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Abstract

This project’s objective is to explore the possible ways to create an Al capable of playing the board
game Othello. The project discusses the ways in which existing algorithms forgame playing - such as
Minimax and Monte Carlo Tree Searching - can be adapted to decide movesforan Othello Al to play.
This reportalso covers the process of creatinga suitable programmatic Othello game representation
for the Al to use, and a GUI for viewing the progress of the game. Additionally, this project also
investigates the possible ways to create an evaluation function powered by Deep Learning methods
that an Al playercan use to accurately determine the worth of a game state. These potential ways of
creating the Al are then put into practice, resulting in a system with a customisable Al, an accurate
recreation of the Othello board game, and the ability to create neural networks from a database of

Othellogames.
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Section 1 — Introduction

The field of Artificial Intelligence (Al) is currently at the cutting edge of ComputerScience. Al systems
are part of many of the world’s devices and technologies, such as personal assistants, smart cars,
content generation systems, and more.

On a more bespoke scale, they can be created to analyse and play board games, by evaluating the
possible moves aplayer can make and choosingthe most optimal one. This approach has been used
to create Als capable of playing board games such as Chess, Checkers and Go.

My projectisfocused on creatingan Al program that can play the board game Othello, whichiis based
around placing counters onto a board while flipping your opponent’s counters. To achieve this, | have
created a programmaticversion of Othello, a Ul to view the state of the game with, and the necessary
Al systems and interfaces, including operations for utilising deep neural networks.

The programmaticrepresentation of Othello was neededso thatan Al could accuratelychoose moves,
understand the game rules, and manipulate the game state. As a result, | had to fully understand the
rules of Othello before implementation, and extensively test the game logic upon completion of the
game classes.

To allow for easy viewing of the game state, it was also nece ssary to create a graphical userinterface.
Thisin turnalso enabled human playerstoinput moves to when playingagainstan Al opponent.

Finally, with the Othello game programmed and the Ul in place, | created a suite of artifidial
intelligence classes which represent different game playing and analysis techniques. These classes can
be combined together to create Als of varying difficulty, fromrandom move selectingplayers, to highly
intelligent opponents with deep learning knowledge.

The result of thisworkis an Othello program that can be used by humans to train themselves against
artificial opponents of varying difficulty levels, via an easy to understand interface. It can simulate
games of Othello between two Al players, and includes the ability to create and load neural networks
for the mostintelligent Alsto use in their evaluation of the game.

Though Othelloisa game that has beensolved by othersolutions before, | believe that the challenge
of creating the game and its Ul, implementing the Al and its associated technologies, and analysing
the performance of the Al has proven to be an engagingand interesting project, especially due to the
level of complexity surrounding the topic.



Section 2 —Background and Research

This section contains all the information | have gathered on the various topics related to my project; |
started my research by exploring the ways which humans play and evaluate Othello, followed by
examining the ways in which computers understand general game playing. With this information, |
combined the two topics, and went on to research more advanced algorithms and learning
approachesthatwould work well for creatingan Al capable of interpreting Othello.

2.1 — Othello

2.1.1 —Basic Ruleset

Othello (sometimes referred to by its old name of Reversi) is a table top board game inventedin the
19% century, where players place coloured countersonto an 8 by 8 board with the intention of flipping
the other counters to their colours. ! This is done by forming a line between a placed counter and
another counter of that colour on the board, which flips all other counters along said line to the colour
of the placed counter. ¥ This operation of creating the line between two counters of the same colour
isalso known as bracketing. !

Play begins with two dark and two light countersplaced at the centre four squares of the game board,
with each counter being diagonally adjacent to the other counter of its colour. Players take turns
placing counters onto the board, with the player using the dark counters going first. Counters may
only be played onto the board in positions where an existing placed counter is within a one square
radius, and if placing the counter will cause other countersto be flipped. !

If there are no places onthe board that a player can place a counteron, then theirturnis skipped, and
the otherplayergetsto play acounterinstead.The game ends when neither player can play a counter
on theirturns, or when the boardis full of counters, whichever comes first. 4!

A selection of example Othello game states have been provided in Appendix A.

2.1.2 — Advanced Concepts

Though | know the rules of Othello well, my research revealed many high-level concepts and tactics
that professional Othello players have discovered over the years. Many of these are documented in
the 1987 player’s guide for Othello, Othello: Brief and Basic by Ted Landau. Init, Landau describes the
three phases of an Othello game, which are the “Opening (opening 20 moves), Midgame (middle 20
moves), and Endgame (last 20 moves).”, and discusses the various moves and tactics that can be
employedinthe three phases. ¥

The book also provides 21 key points that allow a playerto play Othello with a greater understanding
of the potential moves and game states. Some of these points, such as “Planning Ahead” and
“Prioritising of Moves”, would naturally become part of the Al that | have created, since game states
resulting from potential moves can be analysed ahead of time, and moves willbe chosen based on the
value returned by the Als evaluation function. !

Landau also discusses the ways to intelligently evaluate an Othello game state, in sections such as
“Not All Squares Were Created Equal”, which contains information about how edge and corner
countersinan Othello game are more valuablethan the otherlocations on the board, since they have



a reduced number of sides to be surrounded on, and are less likely to be flipped by the opposing
player. B'Rules such as these that provide additional ways of determining the worth of a game state
have been builtinto parts of the final Al classes of the project, though many of these game state traits
did not to be explicitly defined forthe Al or Deep Learning algorithms to detect them.

There are still many other key pointsof advanced Othello playing —such as what moves to play in each
phase, recognising patterns of counters and how to best play around them, potential traps, etc. —that
playersshould be aware of. The full list of Landau’s 21 key points to playing Othello, along with brief
descriptions of each one, can be foundin Appendix B.

2.2 — Adversarial Searching and Game Playing

2.2.1 —Game Theory

Game theory is “the study of mathematical models of conflict and cooperation between intelligent
rational decision-makers” ®}, and can be used by game-playing Alto determine what move to play over
others.

Game theoryis alsousedto describe the way games operate, and thus helpsto determine how they
should be evaluated. Forexample, Othello would be described as a sequential game, since players do
not perform actions simultaneously; the possible states and moves of asequential game can be easily
modelled as adecision tree, due to the branching nature of the game states. !

Furthermore, Othellois considered as a game with perfect information, meaning that all information
aboutthe gameis visibletoall players.® In comparison,agame with imperfect information has some
information thatis not always visibleto a player. Forexample, in agame of poker, a player has no way
of knowing an opponent’s hand until the end of the round, so the information they hold about the
game, and by extension their estimation of their chances of winning, is imperfect.

Additionally, Othello is what’s known as a zero-sum game, which describes a game where the value
gained by one playeristhe value lost for the other player. Knowledge of these kinds of properties and
which ones Othellofitsisimportant when it comesto understanding the gameitself, andin creating
an accurate simulation of the game programmatically.

2.2.2 —Minimax

Since Othellois a perfectinformation game, an Othello-playing Al should be able to predict the future
moves that players will play via various search and evaluation algorithms. One such example of a
decision algorithm used by Al systems is the Minimax approach.

Minimaxingisamethod used when evaluatinga game’s decision treeto ensure that the move chosen
by the player maximisesthe chance of afavourable outcome forthem. A simplified example of thisin
a game of Othello would be that a minimax evaluation on the game tree would favour a move that
increases the player’s score by three over a move that would onlyincrease the score by one, due to
the larger perceived gain.

However, the minimax algorithm also evaluates the opponent’s moves, which assumes that the
opponent will always pick the move that minimises the player’s gain from a move. As a result, the
algorithmreflects the best outcome forthe playershould they choose that branch of the game tree.



The value returned by a minimax search may only be accurate up to a certain number of movesin the
future, asthere isa limiton how far an Al can predict, based on the available timeand computational
power.

Additionally, the success of a minimax algorithm is directly related to the quality of the evaluation
function, whichis what determines how valuable amove or game state is. As previously mentioned,
an Othello evaluation function could be based only on the difference in the two player’s scores,
resultinginvalueslike+3, +1, -2, etc. However, this fails to considerthe multitude of otherfactors of
an Othello game state, such as the number of corner or edge pieces the player has, the
manoeuvrability of the player,and more. These factors canincrease or decrease the value of the game
state, and should be appropriately considered when producing an evaluation function. A competent
evaluation function can be the difference betweenagood Al and a greatAl.

