink, Link1)

(Individual2, hasLink, Link2)

(Individual1, hasClass, Class)

(Individual2, hasClass, Class)
Figure 11: A set of example triples detailing two individuals of class 'Class'

Prefix: URI <Our ontology URI>

 SELECT link

 WHERE <An individual> URI: hasLink link
Figure 12: Pseudocode for SPARQL to get links from ontology

19
C1315645

This query would return a link for every individual in the ontology that has a property

named ‘hasLink’. The subject ‘An Individual’ is another variable, that is not returned. As

‘hasLink’ is the only part of the triple concretely named, the query will find every triple that

contains the predicate ‘hasLink’, and then return the link for those triples. In this case,

‘Link1’ and ‘Link2’ would both be returned by the query.

3.4.2.3 Add()

This function takes in a triple and inserts it into the ontology. As mentioned in Background,

a triple consists of a subject, a predicate, and an object. Each of part of the triple will need

to be defined as either part of the ontology (as a URIRef or Literal), or use a built-in

namespace, such as RDF or FOAF (Friend of a Friend). The built-in namespaces represent

World Wide Web Consortium standard schemas for the semantic web. An example of this is

‘RDF.type’, which is a built-in property to RDF, which states the class of which an individual

is an instance.

3.4.3 Topic Modelling for Comparing Articles

To implement article comparison in python, there are a couple of libraries that will be

appropriate. These are Gensim, a very comprehensive topic modelling library [20], and the

Natural Language Toolkit (NLTK), a library for working with natural language input [21].

In the Gensim library, the most appropriate functions for this project will be the LDA model

function. This takes in a corpus of words, and returns a model of all the topics in the corpus.

Gensim allows for querying a model to return related topics. This is useful for the project as

it will be comparing a new article against other links in a model. By using this query

function, the system will be able to look up an article in the model, extract it, and compare it

against the new link.

From Gensim, the main modules required are the corpora and models modules. These

provide functions for creating a corpus of documents, and creating models of the created

corpus, respectively.

3.4.3.1 Corpora

This module provides functions for creating a corpus of input documents, as well as a

custom dictionary implementation that stores individual words alongside a unique integer

ID [22]. Functions that may be useful are ‘doc2bow’, and ‘add_documents’.

 ‘Doc2bow’ converts an input document to Gensim’s bag of words format, which is the

format required for use as a corpus for a model. The document must already be pre-

processed – as discussed in the Background, this consists of tokenising the document,

removing stop words and then stemming the remaining words in the document.

‘Add_documents’ adds new documents to a dictionary object. This will be useful when

adding creating a new dictionary, in order to import articles downloaded from the ontology

into the dictionary.

20
C1315645

3.4.3.2 Models

This module provides functions for creating a new topic model from an input corpus [23]

The important functions here are ‘LdaModel’, ‘print_topics’, and ‘update’. ‘LdaModel’ is a

constructor that creates a model based on an initial starting corpus. As a constructor, it

returns an object that contains a new LDA model. This object can then be manipulated by

other functions defined in Gensim, and by any other implemented Python code.

‘Print_topics’ simply outputs a list of all topics in the model, and the words contained within

each topic. This will be useful when implementing a method to allow for human analysis of

a model. Finally, the ‘update’ function can be used to update a model to include new

documents in the corpus. This will be useful when updating the corpus with new links from

the ontology.

3.4.3.3 Pre-processing documents

Before inserting documents into a corpus, they must first be pre-processed. As described in

the background, this involves three steps:

 Tokenizing the document

 Removing stop words from the document;

 Stemming each token from the document.

To implement tokenizing and stemming, the Natural Language Toolkit will be used, as stated

above. This will require two of its modules: ‘tokenize’ [24] and ‘stem’ [25]. These each

implement some functions that together allow for the efficient pre-processing of the

documents. The ‘stem’ module implements a stemming algorithm called ‘Porter Stemming’

[26]. This was published by Martin Porter in 1980, and is still applicable today. The

algorithm looks at suffixes of words, and removes them, so that only common ‘stems’ of

words remain.

3.4.3.4 Algorithm for Simple Article Comparison

This project will also implement a simple algorithm to compare the words in two

documents. The algorithm will take each word from an article, and check for its presence in

the article against which it is being compared. This will be used to compare output against

the output of our final system.

For the simple comparison, some pseudocode is required:

 Remove duplicate words from new article

 Remove duplicate words from original article

 For word in new article

 If word in original article

 Increment matches

 Percentage similarity = (matches / length of new article)

 If similarity > similarity limit

 New article is similar to old article
Figure 13: Pseudocode to show process for simple article comparison

21
C1315645

4 Implementation
In this step, the implementation of the project will be discussed. Any problems that arise

during the development of the ontology and system will be discussed here. This discussion

will consist of a description of the problem found and a description of how the problem was

repaired.

4.1 Ontology
There were three main steps to implementing the ontology: First was to implement the

classes required, to represent the different concepts in the ontology. Next was to

implement the data and object properties that act as relationships for individuals and

classes in the ontology. The final step was to populate the ontology with individuals that

would provide the knowledge represented in the structure of the ontology.

4.1.1 Implementing Classes

This was a straightforward process. As these had been defined in the competency

questions, this was a relatively quick process. However, I realised during the

implementation that the ontology would require the use of templates and generic classes to

represent individuals where not all information was known. For example, if a new article is

entered into the ontology, there would have been no way to set a default level of trust in

case there was no obvious level at which this should be set. To avoid this problem, two

subclasses were added to the Answers class (represented as ‘AnswersToQueries’) in the

ontology. These were ‘AnswersToQueriesImplemented’ and ‘AnswersToQueriesTemplate’.

‘AnswersToQueriesImplemented’ is a class representing every answer to a query that has

been successfully implemented. ‘AnswersToQueriesTemplate’ is a class representing a set

of individuals that are defined as templates for answers using common sources. These

allow the user to assign a template to an answer, which in turn represents a set of ‘default’

information in the new individual. This can be overridden when appropriate by assigning

new properties in the new individual for known information.

Figure 14: The final class hierarchy of the ontology

22
C1315645

4.1.2 Implementing Properties

Once the classes of the ontology had been created, it was time to implement the data and

object properties required for the ontology.

4.1.2.1 Data Properties

The data properties in this ontology are to represent the data attributed to each individual

stored in the ontology. In this ontology, four data properties have been implemented in the

data property hierarchy. Each of these properties represents data of a specific datatype.

They are:

 ‘autoAdded’ – A property representing a Boolean value, used to state whether an

individual was inserted from the system or manually. True is the value when an

individual has been added automatically.

 ‘context’ – A property representing a String value, used to describe the concise

context given to an individual. For example, if an individual was related to a query

about the impact of the Brexit vote on Wales, the context value may read

‘BrexitImpactWales’.

 ‘description’ – A property representing a String value, used to give a description of

an individual. For example, if an individual was representing a query described with

the context ‘BrexitImpactWales’, the description may read ‘What is the impact the

Brexit vote will have on Wales?’.

 ‘url’ – A property representing a URL value, used to give the URL of an individual

representing a Source subclass.

Figure 15: The final data property hierarchy of the ontology

4.1.2.2 Object Properties

The object properties in this ontology are to represent the relationships between individuals

stored in the ontology. There are seven object properties implemented in the object

property hierarchy:

Figure 16: The final object property hierarchy of the ontology

23
C1315645

These are designed to be self-describing. However, the property ‘itsGenericIs’ should be

explained. This property is used to link an individual of the Source class to a generic

individual of the same subclass. This is able to provide common information on a source to

the new individual, without requiring re-entry each time.

4.1.3 Populating the Ontology

With the classes and properties of the ontology defined, the final step was to populate the

ontology with individuals. Individuals were inserted into the following classes:

 Trust – These individuals were the six entries to the table in Figure 1.

 Queries – These individuals were inserted into the subclass ‘PoliticsCaseStudy’,

representing the four questions posed in the case study definition.

 Sources – These individuals represented sources answering the queries defined in

the main case study. Some individuals represented different sources answering the

same query, with up to three sources being used for each query. The sources used

were all from the table in Figure 1.

 Answers – These individuals represented the answers to each query. They also

brought together the query and the source, with a level of trust applied to each

answer individual.

4.2 System

4.2.1 Installing Python Libraries

The first step to implementing the system was to install all the Python libraries required.

The following libraries were installed:

 Rdflib [27]

 Pprint – A built in library for printing data in a readable manner. [28]

 Urllib.parse – A built in library used for handling URLs. [29]

 Nltk.tokenize – Part of the third party Natural Language Toolkit, for transforming text

into tokens. [24]

 Nltk.stem – Part of the third party Natural Language Toolkit, for applying stemming

algorithms to tokens. [25]

 Stop_words – A third party library that contains a list of common English stop words.

[30]

 Gensim [20]

 Newspaper – A third party library that contains functions for scraping text from

HTML webpages. [31]

 NumPy – A large third party library used for scientific computing; This was required

to install the gensim library. [32]

To install these libraries, I used the Python install tool ‘Pip’ where possible. This enables

installation from the command line with the following syntax:

 pip install <package name>

24
C1315645

Where available, pip downloads a ‘.whl’ file from the library repository, and then unpacks

and installs that file on the target PC. However, this caused a problem for me when

installing NumPy, as Pip was trying to whl file that was not packaged for windows

distributions. This was because NumPy is by default packaged for Linux distributions. When

attempting to remedy this, I found a list of pre-packaged files prepared by Christoph Gohlke.

[33] These were specifically packaged for correct versions of windows and by downloading

the correct file – ‘numpy‑1.12.1+mkl‑cp36‑cp36m‑win32.whl’, I was able to install the

library with the following command (Executed from within the folder where the file was

located):

 Pip install ‘numpy‑1.12.1+mkl‑cp36‑cp36m‑win32.whl’

4.2.2 Implementing the System

Whilst implementing the project, I made several decisions regarding code in different areas

of the created scripts. In addition, I ran into a number of challenges, again in several

different areas. The final implementation produced three files, each containing functions

for specific tasks. This section will discuss these decisions, and how I made any necessary

decisions, as well as highlighting important areas of the code.

