
School of Computer Science and Informatics

Coursework Submission Cover Sheet

Please use Adobe Reader to complete this form. Other applications may cause
incompatibility issues.

Student Number

Module Code

Submission date

Hours spent on this exercise

Special Provision

(Please place an x is the box above if you have provided appropriate evidence of need to the Disability & Dyslexia Service and have
requested this adjustment).

Group Submission

For group submissions, each member of the group must submit a copy of the coversheet. Please
include the student number of the group member tasked with submitting the assignment.

Student number of submitting group
member

By submitting this cover sheet you are confirming that the submission has been checked, and that the
submitted files are final and complete.

Declaration

By submitting this cover sheet you are accepting the terms of the following declaration.

I hereby declare that the attached submission (or my contribution to it in the case of group
submissions) is all my own work, that it has not previously been submitted for assessment and
that I have not knowingly allowed it to be copied by another student. I understand that deceiving or
attempting to deceive examiners by passing off the work of another writer, as one’s own is
plagiarism. I also understand that plagiarising another’s work or knowingly allowing another
student to plagiarise from my work is against the University regulations and that doing so will
result in loss of marks and possible disciplinary proceedings.

C1421079

CM3203

05/05/2017

>425

Cardiff University

Computer Science

CM3203: One Semester Individual Project, 40 credits

Final Report

Real-Time Networking Game

Author :

Braden Marshall

Supervisor :

Frank C. Langbein

5th May 2017

Abstract

A modern browser-based multiplayer implementation of the game Tron, featuring
an arti�cial intelligence capable of competing against human users. With focus be-
ing on demonstrating the use of popular multiplayer video-game design techniques,
and their implementation within a web-application. Existing solutions either rely
on external browser-extensions, or lack support for multiplayer. We design and
implement a web-application using common, and natively available, technologies.
The result is a web-application capable of running multiple simultaneous game
lobbies, enabling users to play Tron with their friends.

i

Contents

1 Introduction 1

2 Background 3
2.1 The Game of Tron . 3
2.2 Existing Games . 4
2.3 Browser Technologies . 5
2.4 Arti�cial Intelligence . 5

3 Design 7
3.1 Software Development Process . 7

3.1.1 Package Scripts . 8
3.2 Preliminary Design . 9

3.2.1 Architecture Overview . 10
3.2.2 Core Technologies . 10
3.2.3 Boilerplate . 12

3.3 User Interface . 13
3.4 Game Mechanics . 14

3.4.1 Collision Detection . 17
3.5 Network Communication . 20

3.5.1 Game Lobbies and Concurrency 21
3.6 Arti�cial Intelligence . 22

4 Implementation 26
4.1 Source Overview . 26
4.2 Notable Challenges . 34

4.2.1 Game Loop . 34
4.2.2 Head-on Player Collisions 35
4.2.3 Mutability . 35
4.2.4 Collision Data Structures . 36
4.2.5 AI Simulations . 36
4.2.6 AI Concurrency . 37

ii

CONTENTS iii

4.2.7 AI Timing . 38
4.2.8 Technology Integration . 40

5 Results and Evaluation 42
5.1 Unit Tests . 44
5.2 Game Performance . 45

5.2.1 Tick Update Performance 46
5.3 Capability of Arti�cial Intelligence 47
5.4 User Feedback . 51

6 Future Work 52
6.1 Deployment . 52

6.1.1 Security . 52
6.1.2 Large-scale performance . 53

6.2 Arti�cial Intelligence . 53
6.3 Gameplay . 53

7 Conclusions 54
7.1 Networking . 54
7.2 Arti�cial Intelligence . 55

8 Re�ections on Learning 57

List of Figures

3.1 Diagram depicting the Model�view�controller software architectural
pattern, from (Wikipedia, the Free Encyclopedia, 2017d). 11

3.2 Visualisation of uniform-grid data-structure, drawn by our game's
draw debug mode. 18

3.3 An example diagram demonstrating a sideways collision between
two players. On the left, they're depicted in their un�xed positions.
Whilst on the right, they're now shown in their �xed positions. . . . 19

3.4 An example diagram demonstrating a head-on collision between two
players. On the left, they're depicted in their un�xed positions.
Whilst on the right, they're now shown in their �xed positions. . . . 20

3.5 Diagram depicting the Monte Carlo tree search algorithm, from
(ziggystar, 2012). 24

3.6 A description of the UCB1 formula and its application with regards
to a turn-based game-tree. 24

4.1 Diagram depicting a `close-call' situation gone wrong for an arti�-
cial intelligence controlled player (red) against a human controlled
player (green). 39

5.1 Screen capture of the implemented application, demonstrating the
game within a web-browser. 42

5.2 Screen capture of the implemented application, demonstrating the
game's welcome screen. 43

5.3 Screen capture of the implemented application, demonstrating the
game in progress. 44

5.4 Capture of the console output produced from executing our Jest
unit tests. 45

5.5 A graph depicting the impact to the performance of our game's tick
updates with relation to the number of total connected players and
the elapsed round time. 46

iv

LIST OF FIGURES v

5.6 A graph depicting how the game arena size impacts the total number
of simulations performed by our arti�cial intelligence when calcu-
lating a single move. 49

5.7 A graph depicting how the individual simulation depths impacts the
total number of simulations performed by our arti�cial intelligence
when calculating a single move. 50

5.8 A series of questions to be surveyed to test participants. 51

List of Tables

5.1 Table of results stating the outcome of the many games in which
an arti�cial intelligence controlled player would compete against a
human controlled player. 47

8.1 Table of results following the experiment described in subsection 5.2.1:
Tick Update Performance (Page: 46). 59

8.2 Table of results, following the experiment described in section 5.3:
Capability of Arti�cial Intelligence (Page: 47), stating how the game
arena size impacts the total number of simulations performed by our
arti�cial intelligence when calculating a single move. 63

8.3 Table of results, following the experiment described in section 5.3:
Capability of Arti�cial Intelligence (Page: 47), stating how the total
number of arti�cial intelligence performed simulations are a�ected
by their respective depth. 64

8.4 The collective results gathered from the user survey described in
section 5.4: User Feedback (Page: 51). 64

vi

Chapter 1

Introduction

It is somewhat well known that in the early 2000s the web began to transition
from static pages into web-applications, i.e. those powered by user-generated con-
tent and dynamic HTML. This new form of the web was coined Web 2.0 (Gra-
ham, 2005). Over the past few years, the potential of these web-applications have
evolved massively. In particular, many new technologies, such as those speci�ed
within HTML5, have been introduced into the average web-browser. These tech-
nologies have broadened the capabilities of a web-application; making them an
incredibly viable medium for many software projects. In the past, browser-based
video-games required the use of third-party browser-extensions, such as Adobe
Flash. However, with the aforementioned improvements, there now exists curi-
osity regarding the feasibility of implementing a browser-based video-game using
solely the technologies natively available within the web-browser.

Due to those reasons, for this project we are to develop a multiplayer imple-
mentation of the video-game Tron. It shall feature a computer opponent, powered
by some arti�cial intelligence enabling it to compete against able-bodied computer
users. The focus of the project is not to develop a fully-polished, consumer-ready
product; but instead to create a fully functioning prototype, demonstrating the use
of various video-game design techniques and the feasibility of their implementation
within a web-application.

The web-application will support a server capable of running, and arbitrating,
multiple simultaneously game lobbies, each holding their own game instance. A
group of users are then able to connect to a particular game lobby, in order to
become players of the game instance and thus able to compete against one-another
over a network. A variety of networking techniques will be employed to improve
the user-experience, by diminishing perceptible latency.

The intention of the arti�cial intelligence, controlling the computer opponent,
is not to play the game perfectly, besting the majority of human combatants, but
instead to act with human-like strategy and behaviour; remaining both challenging,

1

CHAPTER 1. INTRODUCTION 2

but possible for an average user to beat - keeping the game enjoyable. This will
entail the use of simulation-based techniques and concurrency.

Chapter 2

Background

Before we begin to delve into the development of our project, it is important we
�rst discuss the prior state of the problem. In particular, we introduce the reader
to some key ideas that helped to compose the �nal presented solution. This shall
also give us a chance to elaborate on the aims of the project.

2.1 The Game of Tron

The game of Tron �rst emerged in response to a scene from the 1982 �lm bearing
the same name, Tron (Walt Disney Productions, 2014). These games often took
their own spin on the concept, adjusting certain game mechanics. Hence, to help
avoid ambiguity, we �rst describe, in detail, the rules of the game. These are the
rules adhered to throughout the project's development.

Tron is a free-for-all game played by two or more players. Players are spawned,
in a uniform distribution, around the four sides of a square, enclosing the game's
arena. Each player is themselves a smaller square, 1 unit in size, that is initially
directed facing inwards of the square. Once the game has commenced, all alive
players are perpetually in motion, travelling around the arena at the same constant
speed. However, at any time, the player can direct themselves 90° anti-clockwise
(left) or 90° clockwise (right). As each player travels around the game arena, they
leave a wall occupying the arena they previously covered. This continuous wall is
know as a trail, and can be though of as the travelled path of a particular player. A
player is considered to be dead, and out the current game, when they collide with
borders of the arena, any other player, or the trail of any player (including their
own). Hence, the goal of the game is for a player to travel around the game arena
long enough to outlive all other competing players. This also introduces strategic
play, as, for example, players are able to act aggressively in hopes to block o� their
opponents - defeating them sooner. A round of the game is considered �nished

3

CHAPTER 2. BACKGROUND 4

once only a single player remains alive. In this case, the single remaining player is
considered the winner. If no players are left alive, the game is considered to be a
draw.

2.2 Existing Games

As it stands, there are quite a few implementations of Tron in existence. Some
are relatively small `indie' titles, whilst others are in the form of an extraneous
minigame within a AAA title. We shall begin to discuss some of these existing
implementations, providing a brief overview of the functionality they o�er and their
incorporated techniques. It is worth noting, we focus primarily on the smaller titles
as they better relate to the scope of our project.

First up is Fltron (Hsu, 2017). Fltron is an Adobe Flash based, two-player, grid-
base implementation of Tron. It features a fairly skillful AI opponent, su�ciently
capable of mimicking human behaviour. The game is also complete with a fair
amount of polish, such as sound e�ects and aesthetic graphics. However, it does
not support multiplayer over a network. It also happens to be quite outdated,
incompatible with many modern browsers, due to its reliance on Adobe Flash which
slowly being phased out in favour of HTML5. (Wikipedia, the Free Encyclopedia,
2017b)

Cycleblob (Shalom, 2017) is yet another Tron implementation. Although, it is
unique in the regards that the game arena is a three-dimensional object; con�gur-
able to a variety of interesting shapes, such as a rounded cube or torus. It is quite a
modern development, utilising many of the exciting HTML5 technologies, such as
WebGL (Mozilla Developer Network, 2017). Similar to the aforementioned Fltron,
the game features a capable AI opponent but still lacks multiplayer functionality.

Slither IO (team@slither.io, 2017) is an extremely popular browser-based game.
Whilst it is not an implementation of Tron, it is very similar in concept. What
makes this game particularly interesting, is that it demonstrates a high-level of
technical capability. The game is multiplayer, enabling hundreds of players to
compete against one-another in a single game instance. This clearly advocates
some of what is possible within a modern web-browser. However, it is worth
noting that the game is entirely player vs player; there are aspects of arti�cial
intelligence.

Rounding o� on what has been discussed, it is evident that these technologies,
powering the modern web-browser, do hold a lot of promise. There is strong
indication that they are indeed capable candidate platforms for running robust
video-games of the arcade genre. However, there does not yet seem to exist a
modern browser-based multiplayer implementation of Tron.

CHAPTER 2. BACKGROUND 5

2.3 Browser Technologies

A modern web-browser is now equipped with a wide array of di�erent technologies,
many of which accomplish very similar goals. When it comes to settling on a
particular technology, there is no `one-size-�ts-all' solution. Each are viable options
under under certain circumstances. It is because of this, in the following section,
we compare some of these competing technologies to enable us to better justify
our future design decisions.

Firstly, we shall discuss some of the technologies whose purpose it will be to
render the game's graphics. Some of the possible contenders include: animating
DOM elements around using JS, or even CSS; SVG; a canvas element powered by
Canvas 2D; a canvas element powered by WebGL. However, from those options,
there are only two feasible candidates: WebGL and Canvas 2. WebGL is a low-level
graphics API, and is based upon OpenGL ES. It provides the developer with a high
amount of control over the graphics pipeline and is also capable of 3D graphics. On
the other hand, canvas 2D is (as the name suggests) intended for relatively simple
2D graphics, and abstracts quite signi�cantly away from the graphics pipeline -
trading o� control for ease-of-use.