The Monte Carlo Tree Search algorithmis essentially aspecialised version of the Minimax algorithm,
with a focus on moves that have the perceived potential to perform well. As a result, knowledge of
the Minimax process will help clarify the operation of other Al searching algorithms.

2.2.3 —Pruning

To improve the performance of aminimax or othertree searching algorithm, branches of the tree can
be prunedif expandingthem would not be beneficial to the outcome of the algorithm.

For example, at a level of the tree where Player B is looking to minimise the value of Player A’s next
state, and where the two available branches of the tree lead to values of -4and -2 for Player A, the -2
branch can be pruned. This is because a sensible Player B would never select a move that doesn’t
minimise the gainfor Player A, sothe -2 branch does notneed to be evaluated.

This type of pruning is called Alpha-Beta Pruning, and can drastically increase the performance of a
tree search algorithmthatusesit. Many other pruningalgorithms exist, but Alpha-Betais well suited
to a minimax-type algorithm. Effective use of pruning will allow an Al to evaluate more games states
withinthe allotted processing time, thus improving the quality of its decisions.

2.2.4 —Solving a Game

A solved game is “a game whose outcome (win, lose, or draw) can be correctly predicted from any
position, assuming that both players play perfectly”. 9! This means that the winner of a game can be
determined just by examiningthe current game state.

The 4x4 and 6x6 variants of Othello have been fully solved by computers that have computed all
possible games to determine every possible outcome. However, for the default 8x8 Othello game,
thereisan estimated 10?8 possible legal positions the game state can be in, makingitinfeasibl e to fully
solve. [®' However, many Othello programs record the outcomes/evaluations of the first X movesin a
structure called the open book ®!, which allows Othello Al to play optimally during the early moveson
the game, based on theirexperience. Thisinformationcan be encoded intoagame-playingAl to allow
itto easily evaluatethe starting states of agame, thusimproving the number of moves it can analyse.



2.3 — Artificial Intelligence

2.3.1 — Defining Artificial Intelligence

In the context of this project, an Artificial Intelligence (Al)is a program that can make decisions based
on the world around it. For example, in a game of Othello, an Al that can play Othello should be able
to make movesinthe game based on the data obtainable from analysing the game state, such as the
position of counters, the remaining moves, the value of the board, etc. ¥

2.3.2 —Examples of Othello-playing Als

My project isn’t the first to explore the possibility of an Othello-playing Artificial Intelligence;
numerous Othello learning tools have been created in the past, that also contain an Al program to
decide what moves to play. These tools, which include NTest, Saio, Edax and Logistello, have gone on
to defeat the best human Othello players in the world, and have even played against each other in
some events. (¢

However, these existing solutions do notallow for variance in their artificial intelligence’s ability; the
Al will always perform optimally, and cannot be altered to allow players of lower skill levels to
compete. As | wanted to evaluate the final version of my Al against versions of itself with different
parameters, | decided to allow users to alter the difficulty of the Al they play against by allowing users
to provide these parameters. This allows my Al to be used as a training tool for players of any skill
level, and thus has added a unique feature to my program that isn’t seen in other Othello training
programs.

Additionally, many existing Othello programs have seen a declining number of updates since their
respective releases. For example, NTest was retired in 2005, while Saio and Edax have not been
updated since 2011. ! I My Othello Al and the program housing it are much newer than these
programs, and | have been able to utilise newer technologies and approaches and that were not
available whenthe other Othello programs were released.

While researching these Othello programs, | also discovered a paper written by J.A.M Nijissen from
Maastricht University, whichwas titled Playing Othello Using Monte Carlo, which sounded very similar
to what | aim to achieve with my project.

In the paper, Nijissen discussesthe benefits of using the Monte Carlo algorithm to evaluate what
moves to play at each level of the game tree. 8! The Monte Carlo Tree Search algorithm | have
implemented uses the Monte Carlo algorithm along with a tree to store the results of the various
executions of the algorithm. Finding this paper confirmed to me that investigating the Monte Carlo
Tree Search algorithm forthe project would be beneficial, so | beganresearchingthe topicin depth.
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2.4 — Monte Carlo Tree Searching

2.4.1 —Monte Carlo Methods

Monte Carlo methods are “a broad class of computational algorithms that rely on repeated random
samplingto obtain numerical results. Theiressential ideais usingrandomness to solve problems that
might be deterministicin principle.” **) Monte Carlo algorithms are typically used in game playing
applications by generating many outcomesfrom the current game state and observing the fraction of
these that fit into one or more categories, or that exhibit one or more properties. [*3! By generating
enough possible outcomes, an accurate representation of the probability of success of each move or
choice can be derived. (2

A Monte Carlo (MC) algorithm for deciding what move to use in a game of Othello could involve
“simulating” potential playoutsfrom the current game state, by selectingalegal move and simulating
a full game from that move onwards, typically by randomly selecting the next moves to play until the
game iscomplete. The result of the simulation canthen be stored asawin ora loss forthe player, and
once all simulations have beencarried out, the move that resulted inthe most wins could be selected
as the most promising move.

Since MC methods represent a broad range of algorithms, the method mentioned above is not the
only way the MC methodology could be applied to Othello.

2.4.2 — Adding Tree Searching

One flaw of the previously mentioned MC method for choosinga move in Othellois that it only
examinesthe game tree toa depth of 1 lowerthanthe depth of the current game state, and since all
the moves chosen in the simulation after the initial move are random, the results can be somewhat
inaccurate.

The Monte Carlo Tree Search (MCTS) algorithm does not suffer from these problems, due to the game
tree that the algorithm manages when evaluating the available moves. Each node of the tree
represents a game state, with the edges branching from it representing the moves that change one
game state into another. Each node also stores the number of game simulations (also referred to as
playouts by some texts) that the game state was featured in, and the number of those simulations
that resultedin avictory for the player. 14

Selection Expansion Simulation Backpropagation

0:1

Figure 1: The 4 Main Steps of the MICTS Algorithm (https://en.wikipedia.org/wiki/File:MCTS (English).svq)
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The figure above shows a visualisation of a possible MCTS algorithm’s game tree. The root game state
has three possible moves that can be played, as represented by the three branches originating from
the root node of the tree. Additionally, the root node also stored the ratio “12/21”, which represents
that out of the 21 total simulations the root game state was featuredin, the playerwon 12 of them.
The way the MCTS expands the game tree is based on which game states are the most promising to
evaluate. !4

The MCTS’ processforconstructingthe search tree can be described infoursteps:

1. Selection: To expand the tree, the MCTS algorithm begins at the root node, and selects
successive childnodes until aleaf nodeis reached. The nodechosen at each level of the game
treeisthe one deemed the most promising to explore, whichcan be based on which node has
the most victorious simulations versus their total simulations, or via a specialised selection
measure.

2. Expansion: The leaf node L is then expanded, with one or more new leaf nodes added as
children of Lto represent the possible moves from the game state (assuming that the game
can continue fromL). 4

3. Simulation: One of these new childnodesisthenselected, and asimulation of the game from
that node onwardis run. [** The simulation starts from the game state represented by node
L, and appliesrandomlegal movestoitinthenormal order of play, to simulatethe twoplayers
repeatedly playing moves, untilthe simulated game reaches the end.

4. Backpropagation: Once the simulationis complete, the resultis propagated back up through
each of the nodes between the child node and the root node. [** All the affected nodes
increment their total simulations counter by one, and can increment their victorious
simulation counterby one, but only if the simulation resultedin avictory for the player.

Once the algorithm has generated enough simulations, the move with the highest win percentage is
chosen at the move to play.

The advantage that the game tree gives to MCTS over a normal MC algorithm is that it can analyse
moves further down the game tree, which provides the Al with a greater understanding of the future
of the game. Parts of the game tree can also be reused, since a child of the root node can be made the
new root node if the game state that the child node represents is chosen as the next move. Finally,
the MCTS spends much less time computing moves that are not promising, since they are much less
likely to be selected for simulation.

However, care needsto be taken when selecting moves to simulate, asa balance needsto be struck
between selecting moves with a high chance of being successful versus selecting moves that have
been simulated very few times. One way of maintaining a balance between these two types of
moves/nodesisto use aspecialisesdnode selection formula, such as the UCT (Upper Confidence Bound
1 appliedtoTrees) formula. UCT produces a value based on the various parameters of the algorithm,
tree and current node to produce a value;the node with the highestvalue from this formula should
be used as the most promisingnode inthe Selection stage of the algorithm. 4 The full UCT formula
and its parameters can be foundin Appendix C.