4.2.3 Manipulating the Ontology

4.2.3.1 Loading the Ontology into Python

The first step in the development of the system was to be able to load the ontology into

python, so that it could be queried and modified. A new RDF object is created using the

‘Graph()’ function. For this implementation, I first created an empty graph, and then used

the ‘Parse()’ function to load the ontology into the graph. Initially, I was attempting to load

the ontology with the parameter ‘format=”rdf”’, as below:

g = rdflib.Graph()

g.parse("OntologyOfTrustRDF.owl", format="rdf")

I was first under the impression that using this format would recognise that the syntax in the

file ‘OntologyOfTrustRDF.owl’ was not in the OWL/XML format, but in RDF format as a series

of triple declarations. However, when running the above code, I found this was not the

case. I fixed this issue by testing the parameters ‘format=”owl”’ and ‘format=”xml”’. When

xml was used, the file was correctly loaded – the final correct line can be seen below:

 g.parse("OntologyOfTrustRDF.owl", format="rdf")

4.2.3.2 Querying the Ontology

Once the system could load the ontology, the next step was to implement the querying

functionality. As stated in the design, to do this I would use the ‘Query()’ functionality from

Rdflib. This function compiles and executes a statement in SPARQL, described in the

background section to this project.

25
C1315645

The function I created was to get a list of all the URLs stored in the ontology. The first part

of this was to write a SPARQL query, that would return the URLs for every individual in the

ontology that has the property ‘url’. The query I used can be seen below:

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX owl: <http://www.w3.org/2002/07/owl#>

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX a: <http://cicero.cs.cf.ac.uk/onto/trustosint/ontology#>

 SELECT ?url

 WHERE {

 ?entity a:url ?url

 }
Figure 17: SPARQL query to extract URLs from ontology

It is important to note that a SPARQL statement needs to reference the URI of the ontology

which it is querying as a prefix. This allows the query to locate the resources it requires to

execute the query. In this case, the prefix ‘a’ is this URI. Without this prefix, the URI would

have to be repeated for every concrete resource in the query. In the case above, this would

only be for the ‘url’ property, such that the Where clause would instead read as follows:

?entity http://cicero.cs.cf.ac.uk/onto/trustosint/ontology#url ?url

In the query, ‘?entity’ and ‘?url’ are variables that change with each line returned by the

query (with only url being returned as a result), and so do not need to be referred to

through a URI Prefix. I was able to test SPARQL queries in Protégé, using the SPARQL plugin,

and this allowed me to ensure the queries worked before setting them up to be executed by

Rdflib in Python.

Upon getting the result from the queries, I found that they were returned by rdflib as a

custom object. I was able to access this object with the following code:

 result = g.query(URLQUERY)

 outputurls = []

 for row in result:

 url = row['url']

 outputurls.append(url)

 return outputurls

This code first executes the query (Figure 17) and then passes the result to the ‘result’

variable. As each row in the result can contain multiple ‘columns’, each corresponding to a

value named in the Select clause of the query. In this case, the Select clause reads ‘SELECT

?url’, where ‘url’ is the returned value. Therefore, the syntax ‘row[‘url’]’ or ‘row.url’ can be

used to extract the value from the row. Unfortunately, this caused a problem for me, as the

value was returned as a Literal – a custom type in Rdflib. This meant that the value was fine

26
C1315645

when printed to the terminal, but could not be manipulated when passed to another

function. For example, when trying to pass the output URLs as a list (see ‘outputurls’ in the

above code), each URL was returned in the format ‘Literal(url, datatype=XSD.AnyURI)’.

After researching the RDFLIB documentation [27], I found there was a function ‘toPython()’

that would convert Literal objects to a value with the type of their closest Python equivalent

(according to the datatype specified by the Literal).

Once I had fixed this, the only part of the code to change from above was line four:

 url = row['url'].toPython()

This code was used in the function ‘getAllUrlsFromOntology()’ and the function

‘getSomeLinks()’ which is an extra function used to get links from just a single source.

4.2.3.3 Adding New Links to the Ontology

After creating functions for querying the ontology, the next step of the implementation was

to create the required functions to add new links to the ontology. Whilst adding a new

individual is very simple in Protégé, it is far more complicated to do programmatically. To do

this, I had a choice of using two different Rdflib methods for adding triples to an RDF Graph.

The first of these is the ‘add()’ function, which takes in a Subject, Predicate and Object as a

triple. As discussed in the background, these are the three components of a triple in RDF.

The other option was to use the ‘INSERT’ clause of SPARQL. This uses the same query

functionality used to get links out of the ontology, but with an ‘INSERT’ clause followed by a

set of triples, rather than a ‘SELECT ? WHERE { }’ clause. I chose to use the more readable

‘add()’ method, and this also allowed me to more easily pass in variables to the triples.

Firstly, I assessed which individuals in my ontology I would need to replicate to insert a new

link into the ontology. I opened my ontology with turtle syntax, a human readable method

of displaying an ontology, and copied out the two individuals I identified:

 AnswerBrexitImpactWalesBBC – An individual of type answer, which links together a

source individual to a query and level of trust.

 BBC:BrexitWalesImpact – An individual of type Source (subclass: BBC), which

represents the link from the Answer.

The code below show these as methods of

http://cicero.cs.cf.ac.uk/onto/trustosint/ontology#AnswerBrexitImpactWalesBBC

:AnswerBrexitImpactWalesBBC rdf:type owl:NamedIndividual ,

 :AnswersToQueriesImplemented ;

 :whichQuery :BrexitImpactEUWalesFunding ;

 :whichSource :BBC:BrexitWalesImpact ;

 :whichTemplate :PoliticsCaseStudyAnswersTemplateBBC .
Figure 18: The AnswerBrexitImpactWalesBBC individual in Turtle format

27
C1315645

http://cicero.cs.cf.ac.uk/onto/trustosint/ontology#BBC:BrexitWalesImpact

:BBC:BrexitWalesImpact rdf:type owl:NamedIndividual ,

 :BBC ;

 :itsGenericIs :GenericBBC ;

 :url "http://www.bbc.co.uk/news/uk-wales-36619404"^^xsd:anyURI .
Figure 19: The BBC:BrexitWalesImpact individual in Turtle format

By looking at these two definitions, I could see that I needed to implement a function that

added two individuals that mirrored these. The created individuals would be similar, but

take in variables from another function – a URL to be added to the ontology, and a string

that would act as ‘context’. The context in this ontology is a unique name for an individual

that concisely describes the query it answers. For example, in the above individuals, the

context would be ‘BrexitWalesImpact’, showing that they are related to the impact Brexit

will have on Wales.

In order to use the add function in my system, I first had to define all of the variables I

wanted to use as references attached to a Uniform Resource Identifier (URI). This is a string

that looks identical to URL, that defines every single item in the ontology. To complete this

for the numerous references I would need for the triples, I used a variable named

‘ontnamespace’ to define a prefix for all of the variables.

ontnamespace = 'http://cicero.cs.cf.ac.uk/onto/trustosint/ontology#'

The hashtag (#) represents the start of the value that is being defined. The most difficult of

these variables to define was the context of the link. This was because this needed to be

user defined, so that it could accurately reflect the meaning of the link. I did this by using

Python’s user input function, which pauses the program when called, to wait for input. This

was done with the following line of code:

 context=input('What is the context for this link? (example: BrexitImpactWales):')

The string parameter is a prompt that is shown to the user whilst waiting for input. This

context variable was then passed to my URI definition, as shown here:

 ContextQuery = rdflib.URIRef(ontnamespace + 'Query:' + context)

‘ContextQuery’ is a variable to represent the query related to the answer in which the link is

referenced. As previously mentioned, the rdflib.URIRef function takes a string and creates a

URI object, which can be passed to the add function. In the above example, the string is

constructed using the namespace, a prefix, and the user entered context variable.

Any Literals required for the new triples, as objects, also needed to be defined. Similarly to

the above code, this was done using the rdflib.Literal function. To create a new Literal

object was done with the following code:

28
C1315645

 autoaddtrue = rdflib.Literal('true', datatype=XSD.boolean)

This code defines a Boolean Literal, by stating the value as ‘true’ and then defining the

Boolean datatype as part of the XSD namespace (XML Schema Definition) [34].

With all of the required subjects, predicates and objects defined, I was able to move on to

creating each triple required to build the two individuals required. Using the add function of

Rdflib, this required multiple triples for each individual. The subject was the same for each

triple – a reference to the individual being created. The predicate and object was different

for each triple, as these showed a different relationship of the individual.

 g.add((AnswerContextSource, RDF.type, OWL.NamedIndividual))

This code is defining a triple that states that AnswerContextSource is of type individual. To

complete this individual required five more triples, each added in the same manner. As an

example, below is the code used to write the first individual, representing an individual of

the ‘AnswersToQueriesImplemented’ subclass:

 AnswerContextSource = rdflib.URIRef(ontnamespace + 'Answer:' + context +

 sourceonly) #sourceonly represents the source of the article

 AnswerType = rdflib.URIRef(ontnamespace + 'AnswersToQueriesImplemented')

 whichQuery = rdflib.URIRef(ontnamespace + 'whichQuery')

 whichSource = rdflib.URIRef(ontnamespace + 'whichSource')

 whichTemplate = rdflib.URIRef(ontnamespace + 'whichTemplate')

 ContextQuery = rdflib.URIRef(ontnamespace + 'Query:' + context)

 SourceContext = rdflib.URIRef(ontnamespace + context + ':' + sourceonly)

 CSTemplate = rdflib.URIRef(ontnamespace + 'PoliticsCaseStudyAnswersTemplate'

+ sourceonly)

 autoAdded = rdflib.URIRef(ontnamespace + 'autoAdded')

 g.add((AnswerContextSource, RDF.type, OWL.NamedIndividual))

 g.add((AnswerContextSource, RDF.type, AnswerType))

 g.add((AnswerContextSource, whichQuery, ContextQuery))

 g.add((AnswerContextSource, whichSource, SourceContext))

 g.add((AnswerContextSource, whichTemplate, CSTemplate))

 g.add((AnswerContextSource, autoAdded, autoaddtrue))

The above code includes the variable definitions used in the inserted triples. Each variable

represents a different resource in the ontology.

29
C1315645

The final step was to save the updated ontology as a file. This was done using the ‘serialize’

function in Rdflib. This was the simplest part of implementing code for the ontology, as it

was a simple one line statement that sent output to a specified file and format:

 g.serialize(filename, format="xml")

4.2.4 Topic Modelling using Gensim

Upon the completion of the ontology manipulation functions, the next step was to create a

set of functions that used topic modelling to compare an article from a new URL against the

other articles in the ontology. The approach followed here was to implement functions for

scraping articles, and manipulating text first, and then to implement the functions that use

topic modelling.