For the task of network communication, there are many choices. However,
the two main relevant technologies, for modern browsers, are WebSockets and
WebRTC. There are a few key di�erences between the two. Firstly, WebSock-
ets utilises the Transmission Control Protocol (TCP) protocol whilst, on the other
hand, WebRTC can utilise either TCP or the User Datagram Protocol (UDP). An-
other key di�erence is that WebSockets only supports full-duplex communication
between a web-browser and a web-server, whilst WebRTC's extends upon this
by supporting full-duplex communication between two web-browsers. WebRTC
requires that a web-server be set-up to handle the initial signalling required to
establish a connection between two browsers. As one would expect, WebRTC is
slightly more complicated to use, it also happens to be a newer standard and is
not currently very well support amongst web-browsers.

2.4 Arti�cial Intelligence

As discussed previously (see section 2.2: Existing Games (Page: 4)), there are
already several Tron implementations out there in existence. Some of these already
feature an adequately sophisticated computer opponent that is controlled by an
arti�cial intelligence. Sadly, some of these implementations do not have publicly
accessible source-code, or developer documentation; making it very di�cult to
understand the techniques they're using. However, after further research it was
discovered that conveniently, in 2010, Google sponsored an AI challenge (Google,

CHAPTER 2. BACKGROUND 6

2010), which received over 1400 entries. This objective of this challeneg was to de-
vise a arti�cial intelligence capable of playing the game Tron; albeit, with a slightly
di�erent set of rules and in slightly di�erent circumstances. The winner of said
competition, a1k0n, released a descriptive post-mortem (a1k0n, 2010), complete
with source-code, detailing the core ideas behind what powered their submission.
However, the produced arti�cial intelligence would be able to outmatch the ma-
jority of human controller players.

Chapter 3

Design

Throughout the following chapter, we shall analyse the intricate speci�cations of
our application and accordingly propose sensible design solutions. This will consist
of describing the application as a whole, then delving into each of the individual
aspects. By the end, the reader should obtain a strong understanding of what
exactly our application does along with the utilised core techniques.

3.1 Software Development Process

Firstly, we shall describe the overall methodology and work�ow that have been
employed throughout the duration of development. These are of important consid-
eration as they promote both an e�ective and productive approach to the creation
of software. Much of what is to be described is inspired by the ideas expressed in
`The Pragmatic Programmer' (Hunt, Thomas and Cunningham, 1999).

As the application is not a collaborative undertaking, there is little-to-no need
in sticking strictly to any speci�c paradigm or framework for the software de-
velopment process; as it would most probably lead to unnecessary overhead and
distraction from any relevant progress. However, it is still of purpose to state that
development most closely resembles the set of principles described under Agile
(Beck et al., 2001), in that the application's design and implementation occurred
concurrently, with continuous adaptation.

Over the course of the development process, the Git (Open source, 2009) version
control system has been used to track �le changes. Among other bene�ts, this
allows us to maintain a full history of our application's source code, enabling us
to revert back to previous versions - removing undesired changes. To further the
backup capabilities, the Git repository is hosted online at GitHub(Marshall, 2017).

In order to manage the various short-term goals throughout development, a
todo-list (in the form of a plaintext �le) has been maintained. The purpose of which

7

CHAPTER 3. DESIGN 8

was to help maintain an e�cient work�ow and provide a medium for documenting
design thoughts between development sessions.

To aid future developers, or those studying the application, all source-code has
been passed through a lint utility. This helps to identify potential bugs and pre-
serve a consistent coding standard - by identifying syntactic discrepancies. Also,
the source code itself contains extensive documentation; in the form of both rel-
evant variable names and comment annotations.

3.1.1 Package Scripts

We have also assembled a repertoire of scripts that serve the purpose of automating
some of the tedious tasks which are executed on a regular basis. In abstracting
away from these laborious procedures, we have reduced the chance of unnecessary
complications whilst also improving the e�ciency of working with the application.

Below is a curated list of the available scripts, along with a short description
of their purpose.1 However, please mind that some re�ect ideas we have yet to
discuss. (for more detail, please see subsection 3.2.3: Boilerplate (Page: 12))

Listing 3.1 � Creates an webpack-bundle-analyze session against the production

build of the client bundle.

1 yarn run analyze:client

Listing 3.2 � Creates an webpack-bundle-analyze session against the production

build of the server bundle.

1 yarn run analyze:server

Listing 3.3 � Builds the client and server bundles, with the output being optimized.

1 yarn run build

Listing 3.4 � Builds the client and server bundles, with the output including

development related code.

1 yarn run build:dev

1Also, when a developer attempts to push to the GitHub repository, our unit-test are auto-
matically performed; aborting the push upon failure.

CHAPTER 3. DESIGN 9

Listing 3.5 � Deletes any build output that would have originated from the other

commands.

1 yarn run clean

Listing 3.6 � Deploys your application to now.

1 yarn run deploy

Listing 3.7 � Starts a development server for both the client and server bundles.

1 yarn run develop

Listing 3.8 � Executes eslint against the project.

1 yarn run lint

Listing 3.9 � Executes the server. It expects you to have already built the bundle-

susing the yarn run build command.

1 yarn run start

Listing 3.10 � Runs the jest tests.

1 yarn run test

Listing 3.11 � Runs the jest tests and generates a coverage report.

1 yarn run test:coverage

3.2 Preliminary Design

The application itself is quite a large undertaking, as it comprises a multitude of
di�erent aspects. Most of which can be categorised into one of three groups: game
mechanics, network communications, and arti�cial intelligence. Therefore, where
possible, we shall try to discuss each one of these categories separately. But �rst of
all, we shall introduce the reader with an overview of the application and describe
the relation between some of its core components.

https://zeit.co/now

CHAPTER 3. DESIGN 10

3.2.1 Architecture Overview

Much of what has been designed is derived from ideas that relate to the game as
a whole, that being the overall encompassing architecture. To aid the reader in
understanding said content, we shall introduce them to a brief summary of the
foundational ideas in which the game is to be built upon.

At its heart, the game follows a client-server multiplayer game architecture.
This is where a single device is designated to be responsible for processing user-
input, updating the game state and communicating said game state to the connec-
ted players. The connected players are principally responsible for relaying input
to the server and rendering graphics based upon the state communicated from the
server.

3.2.2 Core Technologies

As the game is to be played in a web-browser, we will be making use of the three
fundamental web languages; HTML, CSS, and JavaScript. These three languages,
and the standards which govern them, allow us to con�dently write portable code
which will run predictably within the majority of web-browsers. Although, sadly
this is not always the case as it is notorious for many web-browsers to not always
fully support the most up-to-date standard - assuming it follows it in the �rst
place.

The primary programming language for our client-side source-code is JavaS-
cript the standard core web-browser technology for web-page DOM manipulation.
To help tackle the compatibility issue mentioned above, all our JavaScript will
conform according to the ECMAScript2015 standard (Ecma International, 2017).
It shall then be transpiled to a more universally supported syntax using Babel
(Babel (Open Source), 2016).

Transpiling to JavaScript has become somewhat the norm in the realm of mod-
ern web-development. In recent years, many entirely new programming languages
have emerged for the sole purpose of being transpiled into JavaScript. For this
application, the decision to use an updated standard of JavaScript, as opposed to
one of these entirely new languages, is to reduce the amount in which we abstract
from the underlying code that is to be executed; removing another layer where
issues could arise.

As our game is designed to be played within a web-browser, we already have
access to the wide range of graphical components and other features described
within the HTML speci�cation. Notably, this includes elements such as buttons,
lists, hyper-links and CSS - which is used to describe the presentation of our web-
document.

As the logic and state of our game exists within JavaScript, we will need

CHAPTER 3. DESIGN 11

to frequently manipulate these HTML elements - such that a proper re�ection
of our game state is maintained. This type of structure closely resembles the
Model�view�controller (Wikipedia, the Free Encyclopedia, 2017d) software archi-
tectural pattern for implementing user interfaces. However, handling the view
layer can prove to be quite a cumbersome task as many naive solutions scale very
poorly, such that future adjustments may have adverse side a�ects or may just be
very awkward to implement; making correctness di�cult to conserve.

Figure 3.1 � Diagram depicting the Model�view�controller soft-

ware architectural pattern, from (Wikipedia, the Free Encyclopedia,

2017d).

Thankfully, this is a very common problem faced during web-development,
and there already exist many capable candidate solutions. With this in mind,
along with the desire to learn a new framework, and the curiosity regarding its
applicability in integration with this project; React(Facebook Inc., 2017a) and
Redux(reactjs, 2017) have been employed to help manage the view layer.

React is a popular JavaScript framework that makes it relatively easy to cre-
ate advanced user-interfaces for web-applications. It allows you to design your
application as a set of simple views for each state in your application, and will ef-
�ciently update and render only the appropriate components when data changes.
In essence, this is done by constructing almost your entire application's view layer
within JavaScript by building encapsulated components - each charged with man-
aging their own state.

Redux is a separate library, but plays very well when used in conjunction with

CHAPTER 3. DESIGN 12

React. Simply put, it is a predictable state container for JavaScript applications.
It aids in allowing the developer to write applications that behave in a consistent
manner, whilst providing tools to improve the developer's experience in regards to
processes such as debugging.

Redux, in principle, requires the application's state to be stored in an object
tree inside a single data store. Each state is represented by a single immutable
object. Changes to the state tree are made by emitting actions. An action is an
object describing what happened during some event to the state. These actions are
then used to transform the state tree through the use of reducers ; a pure function,
with (state, action) => state signature, describing how an action transforms
the given state into the next state.

Given that we already have to use JavaScript for our front-end game code, it
makes sense to not bring in another language for our back-end. This bears a myriad
of bene�ts, such as not having to deal with the additional quirks of a separate
programming language. Also, it eliminates the hassle of maintaining two separate
implementations of code that are identical in purpose. This becomes especially
relevant later on, when we introduce client-side prediction (see section 3.5: Network
Communication (Page: 20)). Hence for the back-end, that is the code which will be
executed on a dedicated server, we shall be utilising Node.js(Node.js Foundation,
2017b).

Node.js, is a technology which serves as a JavaScript run-time environment
allowing JavaScript to run in standalone, outside of a web-browser. It has become
a major proponent of the `JavaScript everywhere' paradigm, allowing the meat of
web-application development to unify around a single programming language. A
concise description is provided on the front-page of its website:

`Node.js® is a JavaScript run-time built on Chrome's V8 JavaScript engine.
Node.js uses an event-driven, non-blocking I/O model that makes it lightweight
and e�cient.' - Node.js Foundation, 2017b

3.2.3 Boilerplate

Somewhere early on during development, having already settled on the aforemen-
tioned technologies, it began to be quite di�cult to maintain an e�cient devel-
opment work�ow. That inspired the decision to transition the project to the use
of the React Universally (ctrlplusb, 2017) starter-kit; a boilerplate project with a
bare-bones base structure along with various scripts to help automate the tedious
build/watch transpile process required for our JavaScript code.

React Universally also sets up Server-side rendering with React. This is helpful
as it enables the server to perform an initial render of our application's components,

CHAPTER 3. DESIGN 13

then serve the result to the client. This results in the web-page appearing to load
faster, as the main layout would've been pre-rendered; so the client user does not
experience the initial �ickering of DOM elements as the view is mounted.

Regarding the Redux store, the state is simply injected directly into the web-
document prior to being served to a client. Upon initialisation, the client immedi-
ately rehydrates the application using the transmitted state and mounts the React
components.

The source code directly composing our application is split into three main
directories: shared, client, and server. The shared directory contains the bulk of
our application, including source which is rendered server-side to be served to a
client. Whilst the client directory is for browser speci�c source that is not to be
used server-side, not even for the purpose of server-side rendering. In particular,
it includes functionality such as user-input and establishing a live communication
session with the server. In a similar respect, the server direction contains all the
source speci�c to our Node server.

3.3 User Interface

It should be declared, once again, that the primary focus of this project is not to
create a polished video-game, but to simply explore the related techniques and their
integration within the realm of modern web-development. However, in reality, if a
video-game's user-interface is sub-par, the likelihood of the user having a positive
experience will be highly diminished. It is for that reason, we shall discuss some
core aspects related to user-interface design and it's correlation with this project.

The user-interface is not solely related to the layout and style of graphical
components, but also about how their behaviour can impact the user's experience.
In particular, the way in which they're expected to interact an application can be
a detrimental factor.

There is also no single solution to user-interface design. Every scenario is
di�erent, with its own unique speci�cations, and must be treated as such. However,
there are general guidelines and conventions which are commonly found to be
incorporated into designs. Therefore, we must develop a design that accommodates
the unique characteristics of Tron.

With this taken into account, along with inspiration drawn from analysing the
existing browser-games (see section 2.2: Existing Games (Page: 4)), the following
set of interface design speci�cations have been devised:

1. Single-page web-application: the interface should be a single HTML
page, which dynamically updates its content. This is to avoid irritating
the user with page reloads di�ering by only small amounts of content.

CHAPTER 3. DESIGN 14

2. Responsive layout: the interface should scale nicely on a variety of
devices - accommodating di�erent resolutions. This is done through the
use of techniques such as CSS media queries and relative units.

3. Conventional user input: as the game is quite simple, the average
user should almost instinctively know how to operate it. Primarily, this
is done by sticking to convention; such as WASD keys in order to move.