MCTS algorithms also have the option of usinglight or heavy simulations; light simulations are quick
to run but less accurate (e.g. random move selection), whereas heavy simulations use heuristic
methods (such as minimax searching) to determine moves to play, but take longer to run each
simulation. 4
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The competency of the MCTS can be improved by incorporating domain specificknowledge; one such
example is knowing whether or not the same game state can be reached via many different
permutations of moves. [** In Othello, two game states that are rotated in different orientations or
that are reached via different sequences of moves may have the same board layout, thus allowing
knowledge gathered about one state to be shared with another.

Overall, the MCTS algorithm is best suitedto non-probabilistic perfect information games with afinite
numberof moves pergame, one of whichis Othello. Asa result, | chose to make the MCTS algorithm
one of the main focuses of my project.

2.5 —Deep Learning

2.5.1 —Machine Learning and Deep Learning

Machine learningis a field within Artificial Intelligence that researches ways in which computers can
become capable of learning without the need for these lessons to be explicitly programmed. Machine
learning has aided many fields, such as computer vision, by creating ways in which a computer can
learn characteristics of a set of example data, and then using its knowledge to classify previously
unseen sets of data. *%

Deep learning differentiates itself from machinelearning through its use of Artificial Neural Networks
(ANNSs) to understand and interpret the data it is given. ANNs mimic the human brain’s structure by
creating a network of neurons (also known as nodes) that are connected by various links; each link
has a different weighttoit, and neurons can sendsignals alongthese links depending on how strong
the signal they are receiving is. When data is passed to an ANN, the various layers and clusters of
neurons pass signalsto each other until the output layer of the network is reached, at which point the
value(s) of the output nodes are returned. [*°!

The key factor that allows ANNs to be used for learning tasks is that each link’s weight can change
overtime as the deep learning processis run; by informing the ANN of whetheror not it was correct
initsinterpretation of the input data, it will readjust the weights of the linksbetween nodesto correct
its outputs. > Asmore datais passed through the ANN, the more accurate its interpretations become.

2.5.2 —Classification vs Regression
The types of ANNs can be splitintotwo categories, classification and regression.

When deeplearningis used for classification, the network produces a class for each piece of training
data that it has been given, which can then be compared to the label that has beenassignedto said
data. The network changes the weights of the linksinits structure depending on how many pieces of
data the network can correctly classify in the training phase. As Classification ANNs typically output a
discrete class forthe data, they can be used to divide datainto subsets based on theirattributes.

Regression-based ANNs mainly differ in what data is returned from the ANN, as they provide a
numerical evaluation of the data on a continuous scale, instead of a class for the data. Regression
ANNSs can be trained using labelled or unlabelled data, which can make them more suited for tasks
where providing labels forthe datais difficult orimpossible.
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For my project, given that both methods seemed applicable to Othello at the project’s outset, |
planned to carry out various experiments using both classification and regression ANNs, and | shall
discuss the success of the processinthe Evaluation section.

2.5.3 —Using Deep Learning with Othello

In theory, any Artificial Intelligence with deep learning has limitless potential forlearningits task and
improvingatit. When it comesto game-playing Al programs, itis entirely possible foran Al to improve
its decision-making abilities just by playing againstitself.*>! In March of 2016, the AlphaGo Al defeated
the Go world champion Lee Sedol, becoming the first Al to do so. AlphaGo was trained by playing it
againstanother version of itself, which allowed its deep learning algorithms to tune itsinternal ANN
to a high skill level.*1 26l However, as | felt thatimplementing the necessary functionality to allow for
continuous learning was too large of an undertaking for this project, | instead focussed on producing
the best results from the initial ANN creation process, and testing the resulting networks in the Al
system of my project.

As previously mentioned, an Al typically makes use of an evaluation function to determine the value
of a game state. | decided to use deep learningto create anew type of evaluation function that my Al
could use, whichreturns a valuation of the game state by passing the locations of the countersto an
ANN constructed before the game began. This would create an evaluation function capable of
evaluating game states based on thousands of examples of Othello games, thus providingthe Al it is
part of with an accurate way to determine which moves are betterthan others.

For this purpose, linitially expected regression to be the type of output | would use, but | was able to
create classification networks that provided the same evaluation functionality. | was also able to find
a database of tournament-level Othello games, which | used to train and test the ANNSs for use as
evaluation functions.

All in all, this research suggests that the best Al for Othello would use a Monte Carlo Tree Search
algorithm to determine what move to play, while using a Deep Learning-trained evaluation function
to run its heavy simulations accurately.
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Section 3 — Design of Othello and the Al

This section contains various plans and pieces of information about the Othelloimplementation and
the Al program, such as potential Ul designs, the class structure of the implementation, utilisation of
deep learning/ANN functionality, etc.

3.1 — UML Class Diagram

To provide myself with a clear class structure to follow in the development stage, | created a UML
Class Diagram to outline the functionality of the mostimportant classes in the implementation.

3.1.1 — Overall Structure

Classes associated with the Othello game logicare outlined in blue, classes associated with the Ul are
outlined in green, and classes that will contain Al routines are outlined in red. Though the diagram
does not list every class included in the final program, the classes shown are the most important to
the Othello game’s logicand display, and the Al program’s operation. Each class has a name, example
methodsandfields, and connections to related classes.

Othello
ScorePanel
- game : GameState ——
- hasUl : boolean scores : int[]

- top : ScorePanel

- middle : GamePanel
- bottom: InfoPanel + draw()

+ update(GameState)

- runf)
- draw{GameState)
- update(GameState)
+ main(String[]) GamePanel
GameState
- board : int[][] Player + draw()
- players : Player(]
- turnNumber : int - playerNumber : int
+ getPlayer(int) : I?Iayml o - playerType : String InfoPanel
+ getPlayerScore(int) : int - L
+ getBoardDimensions() : int[2] + getPlayerNumber() :__mt - info @ String
+ getLegalMoves(Player) : boolean[][] + getPlayerType() : String .
+ placeCounter(Player, int, int) : GameState + getMove(GameState, GamePanel) : Point
+ isEqual() : boolean + draw()
+ update(GameState)
HumanPlayer AlPlayer
- maxTime : int
- searcher : Search
- getMoveFrominterface(GamePanel) : Point - selectMove(GameState) : Point
PesitionalEvaluator Evaluater Decider
V
- evaluator : Evaluator
- positionalEvaluation(GameState) : double + evaluate(GameState) : double + selectMove(GameState) : Point
DeeplLearningEvaluator ? Zlk
MinimaxDecider MeonteCarloTreeSearchDecider
- neuralMet : ANN
- neuralMetEvaluation(GameState) : double
- selectViaMinimax(GameState) : Point - selectViaMCTS(GameState) : Point

Figure 2: Structure of my final Othello game and Al program
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3.1.2 —Game Logic Classes

Since the game logicclasses were the most sensible ones to create first, | designed them without any
dependencies onthe Ul and Al classes, meaningthey could be implemented without worrying about
coupling.

The Othelloclassisthe main program that is launched, and constructs all of the necessary objects at
run time; it essentially manages the game and the Ul to ensure data is correctly exchanged between
the two.

One of the most important classesin the projectis the GameState class, as this represents a possible
state in the game of Othello. Since many GameState objects may be held in memory at one time, |
have keptthe class’ data footprintas small as possible, by storing the state of the board as a 2D array
of integers, and only storing the playersand the turn number alongside thisinformation. | have also
provided examples of many of the methods this class provides as itsinterface. These methods allow
the Al players to manipulate and evaluate the GameState as much as they need.

An important method of the GameState is the “getLegalMoves” method, which returns a Boolean
array that describesthe placesthatthe current playercan place counters; by passing the coordinates
of a True positioninthisarray to the “placeCounter” method, the GameState will be updated with a
counter placed forthat playeratthatlocation.l initially planned to use integer coordinatesto describe
locations on the Othello board, but | decidedto use Java’s built in Point class instead, so that | only
had to return one object from any method that wanted to provide coordinates.