4.2.4.1 Scraping Text from Articles

The initial step was to implement a function to download an article and then return the

body (the text) of that article. This proved to be a challenge at first, as it is relatively easy to

download the HTML contents of a webpage, but significantly more difficult to parse that

HTML to get the body of an article. After some searching, I found a library called

Newspaper, that provides simple yet powerful extraction and curation of news articles in

multiple languages [31]. The library works by downloading and parsing a html file from a

given URL into a custom ‘Article’ object, and then allows for a number of operations to be

executed. The most important of these operations required for this project is ‘article.text’

which returns the body of the parsed article as an attribute of an article object. There are

also a number of other operations that could be useful in future work for this project, such

as ‘.keywords’ which returns key words of the text, and ‘.summary’ which returns a

summary of the article text. The final code for this function works as follows:

def getText(url):

 article = Article(url, language='en')

 article.download()

 article.parse()

 return article.text

4.2.4.2 Manipulating the Text

Once downloaded, the article text needed to be turned into tokens – where each individual

word in the string is turned into a string on its own. This results in an array of strings, with

the same length as the number of words in the article. Once tokenized, stop words need to

be removed from the string. As described in the background, stop words are a set of

commonly used words that will add no value to our model. To remove these, I used the

python library Stop-words, which provides a list of stop words that can be imported into the

code. This was later replaced by a new, longer list written by Ranks NL [12]. This list

contains over 650 stop words – a far more comprehensive amount.

30
C1315645

Another problem found when removing stop words was that some words contained in the

stop words were used in the articles used in the case study as important parts of the text.

For example, stop word lists removed the word ‘may’. This was an issue as Theresa May is

the Prime Minister of the UK, and a prominent name in many of the articles used as part of

the main case study. This was easy to fix by manually removing the word ‘may’ from the list

in the stop words file.

The following code was used to remove the stop words from the list of tokens created from

the article:

def removeStopWords(intokens):

 stopwords = stopwordstest.getStopWords()

 stoppedtokens = [i for i in intokens if not i in stopwords]

 return stoppedtokens

The most important line here is the third line – this is an efficient piece of code that creates

a new list of tokens, minus the stop words, all in one line. This is a good demonstration for

why Python is an excellent language to use for prototyping in projects such as these. As well

as being efficient, it is easy to understand and quick to write.

After Tokenising the article, and removing stop words, the next step was to apply a

stemming algorithm to the text. A stemming algorithm removes common suffixes from the

ends of words, so as to normalise words. This will allow for more accurate modelling of the

words found in each article. As previously mentioned, to do this a Porter Stemmer

algorithm will be applied to the text [26] . A good implementation of the Porter Stemmer

algorithm is found in the NLTK (Natural Language Toolkit) library for Python. This creates a

‘PorterStemmer’ object with the ‘PorterStemmer()’ function, before the ‘.stem(word)’

function is applied, to stem the word. The code for this was executed as follows:

def stemTokens(intokens):

 '''stem tokens by using porter stemmer algorithm'''

 stemmer = PorterStemmer()

 stemmedtokens = [stemmer.stem(i) for i in intokens]

 return stemmedtokens

Here, the stemmed words are added to a list in the third line. Again, this is an efficient and

easy to read method of implementing these functions.

4.2.4.3 Creating a Model

The next step was to create an LDA model of the topics from all the articles in the ontology.

To do this, the python library Gensim was used. The function here uses the Gensim function

‘corpora.Dictionary()’ to create a dictionary of words, where the words are the previously

tokenised and stemmed words from a group of articles. A corpus was then created, a list

where the tokens in the dictionary are converted to the Gensim ‘Bag of Words’ format:

31
C1315645

corpus = [dictionary.doc2bow(article) for article in tokenisedtexts]

Here ‘article’ is the tokens relating to a single article, and ‘tokenisedtexts’ is a list containing

lists of tokens for every article in the ontology. This corpus is now in the correct format to

be passed into the Gensim modelling functions – where the LDA model to be used in the

rest of the system will be created.

ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=numoftopics,

id2word=dictionary, passes=15)

This generates a new LDA model and passes it into the variable ‘ldamodel’. The

‘num_topics’ parameter is the number of topics which the model needs to generate – in

every case this is the number of articles that are being passed into the model. The ‘id2word’

parameter takes in the ‘dictionary’ article and creates a set of vector ID mappings that relate

to each word in the dictionary. Finally, the ‘passes’ parameter is the number of times the

algorithm should run over the corpus to train the model.

4.2.4.4 LDA Compare

This was the hardest part of the implementation. This function was to take in the tokens

generated from the articles in the ontology, and generate a LDA model containing these

articles and a new article to be compared against the others. To do this, I planned to use

Gensim’s vector ID functionality, where a vector can be generated that represents the

position of a document in the model. However, this returned an error. Despite looking all

over the Gensim website and tutorials, and the wider internet, I was unable to find a fix.

Unfortunately, despite a long period troubleshooting, I was forced to leave this function

unfixed. See Testing section in Results and Evaluation; Test 8 for more detail about the

error. The below code is the current state of this function – trying to print the vector

location of a query in the LDA model space:

def LDACompare(urllist, currentTokens, newurl):

 dictionary = corpora.Dictionary(currentTokens)

 corpus = [dictionary.doc2bow(article) for article in currentTokens]

 model = gensim.models.ldamodel.LdaModel(corpus, id2word=dictionary, passes=15)

 query = "This is a test document to be used as a query"

 vec_query = dictionary.doc2bow(query.lower().split())

 vec_lda = model[query] #convert query to the LDA space

 print(vec_lda)

32
C1315645

4.2.4.5 Simple Article Comparison

The final part of the implementation was to implement the simple comparison of articles.

This was done following the pseudocode in Figure 13, however some changes were made

during the implementation:

def simpleArticleComparison(urllist, currentTokens, newurl):

 '''Return the url of the most similar article to the new url'''

 newtokens = list(set(singleInputTokenize(getText(newurl))))

 #set() creates an ordered list, removing duplicates, list() returns the set to list

type

 print(str(len(newtokens)))

 # Calculates the % of words that match in the tokens

 count = 0

 nummatcheslist = []

 for tokenlist in currentTokens:

 nummatches = 0

 uniquetokenlist = list(set(tokenlist)) #remove duplicates

 for token in newtokens:

 if token in uniquetokenlist:

 #increment if the same token is found in each list

 nummatches += 1

 print(str(count) + ': '+ str(nummatches))

 nummatcheslist.append(nummatches)

 count += 1

 print('Matches List: ' + str(nummatcheslist))

 similarities = []

 for i in nummatcheslist:

 #create a list of each article compared and the similarity to new doc

 similarity = (i / len(newtokens))

 similarities.append(similarity)

 print(str(similarity))

 print('Similarity' + str(similarities))

This code takes in a list of URLs, the set of articles to be compared against (as tokens), and

the URL of the article to compare against the current articles. It removes duplicate words

from each set of article tokens using the set() function, and then compares the tokens in the

articles to find the number of matching tokens. It then calculates this as a percentage, and

prints out the values to be appraised by the user.

33
C1315645

5 Results and Evaluation

5.1 Testing the Ontology
To test the ontology, we will evaluate the competency questions against our ontology, to

ensure that each one has been met as described.

1. There are classes that represent the following:

a. Queries

b. Sources

c. Trust

d. Answers to queries

This is complete, these classes are present:

2. The class Queries contains subclasses for each case study we wish to represent:

a. A Politics case study for queries about politics.

b. A Sports case study for queries about sports.

This is complete, these subclasses are present:

3. Each subclass of Queries will contain the following

individuals representing a query: (For now we are populating only the politics

subclass)

a. What was the final result of last year’s Brexit Referendum?

b. What is the impact of Brexit on EU funding in Wales?

c. How did Wales vote in the Brexit Referendum?

d. Who replaced David Cameron as the Prime Minister of the United Kingdom?

This is complete, the correct individuals are present:

Figure 22: The correct individuals for queries are present

4. The class Sources contains a subclass for every type of source we wish to represent:

a. Social Media

b. Websites

This is complete, these subclasses are present:

5. The subclass SocialMedia contains subclasses to represent

social media sources

a. Facebook

b. Twitter

c. Reddit

Figure 20: The correct top
level classes are present

Figure 21: The correct subclasses of
query are present

Figure 23: The correct subclasses of
Sources are present

34
C1315645

This is complete, these subclasses are present:

Figure 24: The correct subclasses of social media are present

6. The subclass Websites contains subclasses for websites we wish to represent:

a. There is a Broadcasters subclass for websites of television broadcasters

b. There is Print Media subclass for websites of newspapers and magazines

7. The Broadcasters subclass contains subclasses to represent the following

broadcasters:

a. BBC

b. ITV

c. Channel 4

8. The Print Media subclass contains subclasses to represent the following

newspapers/magazines:

a. The Guardian

b. The Telegraph

c. The Times

d. The Economist

e. The Financial Times

The requirements 6, 7, and 8 are complete, these subclasses are all present:

Figure 25: The correct subclasses are present in Websites

9. Every individual stored within the Source class or one of its subclasses represents

one of the following:

a. Article

b. Post

c. Page

d. (Social Media) Account

This is complete, all individuals in this class represent the above types of source. The

exception is social media accounts/posts, which have not been populated in this ontology

below the class level.

35
C1315645

10. The Trust class contains only individuals to represent the level of trust in a source.

This consists of six individuals (see Figure 1 or [1, p. 30]):

a. Completely Reliable

b. Usually Reliable

c. Fairly Reliable

d. Not Usually Reliable

e. Unreliable

f. Cannot Be Judged

This is complete, the above individuals are present:

Figure 26: The correct individuals are present in the Trust class

11. The individuals in the Answers class link individuals from the Sources, Queries and

Trust classes to create answers to a query.

a. Each answer is linked to a single source, so each query can have multiple

answers from different sources.

This is complete, below is an example in the form of ‘AnswerBrexitImpactWalesBBC’, which

answers the query ‘What is the impact of Brexit on Wales?’ and links the two together with

a source:

Figure 27: An example of an answer individual linking to queries and sources

12. The Answers class contains the following subclasses:

a. A subclass containing all complete answers.

b. A subclass containing templates to represent generic answers.