4. Lobby invitation: the interface should provide users with a very
straightforward way in which they're able to play a game of Tron with
their friends.

5. Simplistic URL structure: the interface must make intuitive use of
the site's URL, as the game will be a web-application; so should conform
to convention.

After careful assessment of the above criteria, it became possible to develop
some concepts and realise them prototype designs. Throughout the remainder of
this section, we shall elaborate on these prototypes.

We conceived the idea to solve both the `Lobby invitation' and `Simplistic URL
structure' criteria with a single solution. This solution is to allocate the entire URL
path to represent a key to a single particular Tron game lobby. That is, if a player
wants to invite his friends to a game; they would simply append some arbitrary
sequence of characters to their URL then forward it to their friends. This solution
is very easy for the user to understand. Although, the privacy of their game is
dependent on the predictability of the chosen lobby key.

In Tron, it is pivotal for there to be minimal obstruction towards the user when
they wish to apply their ability to redirect their player within the game arena. This
rules out the use of any form of button, due to the unacceptable latency involved
in positioning the cursor. Instead, the user shall control their player using the
WASD keys (that is W : north, A: west, S : south, D : east). Or, as an alternative
for mobile touch devices, the user is required to simply tap the portion of the
screen re�ecting the direction they wish to now travel along.

3.4 Game Mechanics

Compared to other arcade games, Tron has relatively few fundamental game mech-
anics. However, with that being said, there are still many challenges that arise due
to the game's fast-paced nature and critical requirement for accuracy. Through-
out this section, we shall discuss some of the more integral problems regarding the
game's core mechanics along with the designed solutions, and the techniques in
which they use.

CHAPTER 3. DESIGN 15

Before we delve into the speci�cs, it is vital we �rst provide an overview of the
game's state object. In video-game design, the game state refers to an object -
or other data store - which contains all the data representing a game instance at
some particular point in time.

Below is a breakdown our game state object's structure:

tick : the number of times this state has ticked; inclusive of the current tick
update.

progress : the amount of time which has passed since the last tick update.

started : a boolean indicating if a round of Tron is in progress.

�nished : a boolean indicating if the current round has �nished. unde�ned
if started is false.

arenaSize : the number of cells within our game arena.

playerSize : the number of cells a player occupies within our game arena.

speed : the number of cells each player travels over the course of a millisecond.

players : an array containing an object for each player part of the current
game. The following describes the structure of a single player object:

id : a unique string used to identify the player.

name : an arbitrary string for other players to recognise this player.

alive : a boolean indicating if the player is alive, or otherwise dead.

direction : the direction (north, south, east, or west) in which the player
is travelling.

position : a point (an array, in the form of [x, y]), representing the
player's current position in the grid.

trail : an array of points at which the player has changed direction. Used
to construct a path of the area in which the player has travelled.
However, the array has two special cases: the �rst element is the
player's spawn point, and the last element is the point for the player's
previous position.

cache : a nested object containing various cache structures required by our
state. The following describes the structure of the cache object:

collisionStruct : a data-structure in which we can check for player/trail
collisions within our arena. See for more detail subsection 3.4.1:
Collision Detection (Page: 17).

Our game state itself must be implemented as a mutable object. This is due to

CHAPTER 3. DESIGN 16

the large overhead that immutability generates; primarily from computationally
expensive processes, such as copying an abstract data-type. As immutability is
optional, it therefore is simply not worth introducing it within the game loop - as
it would degrade performance.

Although having the game state be a mutable object does not directly interfere
with our server, it does raise concern in regards to our client and their utilisation
of Redux. This is because one of Redux's key principles, is that all data held
within the store must be immutable, such that all modi�cations to the state are
performed solely by reducer functions.

To avoid creating an unnecessary reliance and coupling of the project onto
optional technologies, we do not want to meld our internal game code with Redux.
Hence, for our client, when we receive a game state update from the server we
copy it and commit both the original and copy into the store. One of these stored
game states will remain immutable, whilst the other will be fully mutable - hence
unaware of updates.

This solution may currently appear rather strange, as at this stage it is too early
to introduce the entire reasoning. However, simply put, it allows us to keep an
authoritative state (what is known) and a predictive state (what should be). Our
DOM will re�ect the authoritative state, whilst the drawn graphics of the game
will re�ect the predictive state (for more information, see section 3.5: Network
Communication (Page: 21)).

The next major aspect of our game is the game loop. In principle, it is a
section of code that runs continuously during game-play, at some interval. User-
input is processed, without blocking, during each tick of the loop. The remainder
of the tick is then used to update the game's state and render graphics. It of
critical importance, and is arguably the most employed pattern in game-design as
it provides a very convenient and deterministic way in which the developer can
structure their game.

Our game shall be utilising the game loop, and is heavily based around said
pattern. In principle, the server needs to spin the game loop at a rate fast enough to
process user-input and calculate updates without introducing noticeable latency.
Whilst the client is only required to spin fast enough to create the illusion of
animated graphics.

By default, both client and server will have their game loop con�gured to run
at a tick-rate of once every 15 milliseconds - approximately 66 times a second. 2

2This is considered the standard for video-games. In most cases, a faster rate does not provide
any distinguishable bene�t.

CHAPTER 3. DESIGN 17

3.4.1 Collision Detection

Many existing Tron implementations internally use a grid-based arena, that is a
player occupies an entire single cell of the arena. This enables collision look-ups
to be performed in constant time, by simply indexing an array. However, our
implementation allows players to move with an incredibly high-degree of precision
(Refsnes Data, 2017). Unfortunately, this does complicate collision lookups.

Instead of checking for collisions against every object in the arena, we have
utilised the uniform grid spatial data-structure. This allows us to divide the arena
into a grid of arrays, where each array holds references to the objects that reside
within its bounded space. Thus, when checking for a collision, we only need to
check against objects that are held within the array(s) that our target object
intersects with; reducing the search space quite substantially.

To populate our collision data-structure, we generate a series of rectangles
representing each individual line-segment that forms the player's trail - from their
current position, to the position they were spawned at. This is the stage at which
we take into account the players' size.

CHAPTER 3. DESIGN 18

Figure 3.2 � Visualisation of uniform-grid data-structure, drawn

by our game's draw debug mode.

CHAPTER 3. DESIGN 19

Once the search space has been reduced, we now need to check to see if any
of the obtained objects collide with our target object. Conceptually, this is just
checking if there exists an overlap between two rectangles; a very simple calcula-
tion. However, as we want players to stop at the precise moment at which they
crashed, we must calculate the intersection point and then o�set it appropriately
using the size of the two players.

This boils down to two distinct cases: 3

1. Case: player collides with another player - who is not heading in an oppos-
ing direction.
Solution: reposition the crashed player by appropriately calculating an o�-
set distance from the player they hit - based upon both their sizes. Using
the crashed player's travelling direction for the o�set's sign.

Figure 3.3 � An example diagram demonstrating a sideways col-

lision between two players. On the left, they're depicted in their

un�xed positions. Whilst on the right, they're now shown in their

�xed positions.

2. Case: head-on collision between two players.
Solution: move each player backwards by half the sum of their overlap and
overshoot.

3Please note that, in our collision case diagrams, the black dot within a player represents
their position point.

CHAPTER 3. DESIGN 20

Figure 3.4 � An example diagram demonstrating a head-on col-

lision between two players. On the left, they're depicted in their

un�xed positions. Whilst on the right, they're now shown in their

�xed positions.

3.5 Network Communication

For a game to be multiplayer, all players need to share the same consistent exper-
ience across a network, i.e. they need to all be playing on the same game state.
So this raises the question on how to synchronise the game state between all con-
nected players. There are two main methods to achieve a synchronised game state
and, to some degree, we will be using ideas from both.

The �rst method is known as peer-to-peer lockstep. It centres around the idea of
the game being modelled as turn-based and, before each turn, all non-deterministic
events (such as user-input) are broadcasted to all players. Once all players have
sent their input for this turn, each player then individually updates their game
state; which will of course all end up being identical. The primary �aw in this
technique is that all players are forced to play at the latency of the player with the
weakest connection. This would be extremely frustrating for Tron, as each time
you try to move you have to wait for the player with the weakest connection.

The second method is known as client/server. It entails having a single author-
itative game-state kept on a server, that is then communicated between all players.
When a player wants to perform an action, they must communicate said action to
the server. The server will then apply the action and communicate the updated
state to all connected players. However, this solution makes no compromises for
latency. For example, the server's state is forever being updated and it will often
receive actions from connected players that were made under the assumption the
game is still at some previous state.

Our developed solution entails the use of several techniques. At its core, it is a

CHAPTER 3. DESIGN 21

client-server model. But we make use of two mechanisms known as lag compens-
ation(Valve, 2011a) and client-side prediction(Valve, 2011b) which help to reduce
the negative e�ects of latency.

Simply put, lag compensation enables the server to `rewind` time when apply-
ing the input of a user; compensating for any latency that may have occurred.
Whilst lag prediction allows clients to mimic the server, including the immediate
processing of their input. See (Bernier, 2011) for a more thorough description.

Communicating the entire game state after each tick is an incredibly infeasible
task; each player would be required to communicate with the server at a rate faster
than the game's tick-rate.

Our solution to this problem is quite a simple one. When the client receives a
message containing the updated state, they immediately reply to the server with
an acknowledgement. The server will interpret this acknowledgement as a request
to prepare the next state transmission.

To further reduce the latency of communication, we can also reduce the payload
size of each state transmission. This is made possible by identifying that over the
course of several ticks, the game state remains largely unchanged. Knowing this,
we are able to keep in memory the last state communicated to each player and
when we need to transmit, just calculate a snapshot of the di�erences 4 between
the current state and the last one which was sent. We also don't bother sending
the cache, and instead simply regenerate it on the client - which isn't too expensive
of an operation, and doesn't hinder our server's authoritative game state.

As introduced within the background section (see section 2.3: Browser Technologies
(Page: 5)) there exist several technologies capable of handling the actual commu-
nication with a web-server; most notably WebSockets and Web-RTC. However, we
have chosen to use WebSockets as our communication technology. This is because
it is well supported, well documented and is does not provide us with extra hassle
as we already have a dedicated game-server.

3.5.1 Game Lobbies and Concurrency

Our web-application is intended to support the simultaneous play of numerous
Tron game lobbies. This is to allow separate groups of users to each be allocated
their own game instance, allowing them to play with one-another - away from
undesired guests.

When a user visits our web-application's site, the server will receive a HTTP
GET request and serve them the necessary �les. Once the client receives said �les,
they begin to render and mount the React view.

As a reminder, the URL path is interpreted as the unique game lobby key (see

4We calculate and apply the di�erences using fast-json-patch(Starcounter-Jack, 2017).

CHAPTER 3. DESIGN 22

section 3.3: User Interface (Page: 13)). Hence, once the view has been mounted,
if the client's URL path is not blank a WebSocket's connection is then established
with the server. The client will then request to the server that they wish to join
said lobby.

Once the server receives a request from a client, who wishes to join a game
lobby, it will check if the lobby corresponding to the submitted key currently
exists. If not, it is created. The server will then add the requesting client as a
player in said lobby.

Once registered with the game lobby, the client is added as a player within the
current game state and then is sent a full copy of said state. This update to the
game state is distributed to the other existing lobby clients identically to any other
update (i.e. via our snapshot system, see section 3.5: Network Communication
(Page: 20)).

The game lobby contains a special object called the state controller. This
object keeps a history of all the states currently held within our lag compensation's
history. It is also responsible for spinning our game lobby's game loop and handling
all updates to the game state.

However, Node.js is a single-threaded environment, which means that only one
request can be processed at any given time. This requires all forms of I/O, and
other computationally expensive tasks, to be performed asynchronously; to avoid
creating a lock on Node's event loop.

Knowing this does create concern, as our game will include tasks that are
very computationally expensive - such as the aforementioned state updates, along
with others including arti�cial intelligence. However, Node.js is equipped with a
module, called child_process (Node.js Foundation, 2017a). This module is of
vital importance, as it enables us to delegate the computationally expensive tasks
onto a separate process that shall be executed in parallel - without blocking our
main Node.js event loop.

Therefore, our state controller will delegate all state updates to a dedicated
Node.js child process; keeping the event loop of our main Node.js process spinning
fast.

3.6 Arti�cial Intelligence

In order for our computer opponent to play the game, they need to be controlled
by some arti�cial intelligence; some program which has an understanding of the
game and can make sensible moves, as if it were a human player. This is quite a
complicated, especially given that our game is played in real-time.

Our solution to this problem centres around the idea of the modelling the game
to be both played on a grid and turn-based, then running simulations which play

CHAPTER 3. DESIGN 23

out the possible scenarios in which the game could develop. However, as we require
our AI to make decisions within a very short amount of time, we are unable to
check the entire search-space and instead must make use of a variety of techniques
to help optimise the process.