Additionally, | defined the Player class, which represents an entity that is capable of making movesin
the game. This can be a HumanPlayer, which receives moves from the Ul of the program, or an
AlPlayer, which will programmatically determine what moves to play.Both classes will have the Player
interface, meaningthatthe GameState doesn’t have to treat the two types of Player class differently,
though the player’'sinternal type is tracked to allow the classes to be distinguished if necessary.

3.1.3 - Ul Classes

The three Ul classesrepresent three different panels | have built the interface out of. All three panels
have “draw” methods, which are used to visualise their part of the interface based on the GameState
provided, and the top and bottom panels also have variables to cache some of the GameState data,
alongwith an “update” method to update theircaches.

The most notable classis the GamePanel, which needed to be capable of detecting mouse eventsto
determine amove the playerwantsto play. Asaresult, itusesJava’s builtin Mouselistener interface,
which enables it to receive MouseEvent objects, which can then be converted the coordinates of
player moves.

One important note that is not represented on the class diagram is that the three Ul classes are
extensions of theJPanel classin Java’sSwing package, which allowed me to easilyorganise their layout
withinthe window, thanks to the class’ existing methods and behaviour.
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3.1.4 — Al Classes

The last section of classes to be implemented was the various Al classes, all of which are connectedto
an AlPlayer object in some way. The AlPlayer class stores some basic information, such as the time
allowedforthe playerto make a move.

The AlPlayer’s behaviour is then determined by the other classes provided to it during construction.
The Evaluator classes represent various evaluation functions that can determine the value of a
GameState, whilethe Decider classes are the classes that determine which move should be played by
searching through the available moves. The Decider class’ “selectMove” will be used by the AlPlayer
to retrieve the coordinates that they should play a counteron.

| chose to construct the AlPlayer class viaaggregation fortwo reasons:

1. | wanted to create a simple Al capable of playing Othello before implementing the complex
Monte Carlo Tree Search and Deep Learning functionality. Using this aggregation method of
creating the Al would allow me to swap in the MCTS and Deep Learning classes later in the
project.

2. As previously mentioned, | wanted the final program to have varying difficulty levels for
human playersto compete with. By allowing forvarious Decider and Evaluator algorithms to
be used by an Al, this gives the userthe ability to adjust the Al’sintelligence to theirliking.

3.2 —Programming Language

For my project, | decided to use the Java programming language. During my time at Cardiff University,
| have usedJava many timesto complete various assignments, and as a result | am very familiar with
how it works. By using Java, | didn’t need to learn any new programming languages for the project,
whichincreased the amount of timel could spendon othertasks. This also gives the final program the
benefit of being able to be played on any operating system with the Java Virtual Machine (JVM)
installed onit.

Additionally, since Javais an Object-Oriented programminglanguage, | was easily able to create and
manage the various classes that will make up the game and Al, including how they interface with one
another, which wasimportant for allowing the Al to interact with the Othello game, and for allowing
the Al’'sdeciderand evaluator classes to be chosen at runtime.

Finally, Java provides numerous packages and classes for easy Ul creation, such as Swing. By creating
an interface using these packages, | was able to quickly create the necessary graphical interface to
easily show the game state.

17



3.3 — Approach to Implementing the Game Logic

One of the mostimportant factors of the projectis ensuring that my programmaticrepresentation of
the Othellorulesetis completely accurate to the original game. To achieve this, | decided to place all
of the game logiccode into the GameState class, and provided methods to allow manipulation of the
game, without allowingillegal moves or board manipulation to occur. Before beginning programming
the GameState class, | setout these rules:

1. Do not allow direct manipulation of the internal variables (board state, turn number, etc)
otherthan through appropriate methods (e.g. methods for placing a counter, or viewing the
board without changingit)

2. When changing the game state, such as via placing a counter onto the board, return a new
GameState object, ratherthan changing the existing object.

3. Provide methods to allow easy access to statistics for Al agents to use, such as the player
scores, game end determination, number of moves remaining, empty spaces remaining, etc.

4. Enforce internal checking to ensure only legal moves can be played, and provide Al agents
with a list of legal moves. Subsequently, this should mean that only legal GameState objects
can exist.

5. Optimise the class’ computation time and data footprint as much as possible, since it will be
a frequently created and used class, and optimisations inthe game state class will affect the
speed of the Al’sdecisions.

I mainly derived these rules froma previous piece of coursework | had receivedinvolving Al behaviour,
as theyare relatedto problems| experienced there. Forexample, | created rule 2 to make it so that
each GameState object is a representation of one possible board configuration, and cannot be
changedinto any other board state, whilestill allowingcreation of child states of itselfvia its methods.
This prevented errors related to unexpected game state mutation from occurring.

To ensure that the logic was correctly implemented, | decided to test the GameState during
development by recreatinglegallayoutsand checking to ensure that all valuesreturned matched with
the expected values for that layout (e.g. accurate scores calculated, correct list of legal moves
returned, etc.)

Additionally, | also had access to many archived Othello tournament games, which contained the
sequence of moves played and the final scores of each game. In theory, if these games could be
simulated without error when using the GameStateclass, theimplementation would be faithful to the
official ruleset of Othello. | decided to postpone this method of evaluation until development of the
project was almost complete, as the GameState was likely to change many times throughout
development as functionality was added and changed.
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3.4 — Ul Design
To ensure the users of the final program will understand how to operate the Othello game and its
parameters, | designed the Uland command line arguments ahead of time.

3.4.1 —Visual Design
Player 1 Player 2

2 -2

Player 1 Player 2

® o O

Player 1, it is your turn.

Figure 3: Initial design for the Othello game UlI.

This user interface was designed to be easily implementable in a Java program via Java’s Swing
packages, while also still providing the functionality necessary for the Othello game. The interface is
splitintothree panes;the top paneisusedto displaythe currentscore for each playerin the current
Othello game, whilethe bottompane is used as a notification barto display messagesabout the game,
such as whois currently takingtheirturn.

Most importantly, the middle pane is the main display pane, containing the Othello board and
counters, along with displaying which playerisin control of which countertype. This gives the human
player(s) aclearimage of the Othelloboard. This pane iswhere human players can play counters onto
the board, by simply clicking on the square they wish to play on, assumingit is theirturn. The whole
interface is contained within a simple window that will be displayed on the user’s desktop upon
launchingthe program.

3.4.2 — Launching the Game and Changing Arguments
As the gameis launched from the command line, the user can change various values of the program
viathe command line arguments forthe program. Forexample:

java OthelloAIProgram -playerl Human -player2 AI(Minimax,Positional)

The final program could interpret a command like this by setting the first playerin the game to a
human-controlled player, while the second player’s decisions will be run by an Al. This system allows
various other values to be changed, such as which player moves first, whether the Ul is displayed or
not, and even the size of the board.
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3.5 —Game and Al Pseudocode

| created the following pieces of pseudocode to allow for the functions they represent to be quickly
understood and implemented when | needed to begin work on them. The code shown below
represented the methods that | believed would be the most difficult to implement, hence why |
plannedtheirfunctionality and structure priorto startingdevelopment.

3.5.1 —Game State Functions
Board Representation, Turn Number and Score Calculations:

board = an 8 x 8 integer array
int[][] viewBoard() { Return a clone of this.board }

int getTurnNumber() {
int total = -3
For each space in this.board {
If the space has a counter in it {
Increment total

}

}
Return total

}

int getScore(Player p) {
int total = o
For each space in this.board {
If space has a counter and counter matches the player’s colour {
Increment total

}
}
Return total
¥

As mentionedinSection3.1.1, | chose to use an integerarray to store the board state to reduce the
GameState class’ overall footprint. This board can then be cloned via Java’s built in methods when
requested viathe viewBoard method; this allows a copy of the board to be viewed and manipulated
without affecting the object’s internal board.

| have also provided code that shows how the turn numberand playerscore could be determined; in
the final program, anintegerfield tracks the turn number, but a similar method of scanning the board
isusedto calculate the players’ scores.
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Legal Move Determination and Move Placement

Point[] getLegalMoves(Player p) {
Point[] movelist = empty list
For each space in this.board {
If space has a counter and counter matches the player’s colour {
For each horizontal, vertical and diagonal direction from the space {
If there is another player counter in that direction
and there are opponent’s counters inbetween {
Add the space to the movelist

}

}
}

Return movelList

}

boolean hasLegalMoves(Player p) {
If getlLegalMoves() returns >= 1 moves {
Return true
} else {
Return false
}

}

GameState placeCounter(int x, int y, Player p) {

Point move = new Point(x, y)

Point[] legalMoves = getlLegalMoves(p)

If move is in legalMoves {
GameState newState = a clone of the current state
Place the player’s counter onto the board of newState
Flip the necessary counters on newState’s board
Return newState

} Else {
Refuse the move, by returning the same state, or by throwing an exception

}

}

The mostimportant methods forallowing players to complete agame of Othello are for determining
where moves can be made, and for playing said moves.