This is complete, the subclasses are present:

Figure 28: The correct subclasses are present in the Answers class

36
C1315645

5.2 Testing the System
We will need to ensure that the system works as expected and that there are no problems.

Any problems found will be noted and, where possible, a fix described alongside. This

testing will be in the form of unit-testing of the functions used in the final build of the

project. For each test, the function will be set up to run with its input in the main method of

the Python file and then executed using the Windows terminal.

5.2.1 Test 1: getContext(inputurl)

This function takes in an input URL, and returns the context property related to the source

individual representing that URL in the ontology.

Input: http://www.bbc.co.uk/news/uk-wales-36619404 (Present in ontology)

Expected Output: ‘BrexitWalesImpact’

Output:

Figure 29: Result of Test 1 – getContext

This test was a success.

5.2.2 Test 2: getAllUrlsFromOntology()

This function extracts every link represented by an individual in the ontology (through the

‘url’ property). The function takes no input.

Expected Output: A list of 13 URLs.

Output:

Figure 30: Result of Test 2 - getAllUrlsFromOntology

This test was a success.

http://www.bbc.co.uk/news/uk-wales-36619404

37
C1315645

5.2.3 Test 3: addToOntology(newurl, filename, oldurl='')

This function takes in a new URL to add to the ontology, a filename for the new ontology

file, and an optional input for the oldurl.

Input: newurl = http://www.bbc.co.uk/news/uk-wales-politics-36867963 ; filename =

test.rdf ; Context will be ‘TestContext’.

Expected Output: two new individuals named ‘TestContext’.

Output:

This test was a success, the output RDF shows two new individuals using the new

information.

5.2.4 Test 4: getText(url)

This function takes in a URL and returns the text (contents) of the article located at the URL.

Input: http://www.bbc.co.uk/news/uk-wales-36619404

Expected Output: Full text of the above article.

Output:

Figure 32: Result of Test 4 - getText

Figure 31: Result of Test 3 - addUrlToOntology

http://www.bbc.co.uk/news/uk-wales-politics-36867963
http://www.bbc.co.uk/news/uk-wales-36619404

38
C1315645

This test was a success, the first 500 characters of the downloaded article match those in

the link (as of 05/05/2017).

5.2.5 Test 5: singleInputTokenize(text)

This function takes in an article text, and carries out the following operations: splits the text

into tokens, removes stop words, and then stems the remaining tokens.

Input: Text from http://www.bbc.co.uk/news/uk-wales-36619404

Expected Output: A list of tokens that have been correctly tokenised.

Output:

Figure 33: Result of Test 5 - singleInputTokenize

This test was a success. The function returns a list of stemmed tokens, with stop words

removed.

http://www.bbc.co.uk/news/uk-wales-36619404

39
C1315645

5.2.6 Test 6: createModel(tokeisedtexts, numoftopics)

This function creates a LDA Model. It takes in the tokenized articles, and the number of

articles being entered as input.

Input: tokenisedtexts = [‘This is a small input for testing one’, ‘This is a small input for testing

two’, ‘This is a small input for testing three’], numoftopics = 3

Expected Output: A printed model displaying topics from the three texts entered.

Output:

Figure 34: Result of Test 6 – createModel

This test was a success. The model was printed containing the input words under topics.

5.2.7 Test 7: userCompare(urltocompare)

This function compares a url against the whole ontology, and then gets inserted into the

ontology if a similar match is identified by the user. The models are printed out to the

terminal for inspection by the user prior to adding the link to the ontology. This test will

test up to the end of the comparison; addToOntology has already been proven to work.

Input: http://www.bbc.co.uk/news/uk-wales-politics-36867963

Expected Output: Program will print out a model of the links in the ontology, and a model

containing the new link. User analyst must compare the two models to see if a match is

found, then decide if the new link should be inserted in to the ontology.

http://www.bbc.co.uk/news/uk-wales-politics-36867963

40
C1315645

Output:

Figure 35: Result of Test 7 – userCompare

This test was a success, both required models were printed, and the user can compare the

two to find a similarity. The user is correctly prompter to add the new link into the ontology

if they find a similarity.

5.2.8 Test 8: LDACompare(urllist, currentTokens, newurl)

This function takes in the list of URLs from the ontology, those URLs as tokens, and the URL

to compare against the current URLs. The function should query the model to return the

article being compared, and the article being compared against, and then return a similarity

value between the two articles.

Input: urllist = all URLs in the ontology, currentTokens = These URLs through the tokenize

function, and newurl = http://www.bbc.co.uk/news/uk-wales-politics-36867963

Expected Output: The function will check to see if a similarity is found, and if there are two

articles with a high similarity, will add the URL to the ontology.

http://www.bbc.co.uk/news/uk-wales-politics-36867963

41
C1315645

Output:

Figure 36: Result of Test 8 – LDACompare

This test was a failure. At the query stage the function failed, returning the error shown in

Figure 36. After a number of different attempts to troubleshoot and repair this error, no

fixes were found. As this was a main function of the system, the focus will now turn to the

‘userCompare()’ function, as this can still compare articles. This will just require more

human assistance instead.

5.2.9 Test 9: simpleArticleComparison(urllist, currentTokens, newurl)

This function takes in the list of URLs from the ontology, those URLs as tokens, and the URL

to compare against the current URLs. The function executes a fast comparison of the words

in the new URL against the words in each article of the current URLs. The function should

return a list of similarity scores to the user, which can be analysed and if there is one (or

more) that is similar enough the URL can be added to the ontology.

Input: urllist = all URLs in the ontology, currentTokens = These URLs through the tokenize

function, and newurl = http://www.bbc.co.uk/news/uk-wales-politics-36867963

Expected Output: The function will return a list of percentage scores that can be used by the

user to decide on similarity.

http://www.bbc.co.uk/news/uk-wales-politics-36867963

42
C1315645

Output:

Figure 37: Result of Test 9 – simpleArticleComparison

This test was a success; the function returns a list of similarities for the user to analyse. As

can be seen, there is an article with a 100% similarity, so there would be no need to insert

this article into the ontology as it already exists.

5.3 Results
After testing, we have found that the system works in almost all areas. The main problem is

in the LDACompare function. This function failed the unit testing, and will not be able to be

used any further in the project. See the Future Works section for more on the use of this

function in the future.

In this section of the report, we will gather more results for the userCompare function of the

project in order to evaluate whether it is a viable use of the LDA model. If it is a viable

model then we will be able to conclude that the prototype system developed in this project

(and by extension the ontology) is a success. The evaluation will also assess how our notion

of trust fits into the prototype.

5.3.1 The Experiment

As part of this project, the aim is to understand how we can assess trust in the web. By

comparing articles, the project should show that if an article is similar to another, the trust

should be maintained from one article to the other. This is because the viewpoint will stay

the same.

The experiment to run, is being able to use LDA to create a new model containing the

articles in the ontology, and manually comparing the output another model of an article to

be compared. This will allow for the project to see if it is possible for a system to leave

some control to the user. This is useful to examine, as a user may make different

assumptions and conclusions to a programmatic solution, which may result in new insight to

whether an article is similar.

5.3.2 Inputs

For producing these results, I will use a set of three links to compare against the database.

These will consist of one ‘new’ link, which is similar to a link already in the ontology, one

43
C1315645

‘new’ link relating to a different case study, and one link which is identical to one already in

the ontology. Below are the links to be used as input:

 New, similar link: http://www.bbc.co.uk/news/uk-politics-eu-referendum-

36618219

 Identical link: https://www.theguardian.com/politics/2016/jun/24/britain-

votes-for-brexit-eu-referendum-david-cameron

 Dissimilar link: http://www.bbc.co.uk/sport/rugby-union/38951926

5.3.3 Output

5.3.3.1 New, Similar Link

The results when executing the human-assisted system with a similar link are as follows:

When this link was entered, it returned the following a full model of all of the links in the

ontology, as well as a small model representing the new link. By examining the full output,

in Appendix A: Output from new, similar link, we see that the eleventh link in the large

model is fairly similar to the new link:

(11,

 '0.001*"leav" + 0.001*"eu" + 0.001*"vote" + 0.001*"brexit" + '

 '0.001*"campaign" + 0.001*"peopl" + 0.001*"wale" + 0.001*"labour" + '

 '0.001*"fund" + 0.001*"blair" + 0.001*"minist" + 0.001*"parti" + '

 '0.001*"leader" + 0.001*"remain" + 0.001*"referendum" + 0.001*"uk" + '

 '0.001*"govern" + 0.001*"welsh" + 0.001*"area" + 0.001*"mp"'),

Figure 38: Eleventh link in large model

[(0,

 '0.028*"wale" + 0.019*"leav" + 0.017*"vote" + 0.016*"welsh" + 0.011*"labour" '

 '+ 0.010*"campaign" + 0.009*"voter" + 0.009*"remain" + 0.008*"peopl" + '

 '0.008*"leader" + 0.008*"eu" + 0.008*"polit" + 0.008*"bbc" + 0.007*"support" '

 '+ 0.007*"jone" + 0.007*"minist" + 0.007*"referendum" + 0.007*"area" + '

 '0.006*"surpris" + 0.006*"govern"')]

Figure 39: Model of similar link being compared

Between these two figures, it can be seen that there is a similarity between the outputs –

both share the words ‘leav’ and ‘vote’ prominently, and there is a lot of cross over into the

middle areas of both models. This shows that the link is similar. Now, as this is a human

assisted process, I as the user need to give the system a ‘yes’ to say that this link can be

added to the ontology.