Probably the most radical technique is to only run each simulation up until
some �xed depth, at which point we then evaluate the current game state using an
heuristic evaluation function. The e�ectiveness of this technique is heavily reliant
on both the chosen �xed depth as well as the evaluation function.

The heuristic evaluation function we've designed uses an optimised version of
the �ood-�ll algorithm, featured in the very high-performing implementation that
was the winner of a Google AI competition - introduced in section 2.4: Arti�cial
Intelligence (Page: 5). The core idea is to count player ownership of grid-cells, in
our model of the arena, based upon a heuristic distance measurement.

First, all players have their heuristic score initialised to 0. Then we calculate the
minimum Manhattan distance between the AI player and all other alive players.
We then apply �ood-�ll to calculate the distance from the current player to each
empty grid-cell. Flood-�ll is optimised by halting its process once the distance
surpasses the previously calculated minimum distance. We are now left with a
heuristic distance measurement.

For each grid-cell, we then apply the following process to score based upon cell
ownership: for each player, increment 1 to their score for every other player that
has a distance that is greater-than, or equal to, the current cell. If the other player
does not have a recorded distance to the current cell, instead increment by 2.

Thus, a greater score indicates a stronger position; although not relative to
other players.

Even with the reduction in search-space and optimised evaluation function,
time is still very limited. In order to avoid wasting such time, we disregard branches
which are not promising. This is done through the use of the Monte Carlo tree
search algorithm (Wikipedia, the Free Encyclopedia, 2017e) with UCB1.

However, UCB1 takes into account wins and loses. Clearly, this con�icts with
the idea of running simulations to some �xed depth. To combat this, when we
reach the end of a simulation, we decide whether the said simulation was a win or
a loss based upon some naive rules:

� If our player is dead, increment the losses by the total number of alive players.

� Otherwise, increment wins by 1 (to reward being alive) plus 1 for each player
that is either dead or have a lower heuristic score.

On top of all of this, the simulations involved in calculating the arti�cial in-
telligence's move run in parallel to the rest of the game-server. This is done by

CHAPTER 3. DESIGN 24

Figure 3.5 � Diagram depicting the Monte Carlo tree search al-

gorithm, from (ziggystar, 2012).

Let t be the total number of simulations that have involved node s, let ni be
the total number of times the move to si was chosen as the next move (i.e.
t = n1 + . . .+ nk), and let wi be the number of times this led to a win. If the
simulation ends up in node s, and s is not a �nal state of the game, then as the
next move, we choose the one that ends up in node si such that the following
score is maximised:

UCB1 =
wi

ni

+

√
2 ln t

ni

Figure 3.6 � A description of the UCB1 formula and its ap-

plication with regards to a turn-based game-tree.

CHAPTER 3. DESIGN 25

spinning o� a child process, which will run on a separate core. Once a move has
been calculated, it will communicate the result back to the server and then die.

The server will then apply lag compensation, once it receives the communicated
move. This e�ectively allows simulations to take longer than the duration of a
single tick; leading to moves that are generally better.

Chapter 4

Implementation

Both the design and implementation processes occurred simultaneously, that is
the implementation of our application evolved alongside the development of its
�nal design. During the design chapter (see chapter 3: Design (Page: 7)), we
only discussed the �nal state of the system. This was done to avoid creating any
confusion with regards to what was actually created. However, throughout this
chapter we will be discussing some of the mistakes made, di�culties faced, and
the solutions allowing us to overcome them.

4.1 Source Overview

Great e�ort has been invested into ensuring that our implemented source-code is
of a high-quality. Among other aspects, this entails conscious attention to certain
factors, such as maintainability and reusability. This is especially important due
to the multifaceted nature of the project.

In particular, certain software development principles have been utilised, such
as high-cohesion and low-coupling. This results with an implementation that is
both easier to understand, and whose components can be easily integrated into
future projects.

Throughout the remainder of this section, we shall provide the reader with
an overview of our application's source-code. This is to help establish an un-
derstanding of what exactly has been developed, and how the implementation
is structured. However, for an in-depth description regarding speci�c detail of
our code, we advise the reader to further their understanding by consulting said
source-code directly. In order to ease this, high amounts of documentation have
been embedded throughout the codebase.1 2

1We've omitted all unit-tests to try and keep this list concise.
2In order to retain focus on our project's primary aspects, we avoid delving too far into React

26

CHAPTER 4. IMPLEMENTATION 27

./ : the root directory of our project.

./.babelrc : con�guration �le for Babel (see subsection 3.2.2: Core
Technologies (Page: 10)).

./.editorcon�g : con�guration �le for EditorCon�g, providing a means
for developers' to de�ne and maintain consistent coding styles
between di�erent editors and IDEs.

./.env_example : example con�guration �le describing environment
variables intended for use during deployment. This is provided by
React Universally.

./.eslintignore : con�guration �le containing patterns identifying spe-
ci�c �les that we intentionally do not wish to lint. This includes
third-party and post-build source-code.

./.eslintrc : con�guration �le for our JavaScript linter (see section 3.1:
Software Development Process (Page: 7)).

./.modernizrrc : con�guration �le for Modernizr. This allows us to
detect the supported technologies within a client's web-browser. This
is provided by React Universally.

./.nvmrc : con�guration �le stating this application's intended version
of Node.js.

./LICENSE : copy of the application's licence, that being GNU GEN-
ERAL PUBLIC LICENSE Version 3.

./package.json : con�guration �le for Node.js containing much meta-
data regarding our application, such as dependencies and scripts.
Extended from what is provided by React Universally.

./README.md : short piece of text introducing developers to the
application.

./TODO.todo : todo-list containing a log of tasks completed through-
out development (see section 3.1: Software Development Process
(Page: 7)). This became somewhat disregarded towards the later
stages.

./yarn.lock : log of the exact dependency versions, for predictable port-
ability. This is provided by React Universally.

build/ : output directory containing our source-code once it has been trans-
piled and passed through a module bundler. We refrain from discussing
its contents in further detail.

Universally (see subsection 3.2.3: Boilerplate (Page: 12)).

CHAPTER 4. IMPLEMENTATION 28

client/ : directory containing browser speci�c source that serves no purpose
server-side, not even for server-side rendering.

index.js : kickstarts our application within the client's browser. Exten-
ded from what is provided by React Universally.

registerServiceWorker.js : installs the o�ine plugin, which instanti-
ates our service worker and app cache to support pre-caching of assets
and o�ine support. This is provided by React Universally.

components/ : directory containing the React components not inten-
ded for server-side rendering.

ReactHotLoader.js : enables React hot-loading for development
builds of our application. This is provided by React Universally.

game/ : directory containing all the Tron game functionality that is
strictly only required client-side.

draw.js : draw functionality that attaches to the canvas element of
our document, enabling it to draw the graphics for our game of
Tron.

drawdebug.js : optional draw functionality that overlays the stand-
ard Tron graphics to provide the user with a visualisation that is
more useful for debugging. In particular, highlighting the bounds
for each node within our collision data-structure.

gameloop.js : a version of the game loop optimised for the web-
browser (for more information, see subsection 4.2.1: Game Loop
(Page: 34)).

poly�lls/ : directory containing poly�lls that o�er workarounds for
clients whose browsers lack certain functionality. This is provided
by React Universally.

poly�lls/index.js : example poly�ll for clients that lack the
picture element.

state/ : directory containing Redux functionality that powers the
state of our application (see subsection 3.2.2: Core Technologies
(Page: 10)).

index.js : entry point �le which sets up our root Redux reducer
and root Redux Saga (see section 4.2.8: Redux (Page: 40)).

input/ : directory containing Redux functionality for processing
user-input.

host/ : directory containing the Redux functionality usable
by the host user to con�gure the game lobby.

CHAPTER 4. IMPLEMENTATION 29

sagas.js : Redux sagas used to execute actions on behalf of
the game host for the current game lobby.

keyboard/ : directory containing the functionality required
for Redux to emit actions on keyboard input.

actions.js : Redux actions for the key-down and key-up
keyboard user-input events.

sagas.js : Redux Saga which forks out to constantly listen
for keyboard input from the user; distributing actions for
the appropriate events.

player/ : directory containing the Redux functionality usable
by the user in order to control their player.

sagas.js : Redux sagas used to execute actions on behalf of
the user, so that they're able to control their game player.

lobby/ : directory containing Redux functionality enabling the
user to communicate with their game lobby.

sagas : Redux sagas used to send/receive messages between
client, and the server holding the game lobby.

sockets/ : directory containing the means allowing Redux to
communicate, in a natural manner, with a server via Web-
Sockets (see section 4.2.8: Redux (Page: 40)).

actions : Redux actions used to establish and communicate
using a WebSocket connection.

reducers : Redux Reducer which attaches the WebSocket
connection status to our Redux store's state.

sagas : Redux sagas facilitating integration between Web-
Sockets and Redux.

con�g/ : directory containing general con�guration for our web-application
and the build/deploy process. Extended from what is provided by React
Universally.

internal/ : directory containing most of the internals powering React Uni-
versally.

node_modules/ : directory containing many of the third-party dependen-
cies, as speci�ed within our package.json �le.

public/ : directory containing miscellaneous static �les useful for hosting a
web-application. This is provided by React Universally.

server/ : directory containing functionality speci�c to our Node.js server.

CHAPTER 4. IMPLEMENTATION 30

index.js : kickstarts the server component of our application. Extended
from what is provided by React Universally.

sockets.js : initiates the WebSocket functionality and hooks up our Tron
game server, supplying the necessary Node.js dependencies for de-
pendency injection.

game/ : directory containing all the Tron game functionality that must
be specialised for a particular platform, in this case Node.js. This will
interface with the remaining game �les using dependency injection.

gameloop.js : a version of the game loop optimised for the Node.js
run-time environment (for more information, see subsection 4.2.1:
Game Loop (Page: 34)).

processes/ : directory containing the entry-points for our Node.js
child processes (see subsection 3.5.1: Game Lobbies and
Concurrency (Page: 21)).

aimove.js : child process entry point used by a computer player
in order to determine a move calculated using some arti�cial
intelligence.

update.js : child process entry point used by our game's state
controller to update the game state.

middleware/ : directory containing middleware for our Node.js server.
Extended from what is provided by React Universally, in order for
compatibility with Redux.

shared/ : directory containing the bulk of functionality developed for our
application. Its contents are intended for use both on the client and
server.

components/ : directory containing our React components which com-
pose the view layer.

App/ : directory containing the components speci�c to our applic-
ation.

index.js : base component of our application.

globals.css : CSS style rules which apply to our application as
a whole.

Error404 : directory containing components for a simple 404
page. This is provided by React Universally.

GameCanvas/ : directory containing the components for the
canvas element which we draw Tron's graphics onto.

index.js : the component representing our game canvas, in-
cluding the functionality enabling it appropriately adjust in

CHAPTER 4. IMPLEMENTATION 31

size.

Lobby/ : directory containing the components used to create a
panel of information and options for when the user is connected
to a lobby.

index.jsx : base component for our game lobby panel. This
component will initiate the WebSocket connection to the ap-
propriate game lobby.

host/ : directory containing the components of our game
lobby panel's host section, providing additional con�gura-
tions to users who are the host of their current game lobby.

index.js : base component containing the graphical con-
trols for host operations.

Welcome/ : directory containing the components used to create
a welcome screen for when the user is not connected to a lobby.

index.jsx : base component containing a brief introduction
to our Application along with the ability to set the player
name and join a random lobby.

HTML/ : directory containing a generic component used as the
foundation of a HTML document. This is provided by React
Universally.

game/ : directory containing the majority of Tron's game code.

gameloop.js : an abstract class of our game loop, intended to be
extended upon by adding a platform speci�c timer.

ai/ : directory containing the functionality powering our computer
players through the use of arti�cial intelligence (for more inform-
ation, see section 3.6: Arti�cial Intelligence (Page: 22)).

index.js : perform some checks before initiating the simulations
and returning the calculated move.

minimax.js : deprecated simulation technique (for more inform-
ation, see subsection 4.2.5: AI Simulations (Page: 36)).

montecarlo.js : implementation of Monte Carlo tree search
used to identify a strong move.

wintree.js : data-structure used by our Monte Carlo tree search
to keep a history of the executed simulations and their out-
comes.

heuristics/ : directory containing the implemented heuristic
evaluation functions which provide insight of the game state.

CHAPTER 4. IMPLEMENTATION 32

index.js : calculate the heuristic scores for each player by
using the distance map provided by the �ood-�ll algorithm.