The getlLegalMoves function showsthatlegal moves can be determined by usingthe rules of Othello
(see Section 2.1.1); the program loops through the board array and determines if there are any
vertical, horizontal, or diagonal lines between the current empty space andany counters of the current
player’scolour.Ifalineis discovered that would also flip counters of the opponent’s colour, then the
move can be considered legal.

The method of determining legal moves shown above places each legal move coordinatein alist; this
isa decision|laterchanged, asthe final program usesan array of Booleans to describe where the legal
movesare found.

Meanwhile, the placeCounter pseudocode shows how the getLegalMoves method can be used to
ensure only legal moves can be played onto the board, while also ensuring new GameState objects
can be returned fromthe method. This meansthatthe created GameState is notlinkedto the current
GameState in anyway, and can be manipulated without affecting the original object.
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3.5.2 — Minimax Methods
Code structure based on pseudocode found at reference [17].

Decide Method:

Point decide(Player p, GameState g) {
int defaultDepth = 6
float bestScore = -«
Point bestMove = null
For each move in g.getlLegalMoves(p) {
float moveScore = getMinValue(g.otherPlayer(p), g.placeCounter(move, p),
depth - 1, alpha, beta)
If bestMove == null or bestScore < moveScore {
bestScore = moveScore
bestMove = move
}
}
Return bestMove

}

Thisis the standard decide method that all deciders must provide. Forthe Minimax player, the move
to play is decided by running a minimax evaluation on all of the available moves, and then selecting
the move with the highest score.

Minimaxing Methods:

float getMaxValue(Player p, GameState g, int depth, float alpha, float beta) {
If depth == @ { return evaluation of g }

float best = -»

For each move in g.getlLegalMoves(p) {
float moveScore = getMinValue(g.otherPlayer(p), g.placeCounter(move, p),
depth - 1, alpha, beta)
best = max(best, moveScore)
alpha = max(alpha, moveScore)
If beta <= alpha {
Return best
}

}

Return best

}

float getMinValue(Player p, GameState g, int depth, float alpha, float beta) {
if depth == @ { return evaluation of g }

float worst = «

For each move in g.getlLegalMoves(p) {
float moveScore = getMaxValue(g.otherPlayer(p), g.placeCounter(move, p),
depth - 1, alpha, beta)
worst = min(worst, moveScore)
beta = min(beta, moveScore)
If beta <= alpha {
Return worst
}

}

Return worst

22



The Minimax methods for determining the max/min value at a level of the game’s decision tree
needed to be recursively linked togetherin such a way that the correct one is called to correctly
evaluate the player’s or opponent’s moves. | made sure to correctly set this recursion up in my
pseudocode to ensure the implemented versions of these functions worked correctly.

Additionally, toimprove their performance asuitable pruning method needed to be selected; | chose
Alpha-Beta pruning, as it was easy to implement while providing a large gain in performance.
Furthermore, to ensurethe recursive calls end,abase case was needed to terminate the process once
a certaindepth was reached. This can be seen asthe firstline of the two methods above.

3.5.3 —Monte Carlo Tree Search Methods

Decide Method:
Point decide(Player p, GameState g) {

Create and initialise a tree structure, wich each node storing
a win counter and a total counter

While time limit is not exceeded {

TreeNode nodeToExpand = root of the tree

TreeNode[] trail = [ root of the tree ]

While nodeToExpand isn’t a leaf node {
nodeToExpand = child of nodeToExpand that maximises UCT score
Add new value of nodeToExpand to trail

Select a possible child of nodeToExpand, and create it
boolean victory = simulate(nodeToExpand’s new child)

For each node in trail {
If victory is true {
Increment win and total counters of the node
} Else {
Only increment the total counter of the node
}

}

Return the child of the root node with the highest win percentage

The decision process for the MCTS algorithm is notably more complex than any other decider. The
method above shows how the tree is constructed via the four main stages of the MCTS algorithm:
node selection, node expansion, game simulation, and backpropagation of results.?

1 For more information on these stages, see Section 2.4.2.
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Simulation Processes
boolean simulateHeavy(Player p, GameState g, TreeNode n) {

GameState current = advance g until it matches where node n is in the tree
Player playing = p

While current.isOver() is false {
Point move = run minimax evaluation on current to determine best move
current = current.placeCounter(move, playing)
playing = current.otherPlayer(playing)

}

Return current.isWinner(p)

}

boolean simulateLight(Player p, GameState g, TreeNode n) {

GameState current = advance g until it matches where node n is in the tree
Player playing = p

While current.isOver() is false {
Point move = select random move from current.getLegalMoves(playing)
current = current.placeCounter(move, playing)
playing = current.otherPlayer(playing)

}

Return current.isWinner(p)

}

Since | wanted to support both heavy and lightsimulationsinthe final MCTS algorithm | produced, |
created pseudocode forthe two ways of simulatingthe games. These methods represent the Monte
Carlo part of the MCTS algorithm, as they provide the algorithm with a large amount of simulation
data overtheirvarious executions to allow a decision to be made.

This pseudocode helpedme torealise animportant decision about the structure of my classes; as the
MCTS decider had to be capable of using the minimax methods for its heavy simulations, it also had
to be a subclass of the Minimax class to inherit all of the necessary functionality. This saved me a lot
of time, as| didn’t have to reimplement the minimax code into the MCTS deciderclass.

3.5.4 — Deep Learning Evaluator Functionality

Construction:

DeepLearningEvaluator(String annFilePath) {
Load saved ANN from the provided file path
Store the ANN in a private field for later use

}

Since | had decided to separate the ANN construction process from the actual Othello game, | knew
that for creating the DeeplearningEvaluatorclass, | only neededtore-load the created networkinto
the memory of the object at construction.
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Evaluate Function:

float evaluateClassification(GameState g, Player p) {
Pass the current game state to the loaded in ANN.
Receive the classification of the class.
Convert the classification into a scalar value, and return it.

}

float evaluateRegression(GameState g, Player p) {
Pass the current game state to the loaded in ANN.
Receive the result as a scalar value.
Return the scalar value.

}

As | initially expected to create both regression and classification networks, | created pseudocode to
show how both could be utilised as evaluation functions. Every evaluator must provide an evaluate
function that can return a value based on the game state and the playeritis provided. Though I didn’t
know the specificdetails of how the network would function atthe time, | was able to roughly predict
how the game state, playerandthe ANN would interact, based onthe ANN research | carried out.

3.6 — Deep Learning Framework and Approach

3.6.1 — Deciding how to Create ANNs

At the outset of the project, | was somewhat familiar with the Deep Learning process, thanks to my
studies. Aftersome research on how | could create an ANNs formy Al to utilise, | feltthatit would be
necessary to spend as much time creating and evaluating a variety of networks, as it was very much
an incremental process; determining how to structure the internal nodes of the network, choosing
how to provide the data to the network, and producing the networkitself is a very time consuming
process.

From this information, | determined that the best way to approach this stage of the project was to
first create a systemforeasily producing the networks using variousdata formats, network structures
and othervariables. Assumingthis system would allow for ANNs to be easily created, | could use the
remaining development time to evaluate and improve these ANNs for the project by experimenting
with different dataformats and network configurations.

-
i

Figure 4: Flowchart of how I created the ANNSs for the program. The evaluation of each ANN was to be used to improve the
next network that was produced.
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3.6.2 — Utilising an Existing Framework

Additionally, to reduce the amount of work required to implement the Deep Learning functionality
necessary forthe project, | chose to use a Deep Learning frameworkto provide some of the necessary
functionsforcreatingand using ANNs. | eventually settled on using the Deep Learning For Java (DL4J)
framework, which provided all of the functionality that I needed. | was able to download some of the
necessary JAR files from their website2, whilethe otherswere obtained via an automated dependency
manager known as Maven. However, this process took me some time; as | had never used Maven
before, solinitially didn’t know howto configure its filesand settings to deliver the JARs to my project.