Once selected, I used the context ‘WalesRejectsEU’. This successfully added the link to the

ontology, and created the required two individuals in the ontology.

http://www.bbc.co.uk/news/uk-politics-eu-referendum-36618219
http://www.bbc.co.uk/news/uk-politics-eu-referendum-36618219
https://www.theguardian.com/politics/2016/jun/24/britain-votes-for-brexit-eu-referendum-david-cameron
https://www.theguardian.com/politics/2016/jun/24/britain-votes-for-brexit-eu-referendum-david-cameron
http://www.bbc.co.uk/sport/rugby-union/38951926

44
C1315645

5.3.3.2 Identical Link

When executing the system using a link that is identical to one already in the ontology, the

relevant output is below (Full output included as Appendix B: Output from new, identical

link):

[(0,

 '0.020*"leav" + 0.019*"vote" + 0.017*"remain" + 0.015*"labour" + '

 '0.011*"peopl" + 0.010*"cameron" + 0.009*"parti" + 0.008*"leader" + '

 '0.008*"brexit" + 0.008*"uk" + 0.008*"victori" + 0.008*"campaign" + '

 '0.008*"referendum" + 0.007*"corbyn" + 0.007*"call" + 0.007*"minist" + '

 '0.007*"london" + 0.007*"eu" + 0.006*"nation" + 0.006*"prime"')]

Figure 40: Model of identical link being compared

When comparing the above model, containing the new link, against the model containing

the current links, there is an interesting issue. This new link is identical to a link that is

already in the ontology, and yet the topic models over these links share very few similarities.

This excellently demonstrates a property of LDA Models – that the distribution of words in a

topic is partly random. A way to fix this would be to run the model again, editing the code

to train the model a far higher number of times. This would decrease the randomness in

the word distribution, and enable an analyst to far more easily identify a similar link in the

model.

For this link, there is no need to add it to the ontology – it is known that it is identical to an

already present link, and the difficulty to assess its similarity also causes a problem.

5.3.3.3 Dissimilar Link

The final link to be run through the system is one which is covering a totally different subject

to the subject of the case study. In this case, the new link will be from a sport website. The

result from the system should show a topic model containing totally different words to the

ones in the current model. Below we can see the output from the model for the new link

(Full output in Appendix C: Output from dissimilar link):

[(0,

 '0.036*"wale" + 0.028*"game" + 0.019*"win" + 0.017*"england" + '

 '0.015*"warburton" + 0.015*"februari" + 0.013*"bbc" + 0.013*"25" + '

 '0.013*"saturday" + 0.013*"team" + 0.013*"scotland" + 0.013*"improv" + '

 '0.011*"jone" + 0.011*"march" + 0.011*"ve" + 0.011*"gmt" + 0.011*"nation" + '

 '0.009*"minut" + 0.009*"manag" + 0.009*"cardiff"')]

Figure 41: Model of dissimilar link being compared

In this model, we can see that there is no overlap at all between the above model for the

new link, and the other model containing the current links. This is a good demonstration of

45
C1315645

where human assisted analysis in the system is effective – it can be seen that this model is

completely different at a glance.

Again, for this link there is no reason to add it to the ontology, as it is completely unrelated

to the case study.

5.4 Evaluation
In summary, most the system works as predicted, as the system passed all but one of the

tests set. The failed test was the part of the system based on using LDA to compare articles

programmatically, rather than through human assisted comparison, and this is a blow to the

system. However, the human assisted comparison of LDA models proved fairly effective,

and these results show that the system can potentially be increased in scope in the future to

include more complex case studies.

Looking at the results of the human assisted comparison, we saw that a user would be able

to adequately compare articles between the models fairly accurately and efficiently. A

problem with this is that if the ontology becomes more complex, and more populated, the

user’s job would become much harder. This is because with a more populated ontology

comes a far larger model, and it is at this point that a programmatic solution would become

even more useful.

The other half of the system, the half that deals with manipulating the ontology, turned out

very well in the project. The query functions worked well, and the function to add new

individuals to the ontology worked well. A problem was that the add function was slightly

constrained – the individuals had to fit a strict structure of the RDF triples being inserted

into the ontology. This is something that can be looked at in the future work section below.

The ontology shows that the system accurately uses the trust in a source. Trust is

automatically passed on to links from the same source, and this is perfectly fine for links

from reputable and consistent news sources. However, as some sources can potentially

offer differing levels of trust (perhaps based on the author of a particular article), it could be

interesting to see how a system would automatically recalculate the level of trust based on

other factors.

46
C1315645

6 Future Work

6.1 Further Troubleshooting of LDA querying
As mentioned above, I had a lot of trouble with querying the LDA model to return a result

for a single article. In the future, I would like to spend more time looking at this in closer

detail, to try and troubleshoot more successfully where the issue lies. This would enable us

to use the full power of an LDA model, as instead of relying on a human analyst to compare

the models, we could get the system to do it programmatically.

6.2 Dynamic Creation of RDF Triples
When inserting new individuals into the ontology, the current system uses a very strict triple

structure. A possible expansion of the project in the future could look at how to implement

the dynamic creation of triples to the ontology, such that the structure of an individual is

not limited to a set structure in the code.

6.3 Implement the Second Case Study
This project focused on implementing the first case study defined in Selection of Approach.

However, in the future, the second case study could be implemented as a means of testing

the ontology structure in a different structure. This could also be appropriate for potential

future applications of this ontology, where it could be used in more complex, real world

problems such as analysing the effects of global warming or the efficacy of vaccinations

around the world.

6.4 Introduce Social Media to the Ontology
In its current form, the final ontology has a class to handle social media links, but does not

make use of any. In the future, I would look at ways to introduce social media to the

ontology, as social media posts can provide an excellent method of seeing multiple

perspectives on a single issue. This is something that would be incredibly useful to an

intelligence analyst, and hence is something that would be appropriate for inclusion through

a future project. In addition, this would be a fantastic method to evaluate trust in social

media, as the posters of social media posts could be official news or simply members of the

public sharing an opinion. It would be interesting to see how to assign trust to different

social media accounts or posts, and how to represent this in our ontology.

This could be expanded further by using social media APIs, such as the Twitter REST or

Streaming APIs [35]. These would allow us to pull real time data from twitter, maybe

related to a hashtag for a current event. This data could then be analysed to see if there is a

consensus among the posts or if there are two or more sides with differing viewpoints on a

single event.

6.5 Use Web Scraping to Populate the Ontology
Another piece of potential future work would be to use a web scraping or crawling platform

to automatically populate the ontology with relevant articles. This could possibly be done in

python using a library such as Scrapy [36]. Scrapy could be used in conjunction with the link

comparison system to find new links, appropriate to a query and then compare them to

existing links in the ontology. These could then be added to the ontology either if there

47
C1315645

were no links to answer a query or if a link is found to be more suitable than the original

link.

6.6 Integrate with NewsAPI
NewsAPI is an API that returns JSON data for headlines displayed on news sources [37]. The

data returned also contains the URL to each article, so this could be used to populate the

ontology with up to date news information in a case study related to the subject of current

affairs. An interesting experiment would be to implement this API alongside the comparison

system and see whether it is possible to differentiate between trustworthy and

untrustworthy news sources, to gather a broad view of opinion on the subject of the case

study.

48
C1315645

7 Conclusion
Upon completing the initial plan for this project, the following overall aims and objectives

were set:

 Carry out a literature review, and identify some appropriate case studies.

 Define a small set of queries to be used alongside the case studies.

 Define a set of sources upon which queries can be run.

 Develop an ontology of the degree of trust in information and sources of

information.

 Investigate the use of machine learning to work alongside the ontology.

The first four aims have been met. A background review was carried out to gain an insight

into the information available on the internet, and how this information can be used to

assess trust. In particular, open source intelligence was of interest, as this is information

available at all times without restrictive use. A pair of case studies were also defined, along

with a set of sources to apply to them. The first case study was used in this project, and it

provided a broad base of information on which to create the first version of the ontology.

The ontology was also developed to a good standard, and this does an excellent job of

showing the relationships between source, queries, and trust.

Finally, the use of machine learning was investigated through using topic modelling. This

was successful, in that the system could create new models, and output them to the user.

The user could manually compare the models and then ask the system to add the new link

to the ontology if a similarity was found. However, it was found that this would be time

consuming and very inefficient on a large scale. Therefore, it would be better to

programmatically compare the models, or at least the articles inside the models to find

similarities and decide whether to insert a new link into the ontology. Unfortunately, this

functionality was not able to be introduced in a working manner to the system.

To summarise, the project has resulted in the creation of an ontology of queries, sources,

and trust, and the creation of a system to compare articles with some help from a human

user. The system can successfully help the user find a similar article over a small query set

of documents, and to see how trust in a source relates to queries and answers, but will

struggle when scaled up to a large data set in its current form. The project as a whole has

set a broad basis for further work to be done in this area. The further work section

describes several potential directions in which the project could be taken, alongside fixing

issues remaining from this project.

49
C1315645

8 Reflection
At the start of this project, my knowledge of ontologies was very minimal. I had briefly

covered aspects of ontologies in some of my lectures prior to this semester (Knowledge

Management; Large Scale Databases), but they were not an area in which I had a huge

amount of knowledge. As mentioned multiple times throughout this report, I used a

University of Manchester tutorial on OWL and Protégé to learn how to implement my own

ontologies, and this was helpful. This was relatively easy however, especially in the

environment created by Protégé. What was harder was to learn RDF and SPARQL to a high

standard. To learn these, I essentially dived straight in using Rdflib in Python, and learnt

how to manipulate existing RDF with the library functions. This was followed by creating my

own RDF graph and manipulating that in Python to gain a deeper understanding.

The other aspect of this project was using machine learning to carry out topic modelling.

This was an area in which I had no experience at all, and whilst it was a very interesting area,

I did struggle to understand it completely. This is especially clear in my code, where I

struggled to get a couple of the LDA functions to work correctly. In the end, most of them

were fine, apart from one, where I am still unable to understand the issue.

When approaching this project, the approach I took meant I struggled with some timings,

especially towards the end of the project. This was caused by misallocating my time when

completing the initial plan, and underestimating the amount of time I would need to

complete some areas of the project (and overestimating the time required for others). In

the future, I will more carefully consider the time required to complete tasks as I plan them

in advance.

One area of my approach that was definitely successful was scheduling weekly meetings to

review the progress on the project with my supervisor. This really enabled me to get help

and advice if I was stuck on a problem each week. I was never stuck on a problem for too

long, or at least I was always able to at least get some advice if nothing else.

Overall, I feel like the project went well. There were areas that I could have gone better, for

example the problems with some of my code, but I feel despite this I still found good results.

I feel that the report itself has gone quite well as I tend to struggle with writing long reports

such as this one. Luckily however, although there have been a few blocks along the way, I

feel the report has gone well.

50
C1315645

9 Bibliography

[1] H. Prunckhun, Handbook of Scientific Methods of Inquiry for Intelligence Analysis,

Lanham, MD: Scarecrow Press, 2010.