�ood�ll.js : perform our optimised �ood-�ll algorithm for a
single player within the game arena.

network/ : directory containing the core functionality powering the
architecture enabling our game to be multiplayer (for more in-
formation, see section 3.5: Network Communication (Page: 20)).

lobby.js : class charged with managing an individual game
lobby.

server.js : class that processes client connections and arbitrates
players within game lobbies.

snapshot.js : utility functions to obtain and apply snapshot
comparisons that are taken between two states.

statecontroller.js : class which handles the authoritative game
state (asynchronously) and can apply changes utilising lag com-
pensation.

input/ : directory containing the various attachments to the
player-server connection. These are primarily used to read mes-
sages sent from user players in order to perform some operation
on the game lobby.

index.js : attach a player to all other attachments contained
within this directory.

host.js : attach events to a player allowing them to perform
host operations.

player.js : attach events to a player allowing them to direct
their player.

operations/ : directory containing a collection of handy operations
that are applied to the game state.

collision.js : operations used for the purpose of collision detec-
tion, including a function used to create the rectangle objects
representing a line-segment composing player trails.

general.js : general-purpose operations, including those to ini-
tialise the game state and rebuild the state cache.

player.js : operations relating to the game state players, includ-
ing their creation, removal, and safe repositioning.

update/ : directory containing the various tasks performed during
each tick of our game loop.

CHAPTER 4. IMPLEMENTATION 33

index.js : entry point to our game loop tick updates. At the
end, this will also check if the current game round has reached
termination.

collision.js : apply collision detection against our game state
(see subsection 3.4.1: Collision Detection (Page: 17)).

move.js : move all alive players by the appropriate distance.

utils/ : directory containing utility functionality that our game re-
quires.

geometry.js : contains some geometry functions used through-
out our game, particularly by our collision detection.

spawn.js : calculates the spawn position for a particular player
within the game instance.

collision/ : directory containing the data-structures utilised by
our collision detection.

grid.js : implementation of a uniform grid.

object.js : standard object interface used by collision data-
structures.

quadtree.js : implementation of a quadtree.

state/ : directory containing the shared-scope Redux functionality that
powers the state of our application (see subsection 3.2.2: Core
Technologies (Page: 10)).

index.js : sets up the shared root Redux reducer and root Redux
Saga (see section 4.2.8: Redux (Page: 40)).

con�gureStore.js : set-up or Redux store to integrate with React
Universally and its development work�ow.

input/ : directory containing the Redux functionality enabling a by
the user in order to control their player.

host/ : directory containing the Redux functionality usable by
the host user to con�gure the game lobby.

actions.js : actions which are emitted to the store in order
for the user to perform host operations.

player/ : directory containing the Redux functionality usable
by the user in order to control their player.

actions.js : actions which are emitted to the store in order
for the user to perform operations regarding their player.

lobby/ : directory containing Redux functionality enabling the user
to communicate with their game lobby.

CHAPTER 4. IMPLEMENTATION 34

actions.js : actions relating to the user and their relationship
with the game lobby.

reducers.js : reducers relating to the user and their relationship
with the game lobby.

utils/ : utility functions provided by React Universally.

4.2 Notable Challenges

4.2.1 Game Loop

Constructing the game loop is a seemingly simple task. In essence, it is a callback
that some timer would make a call to at some �xed interval equal to our tick-
rate. However, there were a number of quirks related to JavaScript's standard
API which made this task not as straightforward as initially expected.

On the client, we are able to use JavaScript's window.requestAnimationFrame()
(Mozilla Developer Network and individual contributors, 2017b) function. This is
called whenever the canvas is preparing to draw the next frame, giving us the
opportunity to update the game state - basically hijacking the internal loop used
within the browser. This technique worked during the early stages of development,
but when we sought to run the game on the browser; it soon became apparent that
obviously this function wouldn't exist in a Node.js environment. So, a separate
solution needed to be realised.

Research turned in the direction of JavaScript's standard built-in timer, set-
Timeout() (Mozilla Developer Network and individual contributors, 2017a). How-
ever, after some short tests, said timer was concluded to be improper for the task
as it did not tick with su�ciently reliable accuracy - often too late by many milli-
seconds. However, there existed an alternative function, setImmediate() (Mozilla
Developer Network and individual contributors, 2017c).

Sadly, this function occupied a high amount of system resources due to it ticking
at an incredibly high, and uncontrollable frequency. This resulted with us having
to internally disregard calls if a tick was not scheduled.

Thankfully, after extensive research online, it was discovered that this problem
has been tackled by others. A proposed solution (timetocode, 2017) was suggested
that recommends to use setTimeout() as the primary timer function then, when
we enter the window of potential error, switch to setImmediate() providing us with
a far greater accuracy. This seemed to work very well!

CHAPTER 4. IMPLEMENTATION 35

4.2.2 Head-on Player Collisions

Within the game loop, during the update process of single tick, we �rst move each
and every alive player. Afterwards, we perform a series of checks to identify which
players have crashed. Once all players have been checked, we process said newly
crashed players by o�cially killing them - which mercifully only entails switching
their alive �ag to false and reposition them to their theoretical position at the
exact moment of impact.

However, once we began testing, a bug was discovered that players would be
repositioned to seemingly incorrect locations after a collision. After further in-
vestigation, it was clear that this unexpected behaviour only occurred in the case
where two players would collide in a head-on collision, that is they were travelling
in opposing directions and met one-another.

After further thinking with regards to the problem, a solution was devised that
modi�ed the way in which players were repositioned. Instead, we would backtrack
a player by an amount calculated by half the sum of the overshoot and overlap of
the two colliding players. However, this was only necessary for the case in which a
head-on collision had occurred. For more information, please see item 2: Collision
Detection (Page: 19)

4.2.3 Mutability

Initially, the game's state was developed to be an immutable object; where all
functions made no changes to the given game state, but instead returned an entirely
new object with the desired changes applied. This helps to reduce obscure bugs
and makes the code far easier to test - especially for unit tests.

However, it also required performing a deep copy of the game state prior to any
single change to be made. This is an extremely costly operation to be performing
within a game loop, specially when it would have to be performed several times
per tick. Realising this wasn't viable, the application was modi�ed to internally
use a mutable game state and to manually copy it where need be (e.g. for lag
compensation, see section 3.5: Network Communication (Page: 21)).

Irritatingly, this caused some di�cult to trace bugs. One of the most notable of
these was related to copying the game state and collision data-structure within our
game state's cache. In short, each object within the collision data-structure keeps
a reference to the player which created it. When we then copied the game state,
the stored objects did not have their player references updated to match those
of the newly created player objects themselves. This resulted in faulty collision
detection, related to the workings of our lag compensation. However, the bugs
have since been �xed.

CHAPTER 4. IMPLEMENTATION 36

4.2.4 Collision Data Structures

In the early stages of the game's development, we would check every object within
the arena when searching for collisions. Although this method worked well, and
didn't result in any noticeable lag, further research into game development revealed
how commonplace spatial data-structures were. This highlighted that our current
collision detection mechanic was an urgent area for plausible improvement.

Progress on the game soon advanced and the use of the hierarchical structure
of a quad-tree was implemented and integrated into our game's collision detection,
to help reduce the total search space when checking for collisions. This did show
some considerable performance gain. However, after playing the game, it became
apparent that trail line-segments were almost always intercepting multiple nodes
- making the need for a hierarchical data-structure somewhat meaningless.

Hence, a uniform grid was instead implemented and integrated to help optim-
ised our game's collision detection. A uniform grid also has the perk of being far
easier to deal-with and works well for the case of Tron.

Also, to aid in both the creation and debugging of these two spatial data-
structures, the game features a special debug mode which would visualise the
bounds for each node onto the game arena in the form of a semi-transparent
overlay.

4.2.5 AI Simulations

As per our design, the game's computer players were powered by an arti�cial intel-
ligence that ran simulations using a variant of the minimax algorithm (Wikipedia,
the Free Encyclopedia, 2017c) that featured alpha-beta pruning (Wikipedia, the
Free Encyclopedia, 2017a) to avoid looking down unnecessary branches of the game
tree; improving performance.

However, it was taking far too much time in order for the AI to calculate a
suitable move. By the time the AI had calculated a move, the game state would've
signi�cantly progress; making their move now redundant - often leading to their
undesired death.

There existed two clear ways in which this performance issue could be tackled.
We could either restrict the breadth of our game-tree search, or restrict the depth.
Restricting the depth of our AI's game-tree search exponentially reduced its abil-
ity to make educated moves - it performed extremely poorly. On the other hand,
restricting the breadth of our game-tree search was highly dependent on the situ-
ation the AI player is current in; as many of the possible early moves are never
simulated.

This inspired the idea to migrate to using the Monte Carlo tree search al-
gorithm, as discussed in section 3.6: Arti�cial Intelligence (Page: 22). This al-

CHAPTER 4. IMPLEMENTATION 37

lowed our AI to only explore branches of the game-tree that seemed promising;
ignoring those branches that almost always led to poor outcomes.

4.2.6 AI Concurrency

In the early iterations of the game's arti�cial intelligence, the move for a computer
controller player would prepare to calculate their next move of a tick; limiting
the duration of the entire simulation process to at the most <16 milliseconds.
However, it soon became very apparent that this was an inadequate amount of
time.

This provoked research into the possibility of running our arti�cial intelligence
concurrently with the rest of the game, allowing simulation to take any pre-de�ned
amount of time. Irritatingly, as developing the arti�cial intelligence was the �nal
stage of the game's development, I then discovered that Node.js is strictly a single-
threaded environment. This was an absolutely devastating discovery...

Thankfully, after an extortionate amount of research, Node's child_process
module (Node.js Foundation, 2017a) was discovered and successfully integrated
into our game sever. This was the cause for a lot of hassle, especially in regards
to integration the build work�ow provided by React Universally.

In short, this Node module allows us to create a fork of an entirely new, and
separate Node process capable of communicating with our main process. Not only
did this allow us to execute our arti�cial intelligence's simulations without blocking
our game loop, but it also reduced the time in which we kept our Node event loop
occupied. It is critical for our Node event loop to not be used for computationally
demanding tasks, as they prevent our server from processing time-sensitive requests
such as processing actual user-input or even serving up the application's static �les.

Despite this, it still seemed as though our arti�cial intelligence was preventing
our event loop from spinning fast enough. After extensive debugging, it was de-
termined that the cause for this delay was due to the fact lag compensation was
being applied after we had received the suggested move from our arti�cial intelli-
gence. This greatly hindered the game's experience, as it made game-play sluggish
and inaccurate; obviously this type of behaviour was unacceptable.

This spawned a large-scale redesign regarding how the game lobby class dealt
with the game state. Previously, the lobby, and therefore the main thread, would
not only be responsible for running our tick updates to the state, but also for
applying the sequence of updates required during lag compensation. However, the
greater amount of time we have to compensate for equals a greater amount of time
it takes to perform the compensation. This caused our Node event loop to get
severely, and frequently held-up.

The problem was solved thanks to the development of our StateController
class. Each game lobby instance would, within its constructor, instantiate a new

CHAPTER 4. IMPLEMENTATION 38

instance of this StateController class. Within this StateController instance
would live a separate process that was solely dedicated to applying individual
updates to the game state. For a more in-depth description, see subsection 3.5.1:
Game Lobbies and Concurrency (Page: 21).

4.2.7 AI Timing

Many aspects of the application rely upon the use of concurrency. Concurrency
holds many bene�ts, particularly when it comes to performance. Irritatingly, it
massively complicates aspects reliant on determinism. This became particularly
evident when implementing the game's arti�cial intelligence. The arti�cial intel-
ligence is to operate alongside concurrent tasks, such as updating the game state
(see subsection 3.5.1: Game Lobbies and Concurrency (Page: 21)) and for even
running the AI simulations (see subsection 4.2.6: AI Concurrency (Page: 37)).

CHAPTER 4. IMPLEMENTATION 39

Figure 4.1 � Diagram depicting a `close-call' situation gone wrong

for an arti�cial intelligence controlled player (red) against a human

controlled player (green).

CHAPTER 4. IMPLEMENTATION 40

However, our arti�cial intelligence was previously designed to run simulations
under the assumption it had full control over the exact time in which moves could
be played. The AI would spend a �xed amount of time running simulations centred
around a turn-based model of our implemented game. Once all players had taken
their respective turns, the game state would be updated, using a progress time
equal to the minimum time required before changing move, leading to our simula-
tions converging on strategies which could never be carried out. This is because the
strategies depended on future moves being played at speci�c times, these times did
not coincide with the �xed amount of time allocated to running the simulations.
The solution to this issue was quite simple, the simulation's state update would
use a time progression equal to the duration of the previous AI move calculation.
This would give some indication as to when our AI would play their next move.
Although not a perfect solution, manipulating the time-progression between state
updates, did alleviate much of the negative impact.

4.2.8 Technology Integration

Some of the most prevalent issues faced were those indirectly related to the project.
Speci�cally the issues that came about due to the discretional use of third-party
libraries, and other technologies.

Redux

Redux did a pretty superb job in handling our view's state. It kept our client's view
layer re�ecting the current game state (see subsection 3.2.2: Core Technologies
(Page: 10)). It even played a critical role in many of the tasks occuring behind the
scenes, that is those not directly related to our game's state. Despite its successful
integration into our application, it was the spawn of many challenges.

For example, Redux is not natively equipped to deal with asynchronous events;
such as communicating with the server, or detecting user keyboard input. Fortu-
nately, there exist many additional libraries which tackle this problem. One of the
asynchronous libraries is Redux Saga (redux-saga, 2017).