Additionally, after | had successfully obtained all of the files necessary to begin using DL4J, |
encountered another problem that | had not expected; due to DL4Js small user base, it lacked any
extensive documentation about its various classes and functions, and only provided a short tutorial
for beginners?. This led to me spending a lot of ANN development time on debugging various DL4J
errors and researching how to utilise the framework via unofficial help articles. Though the offidal
DL4J website offered a help chat, the users within were less than friendly. Eventually, | gained a
sufficientunderstanding of the framework to allow me to use it in my project, but the process could
have been much smoother had there been more help available.*

2 Official website: https://deeplearning4j.org/

3 Tutorials availableat: https://deeplearning4j.org/quickstart

4] alsoused the tutorials fromthe following YouTube channel to aid my learning:
https://www.youtube.com/channel/UCa-HKBJwkfzs4AgZtdUuBXQ
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Section 4 — Implementation of the Game and Al Systems

With the necessary informationgatheredand the program designed, | set out to program the Othello-
playing Artificial Intelligence, and its associated classes, such as the Othello game state representation
and a graphical user interface. This section discusses they ways | went about implementing the
necessary functionality and the issues | faced along the way.

4.1 — Overview

To help organise theclassesinthe project, | divided the code into packages based on their usage; each
section will list the packages associated withiit.

e Deciders—Contains classes used to search through potential moves an Al player can make.
e Evaluators—Contains evaluation functions fordetermining the worth of agame state.

e Games— Contains classes thatrepresent Othello and enforce its ruleset.

e Learning— Contains deep learningfunctions and classes for creating ANNs.

e Main — Contains the main Othelloclass forrunningthe game.

e Players—Containsall the playerclasses used by the game.

e Ul - Containsclasses usedtodisplayinformationtothe screen.

e Util— Contains staticclasses containing useful methods.

4.2 —Game Logic Development
Relevant packages: Games, Main, Players

4.2.1 —Creating the Game Representation

| started development by creating the programmatic representation of the Othello game, which
mainly involvedimplementing and testing thefunctions of the GameStateclass. | began by adding the
methods required to allow a basic game of Othello to be run to the class, such as a constructor,
accessors for the various fields, legal move checks and counter placement operations. Once these
were in place, | created additional methods on top of these to provide an easier to use interface for
the Al player to utilise, including score calculation, victory or loss determination, and state
comparisons.

The biggest obstacle | encountered at this stage was determining where a player could play legal
moves; though | had pseudocode from the Design stage to show how to structure the algorithm, |
struggled to determine how to analyse if counters could be flippedin each direction from a selected
board space. The final version of the GameState class uses a series of for loops to evaluate each
horizontal, vertical and diagonal line from the selected space; though this way of brute forcing the
algorithmis notideal interms of efficiency, | have added code to terminate the check once the space
is confirmed as alegal move location. Additionally, since the GameState class uses an array of integers
torepresentthe board state, the comparisonsneeded forthese calculations can be carriedout quickly.
Some of the code usedinthe getLegalMoves method can be seen in Figure 5below.
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a certain direction

coordinate

private int getFlippedCounters(int initRow, int initCol, int deltaRow,
int deltaCol, int counterType) {

1ng counter and coordinate variables.

1a

/"/ 1r
int lineLength = 0;

int row = initRow + deltaRow;
int col = initCol + deltaCol;

// Loop to travel along the line specified by the delta parameters.

while (row >= 0 && row < boardSize && col >= 0 && col < boardSize) {

// Determine what counter 1is at the current locaation i the line.
if (getBoardValue (new Point (row, counterType) {
// Player's counter found, return number of counters
// between initial counter and this counter.
return linelength;
} else if (getBoardvValue(new Point(row,col)) != COUNTER_EMPTY) {
// Opponent counter found, increment number of counters on line
// that can be flipped.
++1linelength;
} else {

// Empty space found, no bracketing possible.
return 0;

}

// Move to next location.
row += deltaRow;
col += deltaCol;

}

// Edge of board reached, no bracketing possible.
return O;

Figure 5: The code used to determine how many countered can be flipped in a specified direction.

One major change from the design stage was that the legal moves function now provides a grid of
legal move locations, ratherthan a list of coordinates. | chose to do this to save space, as a 2D array
of Boolean values has a smallerrepresentationin memory than a list of Point objects. However, this
resulted in some Al code iterating over the Boolean array even after all legal moves were found,
resultingin wasted time. This way of returning legal moves from the GameState is something | would
change in the future, but works perfectly fineforthe currentimplementation.

Once the legal moves couldbe calculated, | was able to complete the playMove function, thusallowing
counters to be played onto the board of the GameState. | waited until the legal moves method was
complete sothatl couldimplementanimportant check within the playMove function; to ensure that
onlylegal moves can be played, the playMove function checks the coordinates passed to the function
to determine if they matchup with alegally allowable Othello move. Though this check seems simple
and even unnecessary, it acts as a full check to ensure the game logicis implemented properly, as
there is no other way of generating game states other than through this method, and thus no other
way toviolate the game’srules.Since an exception is thrown by the methodif anillegal moveis passed
to it, it can detect any errors in game logic understanding or Al behaviour, and has been helpful in
ensuringthe Al behaviouris correctlyimplemented. | chose toimplement this check instead of simply
trusting the behaviour of my game implementation as it allows for the accuracy of the ruleset to be
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easily evaluated, either by examining the legal moves providedin test game states, or by simulating
gamesto ensure they can be played.

The Othello class was also created early on in development. This class contains a main method that
allows for it to be executed, which runs all of the additional code needed to store and manipulate
GameStates to create a full Othello game. It received incremental updates over time as the number
of classes grew (as discussed in Section 4.3.2), and as more optional featured were implemented, but
at the beginning of the project it could create and run a basic Othello game betweentwo human
opponents, while following the rules of the game accurately.

To view the GameState during development while the GUI was notin place, | overwrote Java’s default
toString method forthe class to display the board layoutin the console. The Othello class then simply
printed out the GameState at each iterationof the game loop. Though the GUl was later implemented
and became the primary viewpoint used for the remainder of development, the console outputis still
available touse in the final program, should the GUI be disabled.

Players:
l. Human - &

Z. Human - 1

Turn Humber: 4
Enter the row you wish to place a counter at:

Figure 6: The text version of the Othello program's Ul.

Atthistime, lalsoimplemented the Player class,and created the HumanPlayer subclass forit. By using
Java’s Scanner class, the HumanPlayer can request the user to type in coordinatesin the console to
select where to place their counter. This allowed for full games of Othelloto be played usingjustthe
GameState, Othello and HumanPlayer classes.

4.2.2 —Implementing Caching

Since each GameState produces a lot of immutable data, | realised during development of the Monte
CarloTree Search deciderthat | could very easily cache importantinformation within the object, such
as the array of legal move locations or playerscores, to save computation time.
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* Internal method for determining the cache.
* /
private void cacheSetup() {

this.legalMovesCache = new boolean[2] [ this.boardSize] [this .boardSize];
this .hasLegalMovesCache = new boolean[2];

computeLegalMoves () ;

this.scoreCache = new int[2];

computeScores () ;

Figure 7: The main caching code, which is run at the object’s construction time.

The GameState caches the legal moves of each player, whether each playercan play a legal move or
not, whether the game is over, and the player’s scores. As calculating these values require iterating
overthe whole board, they are determined upon construction to speed up functions that require this
data, at the expense of increasing construction time of the object (though this is still quicker than
calculating the values after construction).

When this was initially added to the class, the data was correctly calculated and returned from their
corresponding functions. However, uponimplementing the MCTS algorithm into a decider, any player
that used said decider would return illegal moves to the main Othello program, as detected by the
GameState’s playMove method. When debugging the issue, | noticed the following odd behaviour:

e lllegal moves would only be returned after the first turn; the first move of the game would
always be legal.

e Printingout the grid of legal moves would display the legal move grid for the previous game
state rather than the currentone.

e The GUI wouldalsoshow incorrect spaces that the players could play on, evenfornon-MCTS
players.

Eventually | determined the root of the problem to be in the playMove function, specifically in the
section of code after the legal move check, as it wasn’t allowing the GameState’s caches to be
calculated correctly.

// Creates a copy of the current GameState to return.