[2] R. Layton and P. A. Watters, “Chapter 1 The Automating of Open Source Intelligence,”

in Automating Open Source Intelligence, Waltham, MA, Syngress, 2016, pp. 1-21.

[3] N. Guarino, D. Oberle and S. Staab, “What is an Ontology?,” in Handbook on

ontologies, Berlin Heidelberg, Springer, 2009, pp. 1-17.

[4] M. Horridge, “A Practical Guide To Building OWL Ontologies Using Protege 4 and CO-

ODE Tools Edition 1.3,” 24 Mar 2011. [Online]. Available: http://mowl-

power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf.

[Accessed 04 May 2017].

[5] “http://protege.stanford.edu/ontologies/pizza/pizza.owl,” 2011. [Online]. Available:

http://protege.stanford.edu/ontologies/pizza/pizza.owl. [Accessed 04 May 2017].

[6] Stanford Center for Biomedical Informatics Research, “Protege,” 2016. [Online].

Available: http://protege.stanford.edu/. [Accessed 04 May 2017].

[7] S. Jupp, “Resource Description Framework (RDF). Ontogenesis.,” 2010. [Online].

Available: http://ontogenesis.knowledgeblog.org/235. [Accessed 04 May 2017].

[8] W3C SPARQL Working Group, “SPARQL 1.1 Overview,” 2013. [Online]. Available:

https://www.w3.org/TR/sparql11-overview/. [Accessed 04 May 2017].

[9] I. Goodfellow, Y. Bengio and A. Courville, “Machine Learning Basics,” in Deep Learning,

MIT Press, 2016, p. 98.

[10] T. Luostarinen and O. Kohonen, “Using Topic Models in Content-Based News

Recommender Systems,” in Proceedings of the 19th Nordic Conference of

Computational Linguistics (NODALIDA 2013); May 22-24; 2013; Oslo University;

Norway. NEALT Proceedings Series 16 No. 085, Linköping University Electronic Press,

2013.

[11] D. M. Blei, A. Y. Ng and M. I. Jordan, “Latent Dirichlet Allocation,” Journal of Machine

Learning Research 3 , pp. 993-1022, 2003.

[12] Ranks NL, “Stopword Lists,” [Online]. Available: http://www.ranks.nl/stopwords.

[Accessed 04 May 2017].

[13] C. D. Manning, P. Raghavan and H. Schutze, “Stemming and Lemmatization,” in An

Introduction to Information Retrieval, Cambridge, Cambridge University Press, 2009,

pp. 32-34.

51
C1315645

[14] BBC News, “'No turning back' on Brexit as Article 50 triggered,” 30 Mar 2017. [Online].

Available: http://www.bbc.co.uk/news/uk-politics-39431428. [Accessed 04 May 2017].

[15] D. Boffey and L. O'Carroll, “Brexit: EU leaders to demand May respect citizens'

residency rights,” 26 Apr 2017. [Online]. Available:

https://www.theguardian.com/politics/2017/apr/26/brexit-eu-leaders-to-demand-

may-respect-citizens-residency-rights. [Accessed 04 May 2017].

[16] @Daily_Express, “Businesses call on Theresa May to STAY in single market as Article 50

triggered http://ln.is/www.express.co.uk/fi/CyJXT … #brexitday #Brexit,” 29 Mar 2017.

[Online]. Available: https://twitter.com/Daily_Express/status/847250535598116866.

[Accessed 04 May 2017].

[17] M. Bazzell, Open Source Intelligence Techniques: Resources for Searching and

Analyzing Online Information, 5th ed., Independent, 2016.

[18] R. Stevens, “Competency questions for ontologies,” 2014. [Online]. Available:

http://studentnet.cs.manchester.ac.uk/pgt/2014/COMP60421/slides/Week2-CQ.pdf.

[Accessed 04 May 2017].

[19] RDFLib Team, “rdflib 4.2.2 documentation,” 2013. [Online]. Available:

https://rdflib.readthedocs.io/en/stable/. [Accessed 04 May 2017].

[20] R. Řehůřek, “gensim: Topic modelling for humans,” 2009. [Online]. Available:

https://radimrehurek.com/gensim/. [Accessed 04 May 2017].

[21] NLTK Project, “Natural Language Toolkit - NLTK 3.0 documentation,” 2015. [Online].

Available: http://www.nltk.org/. [Accessed 04 May 2017].

[22] R. Řehůřek, “corpora.dictionary – Construct word<->id mappings,” 2009. [Online].

Available: https://radimrehurek.com/gensim/corpora/dictionary.html. [Accessed 04

May 2017].

[23] R. Řehůřek, “models.ldamodel – Latent Dirichlet Allocation,” 2009. [Online]. Available:

https://radimrehurek.com/gensim/models/ldamodel.html. [Accessed 04 May 2017].

[24] NLTK Project, “nltk.tokenize package,” 2015. [Online]. Available:

http://www.nltk.org/api/nltk.tokenize.html. [Accessed 04 May 2017].

[25] NLTK Project, “nltk.stem package,” 2015. [Online]. Available:

http://www.nltk.org/api/nltk.stem.html. [Accessed 04 May 2017].

[26] M. F. Porter, “An algorithm for suffix stripping,” 1980. [Online]. Available:

https://tartarus.org/martin/PorterStemmer/def.txt. [Accessed 04 May 2017].

52
C1315645

[27] RDFLib Team, “rdflib Package,” 2013. [Online]. Available:

http://rdflib.readthedocs.io/en/stable/apidocs/rdflib.html#id1. [Accessed 04 May

2017].

[28] Python Software Foundation, “8.11. pprint — Data pretty printer,” 2017. [Online].

Available: https://docs.python.org/3/library/pprint.html. [Accessed 04 May 2017].

[29] Python Software Foundation, “21.8. urllib.parse — Parse URLs into components,”

2017. [Online]. Available: https://docs.python.org/3/library/urllib.parse.html#module-

urllib.parse. [Accessed 04 May 2017].

[30] A. Savand, “stop-words 2015.2.23.1,” 2015. [Online]. Available:

https://pypi.python.org/pypi/stop-words. [Accessed 04 May 2017].

[31] L. Ou-Yang, “Newspaper3k: Article scraping & curation,” 2016. [Online]. Available:

https://github.com/codelucas/newspaper. [Accessed 04 May 2017].

[32] NumPy developers, “NumPy,” 2017. [Online]. Available: http://www.numpy.org/.

[Accessed 04 May 2017].

[33] C. Gohlke, “Unofficial Windows Binaries for Python Extension Packages,” 2017.

[Online]. Available: http://www.lfd.uci.edu/~gohlke/pythonlibs/. [Accessed 04 May

2017].

[34] P. V. Biron and A. Malhotra, “W3C XML Schema Definition Language (XSD) 1.1 Part 2:

Datatypes,” 5 Apr 2012. [Online]. Available: https://www.w3.org/TR/xmlschema11-2/.

[Accessed 04 May 2017].

[35] Twitter, inc, “API Overview,” 2017. [Online]. Available:

https://dev.twitter.com/overview/api. [Accessed 04 May 2017].

[36] Scrapy Developers, “Scrapy | A Fast and Powerful Scraping and Web Crawling

Framework,” [Online]. Available: https://scrapy.org/. [Accessed 04 May 2017].

[37] News API, “News API - A JSON API for live news and blog headlines,” 2017. [Online].

Available: https://newsapi.org/. [Accessed 04 May 2017].

53
C1315645

10 Appendix

10.1 Appendix A: Output from new, similar link

Model of links in Ontology:

[(0,

 '0.001*"leav" + 0.001*"eu" + 0.001*"brexit" + 0.001*"wale" + 0.001*"support" '

 '+ 0.001*"fund" + 0.001*"vote" + 0.001*"campaign" + 0.001*"referendum" + '

 '0.001*"govern" + 0.001*"blair" + 0.001*"peopl" + 0.001*"minist" + '

 '0.001*"10" + 0.001*"uk" + 0.001*"cameron" + 0.001*"remain" + 0.001*"leader" '

 '+ 0.001*"parti" + 0.001*"busi"'),

 (1,

 '0.041*"eu" + 0.025*"leav" + 0.022*"wale" + 0.020*"vote" + 0.019*"10" + '

 '0.017*"fund" + 0.014*"support" + 0.014*"referendum" + 0.013*"brexit" + '

 '0.011*"welsh" + 0.011*"govern" + 0.009*"uk" + 0.009*"receiv" + 0.009*"area" '

 '+ 0.008*"campaign" + 0.008*"cent" + 0.008*"announc" + 0.008*"cornwal" + '

 '0.006*"year" + 0.006*"european"'),

 (2,

 '0.025*"may" + 0.019*"minist" + 0.015*"prime" + 0.013*"cameron" + '

 '0.010*"work" + 0.010*"theresa" + 0.009*"secretari" + 0.009*"parti" + '

 '0.009*"campaign" + 0.009*"leadership" + 0.009*"leadsom" + 0.008*"brexit" + '

 '0.008*"peopl" + 0.008*"imag" + 0.007*"leav" + 0.007*"role" + '

 '0.007*"countri" + 0.006*"eu" + 0.006*"10" + 0.006*"down"'),

 (3,

 '0.014*"eu" + 0.014*"referendum" + 0.014*"result" + 0.007*"leav" + '

 '0.007*"vote" + 0.007*"uk" + 0.007*"campaign" + 0.007*"area" + '

 '0.007*"countri" + 0.007*"london" + 0.007*"england" + 0.007*"scotland" + '

 '0.007*"decis" + 0.007*"union" + 0.007*"european" + 0.007*"live" + '

 '0.007*"pictur" + 0.007*"led" + 0.007*"interest" + 0.007*"full"'),

 (4,

 '0.026*"leav" + 0.024*"vote" + 0.021*"wale" + 0.017*"remain" + '

 '0.017*"labour" + 0.012*"peopl" + 0.011*"welsh" + 0.011*"campaign" + '

54
C1315645

 '0.010*"leader" + 0.009*"eu" + 0.009*"cameron" + 0.009*"referendum" + '

 '0.009*"voter" + 0.008*"parti" + 0.008*"minist" + 0.008*"uk" + 0.007*"polit" '

 '+ 0.006*"area" + 0.006*"call" + 0.006*"brexit"'),

 (5,

 '0.053*"wale" + 0.028*"fund" + 0.024*"eu" + 0.018*"money" + 0.013*"imag" + '