Redux Saga is a middleware that can be attached to Redux. It is used in con-
junction with the new JavaScript generators, to make dealing with asynchronous
code in a React/Redux application easier and more natural to work with. The use
of generators play as an alternative to callbacks, which can quickly grow to become
out-of-hand. In principle, it builds upon the saga pattern (Hector Garcia-Molina,
2017).

For most jobs, Redux Saga is quite simple to use. However, integrating Redux
Saga with WebSockets proved to be quite complicated - especially with regards to
the use of JavaScript generators.

CHAPTER 4. IMPLEMENTATION 41

Our implemented solution begins by �rst immediately requesting then estab-
lishing a WebSocket connection with the server, and proceeds to maintain said
connection. A saga is then set-up and tasked to constantly listen out for messages
from the server, and upon receiving a message will spit out the appropriate Redux
action containing the payload. A write saga is also set-up which listens for actions
emitted to the store from the client. Once an action is received, it is appropriately
packaged into a payload and shot o� to the server using the maintained WebSocket
connection. This WebSocket/Redux Saga adapter works very well, and is written
in a generic manner, decoupled from the rest of the application, in order for it be
feasibly integrated into other projects.

Node.js Child Process

Both the networking and arti�cial intelligence aspects of our application rely heav-
ily on the use of Node.js's child process module. This allows us to delegate compu-
tationally expensive tasks to be computed concurrently within a separate process.
However, as threading is not supported, we are unable to share memory between
any two processes. As an alternative, we were able to serialise our game state
and communicate that to our separate process. This was the cause of a serious
issue. During development our application was experiencing some odd unexpected
behaviour - input seemed sluggish at times. After some rigorous benchmarking,
it was discovered that the time required to serialise, and communicate our game
state to a separate process was dangerously greater than the time spent on the
task inside the process. In fact, it would often take longer than several ticks to
apply a single update to the game state.

After extensive debugging, a pattern emerged in that as the elapsed time of a
single game of Tron grew, the communication delay when messaging our separate
process also grew. After some more analysis, communicating the game state's
cache was identi�ed as being the primary cause of this extra delay. This was due
to the serialised representation of our cache occupied too much memory. Although
not a perfect solution, our application now disregards game state cache when
communicating with a separate process. On the receiving side of communication,
the cache is e�ciently rebuilt using data from the remainder of the game state.
This solution produced wonderful results.

Chapter 5

Results and Evaluation

It is now time to evaluate our implemented application by performing a critical
analysis to help determine the extent of our application's ful�lment to the initial
project goals. This shall be done by performing a series of both objective and
subjective tests aiming to expose its strengths and weaknesses. All experiments
are performed on machine with an Intel Core i7 3770K CPU (3.5 GHz) and 16GB
RAM (1600 Mhz).

Figure 5.1 � Screen capture of the implemented application,

demonstrating the game within a web-browser.

42

CHAPTER 5. RESULTS AND EVALUATION 43

Figure 5.2 � Screen capture of the implemented application,

demonstrating the game's welcome screen.

CHAPTER 5. RESULTS AND EVALUATION 44

Figure 5.3 � Screen capture of the implemented application,

demonstrating the game in progress.

5.1 Unit Tests

Unit testing is arguably the most reliable software development technique for the
purposes of scrutinizing an application in order to prove its operational correctness.
A unit is the smallest testable part of an application, such as an individual function.
A unit test is a short code fragment intended to test a single unit of an application.

During the development process, an application will evolve as modi�cations
are introduced. This is normal behaviour, although the process has a habit of
leaving behind bugs. Having a complete suite of unit tests enable the developer to
automatically identify bugs and ensure that their code retains its previous validity.
Unit tests can be implemented in a number of ways. As the meat of our application
is programmed in JavaScript, we will be using Jest (Facebook Inc., 2017b) - one of
the many available JavaScript testing solutions. Jest also o�ers specialised support
for React via snapshot testing. Various modules within our application contain
unit tests in a subdirectory named `__tests__'. These tests have been developed
according to both the black-box and white-box testing methods, to best guarantee

CHAPTER 5. RESULTS AND EVALUATION 45

the completeness of our application.1

PASS shared\game\utils\collision__tests__\quadtree.test.js

PASS shared\game\utils__tests__\spawn.test.js

PASS shared\game\operations__tests__\general.test.js

PASS shared\game\operations__tests__\player.test.js

PASS shared\game\utils\collision__tests__\grid.test.js

PASS shared\components\App\Error404__tests__\Error404.test.js

Test Suites: 6 passed, 6 total

Tests: 24 passed, 24 total

Snapshots: 1 passed, 1 total

Time: 8.126s, estimated 13s

Ran all test suites.

Done in 11.14s.

Figure 5.4 � Capture of the console output produced from executing

our Jest unit tests.

As seen from Figure 5.4, we have unit tests covering several modules of our
application. Should a new bug be discovered within one of these modules, a new
test would be created capable of detecting said bug. For information regarding
what is actually being tested, we encourage the reader to refer to the JavaScript
test �le's source-code; they are well documented.

5.2 Game Performance

The game has been developed up to a playable state, yet there is still interest
in seeing just how much is capable before it begins to breakdown. To gain a
stronger understanding of just what our game is capable of, we conduct experi-
ments measuring the performance impact caused by various game mechanics. For
each of these experiments, the goal is to derive a sensible evaluation based upon
an accumulation of quanti�able data.2

1Due to the time-sensitive nature of the project, the currently implemented unit tests do not
yet have 100% coverage of our application.

2A separate Git branch was created for the purposes of recording benchmark data. It can be
found on our GitHub repository (see section 3.1: Software Development Process (Page: 7)).

CHAPTER 5. RESULTS AND EVALUATION 46

5.2.1 Tick Update Performance

The game loop is responsible for drawing the graphics and, more importantly,
updating the game state. It is absolutely critical that the update function's call
duration does not exceed the duration of its associated tick. If this were the case,
our game's tick-rate would begin to fall - leading to undesired game behaviour.
Hence we perform a series of experiments measuring the implemented update func-
tion's execution duration under various scenarios. These scenarios will vary by two
controllable factors: the total number of connected players3, and the elapsed time
since the beginning of the game round. Each experiment scenario is repeated �ve
times to help mitigate erroneous results.4

−100 0 100 200 300 400 500 600 700 800 900 1,000 1,100

0.4

0.6

0.8

1

1.2

1.4

1.6

Elapsed Round Time (milliseconds)

U
p
d
a
te

D
u
ra
ti
o
n
(m

il
li
se
co
n
d
s)

Tick Update Performance

1 player
2 players
4 players
8 players
12 players
16 players

Figure 5.5 � A graph depicting the impact to the performance of

our game's tick updates with relation to the number of total con-

nected players and the elapsed round time.

As can be seen in Figure 5.5, the results indicate there is de�nitely a signi�c-
ant correlation between our game's performance and the two examined factors. It
can be seen that an increase to either factor will result in our game state update
duration being prolonged. Not only this, but performance is subject to the com-

3All connected players, besides the host player, are computer players controlled by arti�cial
intelligence. This means our results better resemble those of worst-case performance.

4For a full log detailing the exact results gathered from the experiment, refer to Table 8.1
(Page: 59).

CHAPTER 5. RESULTS AND EVALUATION 47

bination of either factor. The reasoning for this is quite simple, and our collision
detection is the primary cause: in general, our collision detection is required to
perform more extensive searches if our game arena consists of a greater number
of objects. Furthermore, as the round naturally progresses in time, each player
will be travelling around the game arena; contributing additional objects. Hence,
round progression produces objects proportionally to the number of alive players;
further burdening the task of collision detection. However with this being said,
even in the worst case, our game state updates occur at an extremely fast rate
- well within the required bounds of once every 15 milliseconds (see section 3.4:
Game Mechanics (Page: 14)).

5.3 Capability of Arti�cial Intelligence

Each computer player determines their move using an arti�cial intelligence, powered
by the culmination of various techniques. The goal of which is to mimic the beha-
viour of a human controlled player, giving the competing human user(s) a realistic
game experience. This happens to be quite a di�cult requirement to test, due to
the subjectiveness of what can be considered `human behaviour' (for a relevant
subjective experiment, see section 5.4). Despite this, we can obtain empirically
quanti�able data by running a series of experiments, recording the win-percentage
gathered from pitching our implemented AI against a human controlled player.
Ideally, we would like the AI player to perform equally to the human user, i.e. a
50/50 win-ratio. However, the results are subject to the skill-level of the compet-
ing human user. This is not something that we can easily regulate, so we assume
our chosen human user is of an average skill-level. To get a broad understanding,
we shall be performing the experiment under several di�erent scenarios, varying
the game by certain factors. These factors include the game arena size and player
movement speed. We shall capture the total simulation count at the start of each
round, then select the median result from �ve repeats to help mitigate erroneous
results.

Table 5.1 � Table of results stating the outcome of the many games

in which an arti�cial intelligence controlled player would compete

against a human controlled player.

Player Speed Arena Size AI Wins

0.01 16 4/5
0.025 16 4/5
0.05 16 5/5

Continued on next page. . .

CHAPTER 5. RESULTS AND EVALUATION 48

. . . Table 5.1 continued from previous page

Player Speed Arena Size AI Wins

0.075 16 4/5
0.01 32 3/5
0.025 32 5/5
0.05 32 5/5
0.075 32 3/5
0.01 64 2/5
0.025 64 1/5
0.05 64 3/5
0.075 64 3/5
0.01 128 0/5
0.025 128 1/5
0.05 128 1/5
0.075 128 3/5

Concluded

As can be seen in Table 5.1, the computer player performs somewhat respect-
ably in comparison to a human user. From observing the experiments, the arti�cial
intelligence would often begin with reasonable strategy, but then occasionally de-
cide to play a move that was not so favourable. This was especially a problem in
the larger arena sizes, once the two competing players had become disconnected
from one-another. Once the two players would separate, the human controlled
player was able to simply wait for the computer player to make a mistake. Hence,
the AI performed particularly well when the arena size was smaller, due to the
generally shorter game duration. The computer player thrived at faster speeds,
as the human player was unable to react expeditiously. However, a combination
of the tested fastest speed and smallest arena size, made the game feel somewhat
random - as both players were unable to make strategic moves. To better under-
stand where improvements could be made, analysis was performed regarding the
performance of our simulations. This prompted investigation into how the total
simulation count was a�ected by the size of the game arena.

CHAPTER 5. RESULTS AND EVALUATION 49

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

20

40

60

80

100

120

140

Arena Size

T
o
ta
l
S
im

u
la
ti
o
n
C
o
u
n
t

Total Simulation Count with Varied Arena Size

Figure 5.6 � A graph depicting how the game arena size impacts

the total number of simulations performed by our arti�cial intelli-

gence when calculating a single move.

As expected (see Figure 5.6)5, the total simulation count is considerably greater
for arenas of a relatively smaller size. This indicates something within our simula-
tion task was hindering performance. However, expanding from what was shown in
subsection 5.2.1: Tick Update Performance (Page: 46), it was suspected that game
update function was not to blame, but instead the heuristic evaluation function.
This suspicion was proven correct by dramatically increasing the simulation depth
and measuring how it a�ected the total number of simulations (see Figure 5.7)6.
This experiment will be performed with two players, one controlled by a human
and the other by our arti�cial intelligence. We shall record the median value of
�ve initial computer moves, made on an arena size of 32. If the total number of
simulations sparsely changed, we would know that our heuristic evaluation func-
tion was to blame; as it ran only at the end of a simulation - una�ected by depth.
This loss of performance would prevent the proper construction of belief regarding
the game tree, leading to the move being decided upon despite not having fully
explored the consequences.

5For a full log detailing the exact results gathered from the simulation count experiment, refer
to Table 8.2 (Page: 63).

6For a full log detailing the exact results gathered from the simulation depth experiment, refer
to Table 8.3 (Page: 64).

CHAPTER 5. RESULTS AND EVALUATION 50

0 5 10 15 20 25 30 35

80

100

120

140

160

180

Simulation Depth

T
o
ta
l
S
im

u
la
ti
o
n
C
o
u
n
t

Total Simulation Count with Varied Depth

Figure 5.7 � A graph depicting how the individual simulation

depths impacts the total number of simulations performed by our

arti�cial intelligence when calculating a single move.

Another fault of our arti�cial intelligence is regarding timing. The simulation
tree would often try to play optimally, for example by redirecting at the very last
instant. This is caused by the simulation believing it has control over the next
move. Sadly, this is not the case due to the non-deterministic nature involved for
the concurrent aspects of our application. Despite e�orts made to remedy this (see
subsection 4.2.7: AI Timing (Page: 38)), the issue still persists - although not to
its previous extent.

The arti�cial intelligence also has no explicit means to prevent itself from block-
ing o� `owned' areas of the game arena. This results in the computer player often
making moves that will worsen their total potential lifespan. The issue has been
tackled by others (see section 2.4: Arti�cial Intelligence (Page: 5)). but was never
included in our implementation.