GameState tempState = new GameState (this) ;

// Places the counter the player want to play.

tempState.placeCounter (id, move);

// Processes the flipping of counters from this point
for (int linesRow = 0; linesRow < 3; ++linesRow) {
for (int linesCol = 0; linesCol < 3; ++linesCol) {

int linelLength = lines[linesRow][linesCol];

int localRow = row;

int localCol = col;

while (linelength > 0) {

localRow += (linesRow - 1);

localCol += (linesCol - 1);
tempState.placeCounter (id, new Point (localRow, localCol));
--linelength;

/,,, y ,

Increment state turn number and re
tempState.incTurnNumber () ;
return tempState;

Figure 8: The initial code for the playMove function.
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Thissegment of code isruninside the playMove function. The code clones the current state, edits the
game board to reflect the move to be made, then returns the clone. | chose to carry out the game
state manipulation this way because of experiences | have had with programs that carry out the
change within the existing object (see Section 3.3). However, since the GameState’s caches are only
calculated at object construction, all the code beyond the first line shown above invalidatesthese
caches. To solve this, I simply added aline to re-clone the temporary game state before returning the
object, so that the caches are recalculated based on the newly-flipped counters.

This error was the hardest to debug and solve, as by the time the issues arose | had completed the
Game and Ul classes along with most of the Al classes, so the amount of code | had to potentially
search was vast. Thankfully, | was able to track downthe erroneous class and function by examining
the exception thrown by the playMove method, then printing out data at key points at runtime and
determining where the data could have been incorrectly handled, which led me to the incorrect
caches.

4.2.3 —Testing the Ruleset and Functionality

As features were added to the GameState class, | made sure to test them by using the text Ul, and
ensuredthat the values returned during asimple game of Othello were correct, such and determining
iflegal andillegal moves were detected, if scores were accurately calculated, etc. There were no major
errors discovered during this time.

Though | was confident from this developmental testing | had carried out that | had created an
accurate representation of the Othello ruleset, | wanted to confirm this by simulating the tournament-
level Othello games® using the GameState class. If most of the 100,000 games could be simulated
withouterror, it would be more than enough evidence to show that my Othelloimplementationwas
faithful to the official Othelloruleset.

5650 of the 117664 could not be resimulated accurately, so have not been included in the training/test datasets.
Failures from not matching the provided score: 32&7.

Failures from playing an illegal move: 413.

Failures from running ocut of scripted mowes: 0.

Failures from having scripted mowves left owver: 0.

Uncategoried failures: 0.

Successful simulation rate: 95.17269%

Figure 9: Results from the first simulation of the tournament games.

By usingthe NeuralNetDataHandler class® to run through the Othello game dataset, | soon discovered
that most of the games were able to be fully re-simulated, with a 95% success rate. However, | was
surprisedto see so many games fail to run due to providinganincorrect score. When examining the
dataset of Othello games, | noticed that any tournament games that ended in a draw automatically
changed the score to 32-32, while games that ended prior to the board being filled then added the
number of empty spacesto the winning player’sscore. (i.e. agame endingat 59-1 would become 63-
1)

5 These are the games | had gathered for the Deep Learning portion of the project, see Section 4.5.1.
6 A class created during the Deep Learning portion of the project that validates scripts of completed Othello
games by re-simulating them. See Section 4.5.1 for more.
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/*x'
* Counts the scores of both players and stores them in a cache.
*/
private void computeScoresOld() {
this.scoreCache[0] = scoreCount (COUNTER DARK) ;
this.scoreCache[l] = scoreCount (COUNTER LIGHT) ;

* Counts the scores of both players and stores them in a cache.

private void computeScores () {
boolean gameOver = isOver();
this.scoreCache[0] = scoreCount (COUNTER DARK) ;
this.scoreCache[l] = scoreCount (COUNTER LIGHT) ;
if (gameOver) {
if (this.scoreCache[0] > this.scoreCache[l]) {
this.scoreCache[0] += getEmptySpaces|();

} else if (this.scoreCache[0] < this.scoreCache[l]) {
this.scoreCache[l] += getEmptySpaces();

} else {
this.scoreCache[0] = (boardSize * boardSize) ;

/ 2
(boardSize * boardSize) / 2;

this.scoreCache[1l]

}

Figure 10: The old and new versions of the score calculation code. The scoreCount() method simply sums the counters of a
given colour on the board.

413 of the 117664 could not ke resimulated accurately, 3o have not been included in the training/test datasets.
Failures from not matching the provided score: 0.

Failures from playing an illegal mowe: 413.

Failures from running cut of scripted moves: 0.

Failures from hawving scripted mowves left over: 0.

Uncategoried failures: 0.

Successful simulation rate: 99.645%

Figure 11: Results from the second simulation of the tournament games.

| quickly added new code to correctly determine the score in these cases, and re-ran the
NeuralNetDataHandler code, which returned a >99% success rate with no errors due to incorrect
scoring. Thankfully this scoring error was caught before the Deep Learning work was carried out, so
the resulting ANNs were not affected by the old score calculation system.

As for the remaining 413 games, | discovered an article by Patrick Lea that discussed the tournament
games dataset:

“I still haven't figured out what it means for Black's score when the game ends before neither player
canplay a piece. The score seems inconsistent. This only occurs in 406 of 107,473 games. (Not a big
deal.)” — Patrick Lea (18]

Itseemsthat some games end before an official end to the game occurs, possibly due to the opponent
forfeiting. Though my re-simulations have more than 406 broken games, | believe this is due to the
factlam usingamore up to date database of games, that may contain slightly more of these erroneous
games.
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4.3 — Ul Implementation
Relevant packages: Main, Ul

4.3.1 —Final Othello GUI

|£] BlancheNoire - X

6 w1

Flayer1 DOpening Phase  Player 2
(Tums passed: )

Player 2, it is your turn

Figure 12: A screenshot of the GUI being used to run a game between human players. The game state is identical to the one
seenin Figure 5.

After finishing the GameState implementation, | was able to quickly implement the GUI | wanted to
for the program, thanks to Java’s built-in packages for GUI creation. The final layout of the GUI is
almostidenticaltothe initial draft (see Section 3.4), because as | was implementing the various panels
that make up the game window, | feltthat there was no need to complicate the GUI any further; the
Othelloboard can be easilyseen, while importantinformation such as the turn numberand the player
scores are also clearly visible.

There are some important changes made fromthe initial design’; spaces on the Othello board where
a player can make a move are colouredina slightly darkergreenthanthe otherspaces, while asmall
triangle is displayed over the player who is currently taking their turn. Additionally, the number of
turns that have passedis shown at the top of the screen, along with the phase of the game.®Finally, |
titled the program “BlancheNoire”, afterthe colours used for the countersin Othello.

Internally, the only change from the design stage is that an extra Frame class called OthelloFrame was
createdto hold the three Panel objects. This allowed forfunctions such as the drawing and updating
methods foreach panel tobe tied togetherinto one method. Adding this class also allowed for easier
implementation of the mouseinput functions, which allowhuman players to click where theywant to
play a counter.

| encountered no major problems when creating the classes used by the GUI, due to the usability and
accessibility of Java’s interface classes.

7 The initial design referred to inthis sectionis foundin Section 3.4.1.
8 The phases shown areidentical to the phases defined by Ted Landau in Othello: Brief and Basic; see Section
2.1.2 for information on phases.
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| £/ BlancheNoire — X

20 - 12

Flayer1 Midgame Phase Player2
(Turmns passed: 28)

Player 1, itis your turm.

Figure 13: Another screenshot of the Othello GU! in use, this time with a game being played by a human and an Al.

4.3.2 —Command Line Interfacing

One aspect that became more complex than | expected was the Othello program’s ability to accept
command line arguments to alter the behaviour of the game. As development progressed, more
features needed to be changeable by a user at the launch of the program.

Since the Al players need to be composed from Decider and Evaluator classes, being able to change
these classes — along with additional arguments that affect their behaviour — was a necessity.
Furthermore, | wanted to provide the ability for other options to be changed, such as the visibility of
the GUI, or whether games are archivedto a text file upon completion. To do this, | added a section
of code in the Othello class to parse through the arguments passed to the main method and store
each ofthem, as longas they followed the format (-x y), so that an argument with the label x had the
valuey associated withit. Then, ladded acheck for each changeablevaluein the program, and altered
the associated variables the corresponding argument labelhad been passed to the program.