 '0.013*"european" + 0.011*"caption" + 0.011*"call" + 0.011*"area" + '

 '0.011*"2000" + 0.011*"market" + 0.011*"structur" + 0.011*"valley" + '

 '0.010*"uk" + 0.008*"leav" + 0.008*"level" + 0.008*"highest" + 0.008*"west" '

 '+ 0.008*"trade" + 0.008*"vote"'),

 (6,

 '0.055*"fund" + 0.034*"busi" + 0.032*"wale" + 0.029*"eu" + 0.016*"social" + '

 '0.010*"support" + 0.010*"project" + 0.009*"govern" + 0.009*"peopl" + '

 '0.007*"welsh" + 0.007*"provid" + 0.007*"enterpris" + 0.007*"wallich" + '

 '0.007*"small" + 0.006*"year" + 0.006*"alloc" + 0.006*"invest" + '

 '0.006*"money" + 0.006*"work" + 0.006*"european"'),

 (7,

 '0.022*"leav" + 0.017*"eu" + 0.017*"vote" + 0.011*"remain" + 0.011*"uk" + '

 '0.011*"referendum" + 0.011*"won" + 0.011*"52" + 0.011*"major" + 0.011*"48" '

 '+ 0.011*"cent" + 0.006*"brexit" + 0.006*"minist" + 0.006*"cameron" + '

 '0.006*"wale" + 0.006*"campaign" + 0.006*"prime" + 0.006*"david" + '

 '0.006*"street" + 0.006*"farag"'),

 (8,

 '0.032*"brexit" + 0.027*"blair" + 0.015*"eu" + 0.013*"campaign" + '

 '0.013*"peopl" + 0.013*"govern" + 0.011*"leav" + 0.011*"vote" + '

 '0.010*"referendum" + 0.010*"media" + 0.010*"toni" + 0.008*"minist" + '

 '0.008*"uk" + 0.008*"britain" + 0.008*"mp" + 0.007*"labour" + 0.007*"prime" '

 '+ 0.007*"caption" + 0.007*"polit" + 0.007*"parti"'),

 (9,

 '0.017*"may" + 0.011*"1" + 0.006*"polit" + 0.006*"british" + 0.006*"year" + '

 '0.006*"day" + 0.006*"thing" + 0.006*"die" + 0.006*"month" + 0.006*"member" '

 '+ 0.006*"lost" + 0.006*"earli" + 0.006*"don" + 0.006*"father" + '

 '0.006*"born" + 0.006*"life" + 0.006*"outfit" + 0.006*"walk" + 0.006*"grew" '

 '+ 0.006*"politician"'),

55
C1315645

 (10,

 '0.001*"wale" + 0.001*"may" + 0.001*"eu" + 0.001*"brexit" + 0.001*"vote" + '

 '0.001*"fund" + 0.001*"leav" + 0.001*"busi" + 0.001*"peopl" + '

 '0.001*"campaign" + 0.001*"prime" + 0.001*"minist" + 0.001*"uk" + '

 '0.001*"labour" + 0.001*"imag" + 0.001*"remain" + 0.001*"parti" + '

 '0.001*"cameron" + 0.001*"leader" + 0.001*"support"'),

 (11,

 '0.001*"leav" + 0.001*"eu" + 0.001*"vote" + 0.001*"brexit" + '

 '0.001*"campaign" + 0.001*"peopl" + 0.001*"wale" + 0.001*"labour" + '

 '0.001*"fund" + 0.001*"blair" + 0.001*"minist" + 0.001*"parti" + '

 '0.001*"leader" + 0.001*"remain" + 0.001*"referendum" + 0.001*"uk" + '

 '0.001*"govern" + 0.001*"welsh" + 0.001*"area" + 0.001*"mp"'),

 (12,

 '0.001*"leav" + 0.001*"vote" + 0.001*"labour" + 0.001*"minist" + '

 '0.001*"campaign" + 0.001*"peopl" + 0.001*"cameron" + 0.001*"wale" + '

 '0.001*"remain" + 0.001*"referendum" + 0.001*"eu" + 0.001*"brexit" + '

 '0.001*"prime" + 0.001*"parti" + 0.001*"may" + 0.001*"leader" + 0.001*"uk" + '

 '0.001*"support" + 0.001*"polit" + 0.001*"secretari"')]

Model of link to compare:

[(0,

 '0.028*"wale" + 0.019*"leav" + 0.017*"vote" + 0.016*"welsh" + 0.011*"labour" '

 '+ 0.010*"campaign" + 0.009*"voter" + 0.009*"remain" + 0.008*"peopl" + '

 '0.008*"leader" + 0.008*"eu" + 0.008*"polit" + 0.008*"bbc" + 0.007*"support" '

 '+ 0.007*"jone" + 0.007*"minist" + 0.007*"referendum" + 0.007*"area" + '

 '0.006*"surpris" + 0.006*"govern"')]

Would you like to insert this link into the ontology? (y/n):

56
C1315645

10.2 Appendix B: Output from new, identical link

Model of links in Ontology:

[(0,

 '0.055*"fund" + 0.033*"busi" + 0.032*"wale" + 0.029*"eu" + 0.015*"social" + '

 '0.010*"support" + 0.010*"project" + 0.009*"govern" + 0.009*"peopl" + '

 '0.007*"welsh" + 0.007*"small" + 0.007*"provid" + 0.007*"enterpris" + '

 '0.007*"wallich" + 0.006*"european" + 0.006*"money" + 0.006*"invest" + '

 '0.006*"alloc" + 0.006*"financ" + 0.006*"year"'),

 (1,

 '0.001*"eu" + 0.001*"vote" + 0.001*"fund" + 0.001*"minist" + 0.001*"brexit" '

 '+ 0.001*"campaign" + 0.001*"wale" + 0.001*"leav" + 0.001*"may" + '

 '0.001*"peopl" + 0.001*"busi" + 0.001*"remain" + 0.001*"parti" + '

 '0.001*"prime" + 0.001*"countri" + 0.001*"cameron" + 0.001*"labour" + '

 '0.001*"support" + 0.001*"back" + 0.001*"mp"'),

 (2,

 '0.001*"eu" + 0.001*"fund" + 0.001*"wale" + 0.001*"busi" + 0.001*"leav" + '

 '0.001*"minist" + 0.001*"may" + 0.001*"vote" + 0.001*"peopl" + '

 '0.001*"campaign" + 0.001*"govern" + 0.001*"social" + 0.001*"prime" + '

 '0.001*"cameron" + 0.001*"support" + 0.001*"brexit" + 0.001*"work" + '

 '0.001*"parti" + 0.001*"uk" + 0.001*"remain"'),

 (3,

 '0.017*"may" + 0.011*"1" + 0.006*"year" + 0.006*"polit" + 0.006*"member" + '

 '0.006*"lost" + 0.006*"day" + 0.006*"die" + 0.006*"own" + 0.006*"don" + '

 '0.006*"earli" + 0.006*"chose" + 0.006*"100" + 0.006*"born" + 0.006*"life" + '

 '0.006*"politician" + 0.006*"item" + 0.006*"car" + 0.006*"wife" + '

 '0.006*"british"'),

 (4,

 '0.001*"minist" + 0.001*"leav" + 0.001*"vote" + 0.001*"cameron" + '

 '0.001*"prime" + 0.001*"remain" + 0.001*"labour" + 0.001*"eu" + '

57
C1315645

 '0.001*"campaign" + 0.001*"may" + 0.001*"wale" + 0.001*"brexit" + 0.001*"uk" '

 '+ 0.001*"leader" + 0.001*"peopl" + 0.001*"welsh" + 0.001*"parti" + '

 '0.001*"referendum" + 0.001*"secretari" + 0.001*"support"'),

 (5,

 '0.027*"leav" + 0.027*"eu" + 0.024*"vote" + 0.014*"referendum" + '

 '0.013*"wale" + 0.013*"remain" + 0.011*"brexit" + 0.011*"labour" + '

 '0.011*"uk" + 0.011*"10" + 0.010*"campaign" + 0.009*"cameron" + '

 '0.009*"support" + 0.009*"fund" + 0.008*"peopl" + 0.008*"area" + '

 '0.008*"london" + 0.007*"leader" + 0.007*"welsh" + 0.007*"parti"'),

 (6,

 '0.016*"leav" + 0.014*"brexit" + 0.013*"wale" + 0.013*"campaign" + '

 '0.012*"vote" + 0.012*"minist" + 0.010*"peopl" + 0.010*"eu" + 0.009*"parti" '

 '+ 0.009*"labour" + 0.009*"blair" + 0.009*"may" + 0.008*"govern" + '

 '0.007*"welsh" + 0.007*"leader" + 0.007*"prime" + 0.006*"referendum" + '

 '0.006*"remain" + 0.006*"work" + 0.006*"support"'),

 (7,

 '0.052*"wale" + 0.029*"eu" + 0.029*"fund" + 0.017*"money" + 0.014*"vote" + '

 '0.014*"leav" + 0.014*"uk" + 0.012*"imag" + 0.012*"european" + 0.010*"call" '

 '+ 0.010*"area" + 0.010*"caption" + 0.010*"2000" + 0.010*"market" + '

 '0.010*"valley" + 0.010*"structur" + 0.007*"welsh" + 0.007*"west" + '

 '0.007*"trade" + 0.007*"level"'),

 (8,

 '0.001*"fund" + 0.001*"busi" + 0.001*"eu" + 0.001*"wale" + 0.001*"peopl" + '

 '0.001*"support" + 0.001*"social" + 0.001*"work" + 0.001*"welsh" + '

 '0.001*"provid" + 0.001*"project" + 0.001*"wallich" + 0.001*"govern" + '

 '0.001*"may" + 0.001*"enterpris" + 0.001*"minist" + 0.001*"deliv" + '

 '0.001*"year" + 0.001*"brexit" + 0.001*"small"'),

 (9,

 '0.028*"may" + 0.019*"prime" + 0.019*"minist" + 0.019*"imag" + '

 '0.014*"cameron" + 0.014*"secretari" + 0.014*"caption" + 0.012*"down" + '

 '0.012*"street" + 0.009*"eu" + 0.009*"peopl" + 0.009*"queen" + 0.009*"media" '