As discussed in subsection 4.2.6: AI Concurrency (Page: 37), our arti�cial
intelligence calculates moves in a process separate to that running the main ap-
plication. This functionality works quite well for a game consisting of only several
computer players, but begins to fall down when a larger quantity of computer
players are introduced. In part, this is due to each computer player being assigned
their own process to calculate moves; an architecture which does not scale well,
due to the executing computer only have a limited number of cores.

CHAPTER 5. RESULTS AND EVALUATION 51

5.4 User Feedback

The implemented game could be objectively perfect, however if users believe that
the project fails to hold promise, then our project's investigated ambition would
conclude as a failure - indicating the designed techniques fail to perform su�ciently.
Therefore, it is worthwhile to collect a sample of user opinions, enabling us to form
a concrete understanding of where our application stands. Hence, we introduce
�ve users to play a few games, then document their opinions by having them
participate in a short survey, as described in Figure 5.8.

Please respond to the below questions on a scale from 1-10 (where 1 is strongly
disagree, and 10 is strongly agree):

1. The graphics of the game appear to run smoothly.

2. The game's user interface is functional, with near unnoticeable loading
times.

3. Movement around the game arena seemed su�ciently accurate, in re-
sponse to my input.

4. The multiplayer functionality felt responsive, with little indication of
latency.

5. The computer controller player works well; challenging, but not im-
possible to beat.

6. The foundational mechanics of the game hold promise, and could produce
a good game with a little more polish.

Figure 5.8 � A series of questions to be surveyed to test par-

ticipants.

For the most part, user feedback (see Table 8.4 (Page: 64)) indicates that the
game is somewhat a success. Although this is pleasing, it fails to highlight the
weak-points of our application.

Chapter 6

Future Work

The project has demonstrated that native web-browsers are a suitable platform
for video-game development. This was done by designing and implementing Tron,
using a variety of popular game-design techniques. For the most part, the project
has been success, although, as with anything, there are de�nitely areas for im-
provement. Throughout the remainder of this chapter, we shall elaborate on some
potential future work that could be undertaken. This will also give the reader a
more concise understanding of what the project lacks.

6.1 Deployment

There are big di�erences between developing an application and developing an
application as a usable product. In particular, deploying a web-application, as a
product intended for general users, can require huge amounts of work in design-
ing deployment infrastructure and implementing the necessary software tweaks to
accommodate this `general' user-base. As it stands, the focus of the project has
been on constructing the foundations of Tron, so factors related to wide-scale de-
ployment have not received much attention. Hence, if stability is of any concern,
it is not currently suitable for our implementation to be publicly deployed on the
internet.

6.1.1 Security

Breaches in security are an extremely grave threat to any application that is pub-
licly accessible. It is of the utmost importance that serious consideration be in-
vested into deterring users whom bare malicious intent. With that said, we make
critical note identifying that, as of current, the implemented application lacks
adequate security measures. In particular, user input has not been extensively

52

CHAPTER 6. FUTURE WORK 53

sanitised and there is likely to exists potential bugs, which could be triggered by
malicious users.

6.1.2 Large-scale performance

Although the implemented application is capable of an arbitrary number of game
lobbies, and connected players, it will most inevitably result in a hindrance to
performance. Great attention has gone into designing a concurrent architecture.
The ambition of which is to enable the possibility of deployment utilising a cluster
of machines; to distribute the load of our computationally expensive tasks.

6.2 Arti�cial Intelligence

The implemented arti�cial intelligence can occasionally outperform human players,
but unfortunately it is subject to some rather unusual behaviour (see section 5.3:
Capability of Arti�cial Intelligence (Page: 47)). There do exist more advance
arti�cial intelligences for the game of Tron, but their integration would likely
result in a computer player that is neigh impossible to beat. Furthermore, one key
area for future work is regarding the question as to how we can remedy the timing
inaccuracies related to our arti�cial intelligence.

6.3 Gameplay

As we have repeatedly stated, the focus of this project has been on designing and
implementing an application which demonstrates the foundational functionality
required for multiplayer video-game development. This leaves a lot of room for
the addition of feature related purely to entertaining gameplay. To accommod-
ate this, much e�ort was devoted in constructing an implementation that is both
�exible and extendible, so future developers can more feasibly implement modi�c-
ations. It is once again worth noting that the front-end, being built with React, is
decoupled into components that can be extended upon without too much hassle.
Also, the game mechanics maintain an individual high-cohesion; reducing reliance
on a particular architecture or technique.

Chapter 7

Conclusions

The project has now come to an end, giving us the chance to round o� and conclude
our �ndings. This chapter will provide the reader with a summary, and brief
elaboration, on what has been accomplished, including both the successes and
failures. We shall begin with a general overview of the project, before delving into
some of the more speci�c aspects.

To begin with, the most prevalent blunder was deciding to base the game
on free movement, as opposed to cell-based movement. This proved to be quite
an inconvenience, complicating a range of tasks, without o�ering all that much
bene�t to the user experience; due to the visual di�erence being near indistin-
guishable. However, many of these inconveniences were overcome and the project
now demonstrates a higher level of capability.

7.1 Networking

Since the conception of the project, the game has been designed according to
the client/server network architecture model (see subsection 3.2.1: Architecture
Overview (Page: 10)). This has suited the project quite nicely, especially with the
additional techniques used to reduce latency (see section 3.5: Network Communication
(Page: 20)). Players are able to interact with each-other in real-time, with min-
imal perceptible latency. This is primarily due to lag-compensation and client-side
prediction. However, occasionally client-side prediction will result in �ashes, indic-
ating an inconsistency between the client's predicted state and that communicated
by the authoritative server. In particular, this occurs for a client when another
player redirects themselves moments before collision - causing their trail to �ash
red, as their death was incorrectly predicted. This could either be manipulated to
be a feature (possibly change to orange during prediction, then red once death is
con�rmed by the server) or make the client prediction only predict player move-

54

CHAPTER 7. CONCLUSIONS 55

ment, not collisions.
A large amount of time was also invested in enabling the game to support

an arbitrary number of game lobbies. The functionality does exist and works as
one would expect. However, it simply does not scale very well. Despite many
e�orts, such as those related to concurrency (see subsection 3.5.1: Game Lobbies
and Concurrency (Page: 21)), a single dedicated game server is only capable of
feasibly running just a few game instances, and is dramatically hindered by high-
numbers of computer players - due to their arti�cial intelligence. Quite early on
during development, this issue started to get recognised as a potential problem
that may later arise. In fact, signi�cant e�orts were made to prepare for an ad-
justment regarding the network architecture. In particular, it was conceptualised
that the dedicated server would pick the most-capable connected player in a lobby
to play the role of the game server, perhaps cycling through the players as an
anti-cheat measure. This alternative strategy would dramatically reduce load on
our dedicated server, as it would then only be responsible for establishing the con-
nection between players in the same lobby. To reduce the amount of work required
in transitioning to the aforementioned strategy, specialised software-development
techniques, such as dependency injection, have been utilised throughout the game's
networking functionality, to ensure minimal coupling to Node.js.

Despite this, a complete transition was not viable due to numerous setbacks.
The main setback faced, was that regarding the fact Web-Sockets is not capable
of browser-to-browser communication. This leaves open two potential solutions:
proxy messages through the dedicated server, or, more favourably, convert the
communication medium to WebRTC. However, time did not permit the ability to
undertake either solutions, without impeding other aspects of the project.

7.2 Arti�cial Intelligence

The game features a computer controller player that determines their move based
upon some arti�cial intelligence techniques. These techniques centre around the
idea of running simulations, exploring the various scenarios derived from the cur-
rent game state.

Arti�cial intelligence based upon simulation is scarcely utilised when perform-
ance is of a critical concern. This is primarily due to the large computational ex-
pense involved with running simulations, as they are of a `trial-and-error' nature.
Alternatively, a more ideal solution would analyse only the current game state to
determine a move. Despite this, many of existing Tron AI solutions saw great
success from utilising game tree simulations; indicating that it was indeed a viable
direction. In practice, our implemented arti�cial intelligence performs quite well,
and can even be considered a strong contender against human users. Regardless of

CHAPTER 7. CONCLUSIONS 56

this, the goal was to create an AI which mimicked human strategy and behaviour;
as opposed to being of an incredibly high skill-level. Hence, it is in this regard we
must state that the implemented arti�cial intelligence does not perform entirely
as desired. In particular, it would occasionally play bizarre moves in which the
strong move is easily identi�able by even a novice human player. Con�ictingly, the
arti�cial intelligence also su�ered issues regarding the timing of moves. However,
this is not strictly a bad thing as it also happens to be a trait of human users.

In conclusion, the arti�cial intelligence that has been implemented does suit our
particular use-case quite well, that is the realistic playing of Tron. But questions
are raised regarding a simulation based AI being suitable for more complex video-
games, where performance and accuracy are of a critical concern.

Chapter 8

Re�ections on Learning

When working on a new project, it is expected there will be times of confusion
and challenge. These moments are often demoralizing, and can impede in one's
motivation to work. Ironically, they are also the times in which learning occurs.
For something to be worth doing, it must hold some reward. One of the most
valuable rewards, especially to a beginner, is the attainment of new skills. Hence,
for a project to be worthwhile, it must bear many challenges. This idea is especially
prevalent in software development. Almost every project will expose the developer
to new ideas. Often these ideas are expressed through the use of a new library or
design pattern. However, the developer will also acquire skills that are inexplicit
in nature. These skills are often called `meta-skills', referring to the cognitive
strategies that an individual applies to the processing of new information. They
are often equated to experience, and impact the way we approach future projects.
Throughout this chapter, we re�ect upon our approach to this project, scrutinizing
the assumptions that we made. We do this to help better develop our ability as
an individual to learn, and tackle challenges that we may later face.

The realisation that the project exists purely as a learning exercise did, undeni-
ably, encourage the selection of certain decisions. Although some of these decisions
may not have been entirely suitable for a commercially motivated project, they
did provide a wealth of new skills. One decision, in particular, was in regards to
the somewhat excessive use of third-party libraries and techniques. Many of such
were employed with little purpose other-than to understand their promoted ideas
and intricacies; that are frequently appreciated for being well-designed. However,
the decision did introduce the concept of `technical debt'. This resulted from the
plethora of issues solely related to the arguably unnecessary intricacies we had
subjected ourselves to. Unfortunately, this snatched time away from the core as-
pects of the project. Admitting that this was an entirely bad decision, would not
be entirely true.

Another mistake made was the lazy assumption that techniques utilised by

57

CHAPTER 8. REFLECTIONS ON LEARNING 58

similar projects would transfer well onto our own. Not only did this turn out
not to be the case, but resulted in greater amounts of work due to the inevitable
transition to a more suitable technique. If more time was spent researching and
testing a particular technique, we would have most probably saved time overall.

Despite their hindrance to the �nal state of our project, it is not entirely
unfortunate that these mistakes occurred. They unlocked the opportunity for
us to recognise them, understand them, and to build on them going forward. The
experiences they taught are an invaluable asset, transferable to many aspects in
life, and will evolve our mindset going forward with future endeavours.

CHAPTER 8. REFLECTIONS ON LEARNING 59

Glossary

Table of Abbreviations

Appendices

Below we list various materials that have been referenced throughout, but imprac-
tical to include within the text:

Table 8.1 � Table of results following the experiment described in

subsection 5.2.1: Tick Update Performance (Page: 46).

Players Elapsed Round Time Update Duration

1 0 0.421
1 0 0.489
1 0 0.378
1 0 0.332
1 0 0.373
2 0 0.464
2 0 0.456
2 0 0.465
2 0 0.609
2 0 0.41
4 0 0.439
4 0 0.584
4 0 0.484
4 0 0.461
4 0 0.752
8 0 0.552
8 0 0.69
8 0 0.698
8 0 0.608
8 0 0.512
12 0 0.607
12 0 0.623
12 0 0.729
12 0 0.604
12 0 0.621
16 0 0.934

Continued on next page. . .

CHAPTER 8. REFLECTIONS ON LEARNING 60

. . . Table 8.1 continued from previous page

Players Elapsed Round Time Update Duration

16 0 0.697
16 0 0.948
16 0 0.77
16 0 0.719
1 250 0.422
1 250 0.507
1 250 0.373
1 250 0.442
1 250 0.39
2 250 0.497
2 250 0.485
2 250 0.575
2 250 0.501
2 250 0.497
4 250 0.926
4 250 1.066
4 250 1.002
4 250 0.643
4 250 0.909
8 250 0.787
8 250 0.742
8 250 0.765
8 250 0.983
8 250 0.845
12 250 1.449
12 250 0.82
12 250 0.91
12 250 1.219
12 250 1.116
16 250 0.889
16 250 1.019
16 250 1.409
16 250 1.474
16 250 1.061
1 500 0.424
1 500 0.478

Continued on next page. . .