58
C1315645

 '+ 0.009*"role" + 0.009*"copyright" + 0.009*"theresa" + 0.007*"govern" + '

 '0.007*"brexit" + 0.007*"uk" + 0.007*"work"'),

 (10,

 '0.001*"eu" + 0.001*"wale" + 0.001*"brexit" + 0.001*"leav" + 0.001*"vote" + '

 '0.001*"peopl" + 0.001*"minist" + 0.001*"govern" + 0.001*"fund" + '

 '0.001*"campaign" + 0.001*"support" + 0.001*"remain" + 0.001*"prime" + '

 '0.001*"caption" + 0.001*"uk" + 0.001*"blair" + 0.001*"welsh" + '

 '0.001*"labour" + 0.001*"referendum" + 0.001*"britain"'),

 (11,

 '0.013*"referendum" + 0.013*"cent" + 0.007*"eu" + 0.007*"leav" + '

 '0.007*"brexit" + 0.007*"campaign" + 0.007*"minist" + 0.007*"remain" + '

 '0.007*"prime" + 0.007*"cameron" + 0.007*"1" + 0.007*"johnson" + '

 '0.007*"david" + 0.007*"street" + 0.007*"bori" + 0.007*"down" + '

 '0.007*"farag" + 0.007*"won" + 0.007*"nigel" + 0.007*"agre"'),

 (12,

 '0.001*"brexit" + 0.001*"may" + 0.001*"minist" + 0.001*"countri" + '

 '0.001*"parti" + 0.001*"work" + 0.001*"leav" + 0.001*"prime" + 0.001*"peopl" '

 '+ 0.001*"cameron" + 0.001*"leadsom" + 0.001*"campaign" + 0.001*"fund" + '

 '0.001*"leadership" + 0.001*"labour" + 0.001*"eu" + 0.001*"support" + '

 '0.001*"blair" + 0.001*"wale" + 0.001*"theresa"')]

Model of link to compare:

[(0,

 '0.020*"leav" + 0.019*"vote" + 0.017*"remain" + 0.015*"labour" + '

 '0.011*"peopl" + 0.010*"cameron" + 0.009*"parti" + 0.008*"leader" + '

 '0.008*"brexit" + 0.008*"uk" + 0.008*"victori" + 0.008*"campaign" + '

 '0.008*"referendum" + 0.007*"corbyn" + 0.007*"call" + 0.007*"minist" + '

 '0.007*"london" + 0.007*"eu" + 0.006*"nation" + 0.006*"prime"')]

Would you like to insert this link into the ontology? (y/n):

59
C1315645

10.3 Appendix C: Output from dissimilar link

Model of links in Ontology:

[(0,

 '0.001*"wale" + 0.001*"eu" + 0.001*"vote" + 0.001*"fund" + 0.001*"brexit" + '

 '0.001*"leav" + 0.001*"campaign" + 0.001*"labour" + 0.001*"remain" + '

 '0.001*"uk" + 0.001*"peopl" + 0.001*"area" + 0.001*"call" + '

 '0.001*"referendum" + 0.001*"parti" + 0.001*"european" + 0.001*"imag" + '

 '0.001*"minist" + 0.001*"britain" + 0.001*"money"'),

 (1,

 '0.001*"eu" + 0.001*"wale" + 0.001*"brexit" + 0.001*"vote" + 0.001*"leav" + '

 '0.001*"fund" + 0.001*"govern" + 0.001*"uk" + 0.001*"peopl" + '

 '0.001*"support" + 0.001*"campaign" + 0.001*"referendum" + 0.001*"minist" + '

 '0.001*"busi" + 0.001*"10" + 0.001*"remain" + 0.001*"labour" + 0.001*"blair" '

 '+ 0.001*"parti" + 0.001*"european"'),

 (2,

 '0.025*"leav" + 0.024*"vote" + 0.021*"remain" + 0.018*"labour" + '

 '0.013*"peopl" + 0.012*"cameron" + 0.011*"parti" + 0.009*"campaign" + '

 '0.009*"leader" + 0.009*"victori" + 0.009*"brexit" + 0.009*"uk" + '

 '0.009*"referendum" + 0.008*"minist" + 0.008*"call" + 0.008*"corbyn" + '

 '0.008*"eu" + 0.008*"london" + 0.006*"expect" + 0.006*"close"'),

 (3,

 '0.028*"may" + 0.019*"imag" + 0.019*"minist" + 0.019*"prime" + '

 '0.014*"secretari" + 0.014*"cameron" + 0.014*"caption" + 0.012*"down" + '

 '0.012*"street" + 0.009*"peopl" + 0.009*"eu" + 0.009*"media" + '

 '0.009*"theresa" + 0.009*"queen" + 0.009*"role" + 0.009*"copyright" + '

 '0.007*"brexit" + 0.007*"govern" + 0.007*"uk" + 0.007*"10"'),

 (4,

 '0.001*"eu" + 0.001*"brexit" + 0.001*"fund" + 0.001*"blair" + 0.001*"may" + '

 '0.001*"leav" + 0.001*"govern" + 0.001*"campaign" + 0.001*"minist" + '

60
C1315645

 '0.001*"vote" + 0.001*"wale" + 0.001*"peopl" + 0.001*"busi" + 0.001*"polit" '

 '+ 0.001*"prime" + 0.001*"work" + 0.001*"parti" + 0.001*"support" + '

 '0.001*"uk" + 0.001*"british"'),

 (5,

 '0.015*"referendum" + 0.011*"eu" + 0.011*"may" + 0.011*"1" + 0.008*"leav" + '

 '0.008*"campaign" + 0.008*"result" + 0.008*"cent" + 0.004*"vote" + '

 '0.004*"thursday" + 0.004*"remain" + 0.004*"brexit" + 0.004*"cameron" + '

 '0.004*"uk" + 0.004*"countri" + 0.004*"minist" + 0.004*"prime" + '

 '0.004*"live" + 0.004*"midland" + 0.004*"3"'),

 (6,

 '0.001*"eu" + 0.001*"leav" + 0.001*"cameron" + 0.001*"vote" + 0.001*"minist" '

 '+ 0.001*"may" + 0.001*"campaign" + 0.001*"wale" + 0.001*"remain" + '

 '0.001*"referendum" + 0.001*"labour" + 0.001*"brexit" + 0.001*"peopl" + '

 '0.001*"fund" + 0.001*"support" + 0.001*"10" + 0.001*"govern" + '

 '0.001*"prime" + 0.001*"leader" + 0.001*"uk"'),

 (7,

 '0.080*"blair" + 0.031*"toni" + 0.013*"duncan" + 0.013*"urg" + '

 '0.011*"promin" + 0.011*"lib" + 0.010*"control" + 0.010*"bulli" + '

 '0.009*"bill" + 0.009*"brexit" + 0.008*"debat" + 0.008*"arrog" + '

 '0.008*"true" + 0.007*"dem" + 0.007*"rise" + 0.006*"horror" + 0.006*"tactic" '

 '+ 0.006*"knowledg" + 0.006*"undemocrat" + 0.006*"nick"'),

 (8,

 '0.001*"eu" + 0.001*"fund" + 0.001*"wale" + 0.001*"brexit" + 0.001*"may" + '

 '0.001*"peopl" + 0.001*"vote" + 0.001*"leav" + 0.001*"uk" + 0.001*"govern" + '

 '0.001*"prime" + 0.001*"minist" + 0.001*"european" + 0.001*"caption" + '

 '0.001*"cameron" + 0.001*"campaign" + 0.001*"referendum" + 0.001*"secretari" '

 '+ 0.001*"imag" + 0.001*"busi"'),

 (9,

 '0.055*"fund" + 0.033*"busi" + 0.032*"wale" + 0.029*"eu" + 0.015*"social" + '

 '0.010*"support" + 0.010*"project" + 0.009*"peopl" + 0.009*"govern" + '

 '0.007*"welsh" + 0.007*"provid" + 0.007*"small" + 0.007*"enterpris" + '

61
C1315645

 '0.007*"wallich" + 0.006*"work" + 0.006*"money" + 0.006*"european" + '

 '0.006*"invest" + 0.006*"alloc" + 0.006*"deliv"'),

 (10,

 '0.035*"wale" + 0.027*"leav" + 0.024*"vote" + 0.018*"welsh" + 0.013*"labour" '

 '+ 0.011*"eu" + 0.011*"campaign" + 0.011*"remain" + 0.010*"voter" + '

 '0.009*"uk" + 0.009*"peopl" + 0.009*"leader" + 0.009*"polit" + 0.009*"bbc" + '

 '0.007*"support" + 0.007*"referendum" + 0.007*"area" + 0.007*"minist" + '

 '0.007*"jone" + 0.006*"govern"'),

 (11,

 '0.001*"wale" + 0.001*"eu" + 0.001*"fund" + 0.001*"vote" + 0.001*"leav" + '

 '0.001*"brexit" + 0.001*"may" + 0.001*"peopl" + 0.001*"govern" + 0.001*"uk" '

 '+ 0.001*"remain" + 0.001*"imag" + 0.001*"minist" + 0.001*"campaign" + '

 '0.001*"welsh" + 0.001*"support" + 0.001*"labour" + 0.001*"european" + '

 '0.001*"work" + 0.001*"money"'),

 (12,

 '0.024*"eu" + 0.017*"wale" + 0.017*"brexit" + 0.016*"leav" + 0.012*"vote" + '

 '0.012*"fund" + 0.011*"campaign" + 0.009*"may" + 0.009*"minist" + '

 '0.009*"govern" + 0.008*"support" + 0.008*"uk" + 0.008*"10" + '

 '0.008*"referendum" + 0.008*"peopl" + 0.007*"parti" + 0.006*"countri" + '

 '0.006*"prime" + 0.006*"work" + 0.006*"european"')]

Model of link to compare:

[(0,

 '0.036*"wale" + 0.028*"game" + 0.019*"win" + 0.017*"england" + '

 '0.015*"warburton" + 0.015*"februari" + 0.013*"bbc" + 0.013*"25" + '

 '0.013*"saturday" + 0.013*"team" + 0.013*"scotland" + 0.013*"improv" + '

 '0.011*"jone" + 0.011*"march" + 0.011*"ve" + 0.011*"gmt" + 0.011*"nation" + '

 '0.009*"minut" + 0.009*"manag" + 0.009*"cardiff"')]

Would you like to insert this link into the ontology? (y/n):