CHAPTER 8. REFLECTIONS ON LEARNING 61

. . . Table 8.1 continued from previous page

Players Elapsed Round Time Update Duration

1 500 0.405
1 500 0.434
1 500 0.424
2 500 0.542
2 500 0.429
2 500 0.473
2 500 0.535
2 500 0.588
4 500 0.593
4 500 0.609
4 500 0.627
4 500 0.464
4 500 0.517
8 500 0.595
8 500 0.728
8 500 0.785
8 500 0.819
8 500 1.103
12 500 1.06
12 500 0.884
12 500 0.856
12 500 1.147
12 500 1.065
16 500 1.269
16 500 1.178
16 500 1.265
16 500 1.014
16 500 1.183
1 750 0.422
1 750 0.428
1 750 0.665
1 750 0.564
1 750 0.485
2 750 0.44
2 750 0.472
2 750 0.503

Continued on next page. . .

CHAPTER 8. REFLECTIONS ON LEARNING 62

. . . Table 8.1 continued from previous page

Players Elapsed Round Time Update Duration

2 750 0.417
2 750 0.464
4 750 0.547
4 750 0.397
4 750 0.565
4 750 0.504
4 750 0.42
8 750 0.775
8 750 0.748
8 750 0.765
8 750 1.108
8 750 0.792
12 750 1.435
12 750 1.344
12 750 1.133
12 750 1.11
12 750 1.01
16 750 1.396
16 750 2.763
16 750 1.171
16 750 1.266
16 750 1.188
1 1000 0.444
1 1000 0.467
1 1000 0.425
1 1000 0.437
1 1000 0.507
2 1000 0.519
2 1000 0.425
2 1000 0.583
2 1000 0.376
2 1000 0.496
4 1000 0.696
4 1000 0.702
4 1000 0.703
4 1000 0.611

Continued on next page. . .

CHAPTER 8. REFLECTIONS ON LEARNING 63

. . . Table 8.1 continued from previous page

Players Elapsed Round Time Update Duration

4 1000 0.541
8 1000 1.124
8 1000 1.453
8 1000 0.846
8 1000 0.788
8 1000 0.864
12 1000 1.162
12 1000 1.282
12 1000 1.249
12 1000 1.133
12 1000 1.339
16 1000 1.653
16 1000 1.21
16 1000 1.374
16 1000 1.6
16 1000 1.417

Concluded

Table 8.2 � Table of results, following the experiment described in

section 5.3: Capability of Arti�cial Intelligence (Page: 47), stating

how the game arena size impacts the total number of simulations

performed by our arti�cial intelligence when calculating a single

move.

Arena Size Total Simulations

16 134
32 79
64 38
128 12

Concluded

CHAPTER 8. REFLECTIONS ON LEARNING 64

Table 8.3 � Table of results, following the experiment described in

section 5.3: Capability of Arti�cial Intelligence (Page: 47), stating

how the total number of arti�cial intelligence performed simulations

are a�ected by their respective depth.

Simulation Depth Total Simulations

16 134
32 79
64 38
128 12

Concluded

Table 8.4 � The collective results gathered from the user survey

described in section 5.4: User Feedback (Page: 51).

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6

9 8 7 9 8 10
10 10 10 10 10 10
8 9 9 8 7 9
6 7 9 9 8 10
7 8 10 9 8 10

Concluded

Bibliography

[a1k10] a1k0n. Google AI Challenge post-mortem. 2010. url: https://www.
a1k0n.net/2010/03/04/google-ai-postmortem.html (visited on
17/04/2017).

[Bab16] Babel (Open Source). Babel · The compiler for writing next generation
JavaScript. 2016. url: https://babeljs.io/ (visited on 26/01/2017).

[Bec+01] Kent Beck et al. Manifesto for Agile Software Development. 2001. url:
http://www.agilemanifesto.org/.

[Ber11] Yahn W. Bernier. Latency Compensating Methods in Client/Server In-
game Protocol Design and Optimization. 2011. url: https://developer.
valvesoftware.com/wiki/Latency_Compensating_Methods_in_

Client/Server_In-game_Protocol_Design_and_Optimization (vis-
ited on 16/04/2017).

[ctr17] ctrlplusb. React Universally. 2017. url: https://github.com/ctrlplusb/
react-universally (visited on 12/04/2017).

[Ecm17] Ecma International. ECMAScript® 2015 Language Speci�cation. 2017.
url: http://www.ecma-international.org/ecma-262/6.0/ (visited
on 12/04/2017).

[Fac17a] Facebook Inc. A JavaScript library for building user interfaces - Re-
act. 2017. url: https://facebook.github.io/react/ (visited on
12/04/2017).

[Fac17b] Facebook Inc. Jest Painless JavaScript Testing. 2017. url: https:
//facebook.github.io/jest/ (visited on 30/04/2017).

[Goo10] Google.Google AI Challenge. 2010. url: https://csclub.uwaterloo.
ca/contest/ (visited on 17/04/2017).

[Gra05] Paul Graham. Web 2.0. Nov. 2005. url: http://www.paulgraham.
com/web20.html (visited on 26/01/2017).

65

https://www.a1k0n.net/2010/03/04/google-ai-postmortem.html
https://www.a1k0n.net/2010/03/04/google-ai-postmortem.html
https://babeljs.io/
http://www.agilemanifesto.org/
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
https://github.com/ctrlplusb/react-universally
https://github.com/ctrlplusb/react-universally
http://www.ecma-international.org/ecma-262/6.0/
https://facebook.github.io/react/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://csclub.uwaterloo.ca/contest/
https://csclub.uwaterloo.ca/contest/
http://www.paulgraham.com/web20.html
http://www.paulgraham.com/web20.html

BIBLIOGRAPHY 66

[Hec17] Kenneth Salem Hector Garcia-Molina. Alpha�beta pruning. Tech. rep.
Department of Computer Science Princeton University, Jan. 2017. (Vis-
ited on 19/04/2017).

[Hsu17] Dan Hsu. Fltron - Light-Cycle and Tron Games. 2017. url: http:
//www.fltron.com/ (visited on 09/04/2017).

[HTC99] Andrew Hunt, David Thomas and Ward Cunningham. The Pragmatic
Programmer. From Journeyman to Master. Addison-Wesley Longman,
Amsterdam, 1999. isbn: 020161622X.

[Mar17] Braden Marshall. Braden1996/tron.io. 2017. url: https://github.
com/Braden1996/tron.io (visited on 12/04/2017).

[Moz17a] Mozilla Developer Network. WebGL - Web APIs | MDN. 2017. url:
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API

(visited on 09/04/2017).

[Moz17b] Mozilla Developer Network and individual contributors. WindowOr-
WorkerGlobalScope.setTimeout(). 2017. url: https : / / developer .
mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/

setTimeout (visited on 17/04/2017).

[Moz17c] Mozilla Developer Network and individual contributors. window.requestAnimationFrame().
2017. url: https://developer.mozilla.org/en-US/docs/Web/API/
Window/requestAnimationFrame (visited on 17/04/2017).

[Moz17d] Mozilla Developer Network and individual contributors.Window.setImmediate().
2017. url: https://developer.mozilla.org/en-US/docs/Web/API/
Window/setImmediate (visited on 17/04/2017).

[Nod17a] Node.js Foundation. Child Process | Node.js v7.9.0 Documentation.
2017. url: https://nodejs.org/api/child_process.html (vis-
ited on 27/04/2017).

[Nod17b] Node.js Foundation. Node.js. 2017. url: https://nodejs.org/en/
(visited on 12/04/2017).

[Ope09] Open source. Git - Fast Version Control System. 2009. url: http:
//git-scm.com/ (visited on 25/04/2017).

[rea17] reactjs. Predictable state container for JavaScript apps. 2017. url:
https://github.com/reactjs/redux (visited on 12/04/2017).

[red17] redux-saga. redux-saga/redux-saga. 2017. url: https://github.com/
redux-saga/redux-saga (visited on 19/04/2017).

[Ref17] Refsnes Data. JavaScript Numbers. 2017. url: https://www.w3schools.
com/js/js_numbers.asp (visited on 15/04/2017).

http://www.fltron.com/
http://www.fltron.com/
https://github.com/Braden1996/tron.io
https://github.com/Braden1996/tron.io
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/Window/setImmediate
https://developer.mozilla.org/en-US/docs/Web/API/Window/setImmediate
https://nodejs.org/api/child_process.html
https://nodejs.org/en/
http://git-scm.com/
http://git-scm.com/
https://github.com/reactjs/redux
https://github.com/redux-saga/redux-saga
https://github.com/redux-saga/redux-saga
https://www.w3schools.com/js/js_numbers.asp
https://www.w3schools.com/js/js_numbers.asp

BIBLIOGRAPHY 67

[Sha17] Shy Shalom. Cycleblob - A WebGL lightcycle game. 2017. url: http:
//cycleblob.com/ (visited on 09/04/2017).

[Sta17] Starcounter-Jack. Starcounter-Jack/JSON-Patch. 2017. url: https:
//github.com/Starcounter-Jack/JSON-Patch (visited on 17/04/2017).

[tea17] team@slither.io. slither.io. 2017. url: http://slither.io/ (visited
on 09/04/2017).

[tim17] timetocode. An accurate node.js game loop inbetween setTimeout and
setImmediate. 2017. url: http://timetocode.tumblr.com/post/
71512510386/an-accurate-nodejs-game-loop-inbetween-settimeout

(visited on 17/04/2017).

[Val11a] Valve. Lag compensation. 2011. url: https://developer.valvesoftware.
com/wiki/Lag_compensation (visited on 16/04/2017).

[Val11b] Valve. Prediction. 2011. url: https://developer.valvesoftware.
com/wiki/Prediction (visited on 16/04/2017).

[Wal14] Walt Disney Productions. Tron (1982) - "Light Cycle Battle". 2014.
url: https://www.youtube.com/watch?v=7DgL_w5qwIw (visited on
26/01/2017).

[Wik17a] Wikipedia, the Free Encyclopedia. Alpha�beta pruning. 2017. url: https:
//en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning (visited
on 19/04/2017).

[Wik17b] Wikipedia, the Free Encyclopedia. Comparison of HTML5 and Flash.
2017. url: https://en.wikipedia.org/wiki/Comparison_of_
HTML5_and_Flash (visited on 09/04/2017).

[Wik17c] Wikipedia, the Free Encyclopedia. Minimax. 2017. url: https://en.
wikipedia.org/wiki/Minimax (visited on 19/04/2017).

[Wik17d] Wikipedia, the Free Encyclopedia. Model�view�controller. 2017. url:
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%

93controller (visited on 27/04/2017).

[Wik17e] Wikipedia, the Free Encyclopedia. Monte Carlo tree search. 2017. url:
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

(visited on 17/04/2017).

[zig12] ziggystar. Monte Carlo with UCB applied to complex card game. 2012.
url: http://stackoverflow.com/questions/12523221/monte-
carlo - with - ucb - applied - to - complex - card - game (visited on
17/04/2017).

http://cycleblob.com/
http://cycleblob.com/
https://github.com/Starcounter-Jack/JSON-Patch
https://github.com/Starcounter-Jack/JSON-Patch
http://slither.io/
http://timetocode.tumblr.com/post/71512510386/an-accurate-nodejs-game-loop-inbetween-settimeout
http://timetocode.tumblr.com/post/71512510386/an-accurate-nodejs-game-loop-inbetween-settimeout
https://developer.valvesoftware.com/wiki/Lag_compensation
https://developer.valvesoftware.com/wiki/Lag_compensation
https://developer.valvesoftware.com/wiki/Prediction
https://developer.valvesoftware.com/wiki/Prediction
https://www.youtube.com/watch?v=7DgL_w5qwIw
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
https://en.wikipedia.org/wiki/Comparison_of_HTML5_and_Flash
https://en.wikipedia.org/wiki/Comparison_of_HTML5_and_Flash
https://en.wikipedia.org/wiki/Minimax
https://en.wikipedia.org/wiki/Minimax
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
http://stackoverflow.com/questions/12523221/monte-carlo-with-ucb-applied-to-complex-card-game
http://stackoverflow.com/questions/12523221/monte-carlo-with-ucb-applied-to-complex-card-game

	Introduction
	Background
	The Game of Tron
	Existing Games
	Browser Technologies
	Artificial Intelligence

	Design
	Software Development Process
	Package Scripts

	Preliminary Design
	Architecture Overview
	Core Technologies
	Boilerplate

	User Interface
	Game Mechanics
	Collision Detection

	Network Communication
	Game Lobbies and Concurrency

	Artificial Intelligence

	Implementation
	Source Overview
	Notable Challenges
	Game Loop
	Head-on Player Collisions
	Mutability
	Collision Data Structures
	AI Simulations
	AI Concurrency
	AI Timing
	Technology Integration

	Results and Evaluation
	Unit Tests
	Game Performance
	Tick Update Performance

	Capability of Artificial Intelligence
	User Feedback

	Future Work
	Deployment
	Security
	Large-scale performance

	Artificial Intelligence
	Gameplay

	Conclusions
	Networking
	Artificial Intelligence

	Reflections on Learning