The main problem with this systemis that it requires arguments to follow a strict format, oth erwise
erroneous datacan be passedtothe program. | have validation checksin place to ensure that data is
of the correct type and range, and if an argument cannot be accepted thenthe user will be notified.
Additionally, player arguments are passed to the PlayerFactory class, which has numerous checks in
place to ensure the correct Human or Al playeris created.

Thanks to the flexibility of the program, performing tests and evaluation work on the system and its
functionality has been easy to do. Though altering the program could be made easier, the current
command line argument system is serviceable. A full list of the program’s arguments is provided in
Appendix D, andis also available inatextfile alongside the main code of the program.
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4.4 — Al Programming
Relevant packages: Deciders, Evaluators, Players

4.4.1 —Initial Al Setup and Testing

Creatingthe AlPlayer class was simple enough, as it was an extension of the Player class, that to ok two
additional arguments for a Decider and Evaluator on construction. These would then be used when
the Player’s decide function was called without needing adifferent function call, so that the interface
of an Al playerwould match that of all other players.

Before implementing any specific algorithms, | created abstract classes to define the interface that
each Deciderand Evaluator would have to use, so that no additional code needed to be builtinto the
AlPlayerclassto handle different classes and algorithms.

| started the Decider creation process by implementinga Random decider, that would simply selecta
random move from the legal moves available and would play it; as this decider did not need an
evaluatorto make its decisions, it allowed me to brute force test the game state and the game’s GUI
prior to implementing the first evaluator. Due to the short amount of time taken for two Al players
usingthe decidertocomplete agame, | was able to run many games to test how well the GameState
and GUI were implemented.

Following the successful tests using the Random decider, | moved onto implementing the Minimax
decider. Thiswas animportant stepping stone between the Random deciderand the MCTS algorithm
for a fewreasons; not only didit allow me to learn how to create an Al that analyses GameStates by
looking numerous moves into the future, butit also provides a more suitable comparison for the MCTS
algorithmthan the Random decider would have.

Despite my intentions to only create one Minimaxdecider, aninterestingissue withthe way AlPlayer’s
are defined led me to create two variants of the same algorithm. When created, an AlPlayer is
provided with a maximum timethatit can spend determining the move it wants to make. Though this
time is more of a guideline than anecessary limiter, the Aldoes need to begin haltingits calculations
once the time is up. For a traditional minimax algorithm, this would mean halting the algorithm
without evaluating some moves, thus leading to potentially worse gameplay. This could be solved by
iteratively deepening the search depth, while storing the results for shallower depths to be used in
the eventthatthe Alisforcedto halt.

To that end, | created the Fixed Minimax and Iterative Minimax deciders, so that | could use the more
appropriate one when necessary. The Fixed decider willimmediately search to the maximum depth,
but can be cut off and return poor evaluations of unexplored moves. Onthe other hand, the Iterative
version will always return a somewhat accurate evaluation, but cannot search as far down a tree as
the Fixed player can. The maximum depth either type of Minimax decider can search to is set to 6
movesintothe future, butthis can be changed viacommand line arguments. Though neither of these
Deciders were necessary to create, the knowledge of Othello and Minimax Al behaviour | learned from
developingthem was incredibly useful for creating the MCTS decider.

To ensure that these Minimax deciders functioned correctly, | ran various tests to check that any Al
players using a Minimax decider could competently play the game. During these tests, any players
with an odd maximum depth would return poor move choices; by printing out debuginformation and
examining the code, | determined that this was a result of the algorithm evaluating the game state
with respect to whatever player was playing at the maximum depth. This resulted in players withodd-
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numbered max depths playing move that were beneficial to the opposing player instead of
themselves. After fixing this errorand running more tests, the operation of the Minimaxdeciders was
completely fixed, and as a result | was confident that the implementation of these deciders was
accurate.

Two evaluators were also created during this initial Al development stage; the Score evaluator
provided a valuation on the game state depending on how much the player was beating their
opponentinscore, while the Positional evaluator uses a more complexcalculation that assigns comer
and edge piecesahighervaluethan other pieceson the board.The Score evaluator was mainly created
as a placeholder, while the Positional evaluator represents an evaluation function based on the
research | didinto how humans determine the worth of agame state (see Section 2.1.2).

4.4.2 —Monte Carlo Tree Search

Once | had completed the Minimax deciders, | had all of the knowledge | needed to implement the
Monte Carlo Tree Search algorithm as a decider class. The class was programmed to match the
behaviour of the algorithm | had researched (see Section 2.4.2).

Initially, | created an inner class to be used to create the search tree while also storing the win/loss
data, along with asimulation function for running playouts from a specified game state, and amethod
that created the whole search tree and ran the required simulations.

While creating these functions, | carried out tests to ensure that they functioned correctly, as it was
easier to ensure the whole MCTS algorithm worked by first examining the functions it’s made up of.
As the simulation function can take an initial game state, apply legal moves to it without causing an
error for playing illegal moves, and return the correct data based on the outcome, it was simple to
confirmits functionality.

Since the algorithm also maintainsa GameState representing the current tree node when creating and
navigatingthe tree, the same errors that occur when illegal moves are played would be thrown when
the tree incorrectly expanded. There were some initial tree navigation errors that | discovered and
fixed, fromthe tree not factoring occasions whena player would have to pass their go, to altering the
backpropagation algorithm to correctly update all affected nodes, but after these alterations to the
code, the tree was correctly constructed and evaluated. Thankfullyl didn’thave to resort to visualising
the constructed tree to ensure the structure and logic were correct, as that would have used a
considerable amount of development time.

EITHCIS, Positiconael) « Hove chosen: (7,0). ocofe: —7.0. Wil porcontage: ob.o0lolololololols. I13095ims/ o22oms;
LI({IterativeMinimax, Positiconal): Move chosen: (7,1). Score: 2Z.5. Depth reached: &. (N/ms:- 1&3)
BRI ({MCTS, Positicnal): Mowe chosen: (0,7). Score: -5.5. Win percentage: 92.44804316546763%. 1l644sims/S5078ms;

BI({IterativeMinimax, Positional): Move chosen: (0,2). Score: 0.5. Depth reached: 6. (N/ms:- 16%9)
BRI ({MCT5, Positional) @ Mowve chosen: (0,3). Score: -£.5. Win percentage: 97.30941704035874%. 189%1sims/5031ms;
LI {IterativeMinimax, Positional): Move chosen: (1,8). Score: -1.0. Depth reached: 6. (N/ms:- 17&)

Figure 14: The output produced by two deciders for each move they select.

The outcome of the algorithm can be seen when the Al output is displayed during the Othello
program’s operation. The win percentage displayed by the MCTS decider shows how often the
provided move led toa victory in the simulations that were run. Initially,  had programmed the Al to
selectthe move withthe highest number of total simulations instead, as | believed thatit was a better
measurement of the most promising move. | soon found out through some tests | ran that selecting
the move to play based on the win percentage resultsinamore proficient Al.
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However, atthis stage | discovered that the MCTS performs poorly if it cannot run enough simulations
to gather the necessary data, which can occur on weaker computers. Tocombat this, | implemented
some optimisations to improve search times, such as the previously mentioned data caching in the
GameState class (Section 4.2.2), which helped to improve the decider’s ability to run on slower
machines.

One | had completed the initial implementation, | also realised that there were numerous values in
the MCTS algorithm that could be changed to affect the algorithm, such as the simulation type. |
allowed additional arguments to be provided to the MCTS’ constructor to alter its behaviour, along
with enabling users to set these values via the command line argument system. This adds to the
customisability of the Al system, while also allowing for different variantsof the Al to be tested against
each other, which was beneficial in evaluating the final results of the project. The following MCTS
settings can be changed:

e Simulation Type—The types of simulations that the MCTS uses to constructits search tree can
be changed to use heavy simulations (simulationsuse the move chosen by minimaxfrom each
state to determine how the game would play out), or can be left as light simulations
(simulations selectarandom move from the current state to play the game).®

e Maximum Number of Simulations — The number of simulations used by a MCTS decider can
be capped, to decrease the amount of time required forthe decider to make amove.

e Random Move Chance —To add a small element of randomness to heavy simulations, avalue
between0and 1 can be used to determine how often the simulation should ignore the move
chosen by minimax and use an “imperfect” random move.

e Minimax Quality—The two arguments for minimax depth and the time to spend minimaxing
are only used whenthe MCTS decideris setto use heavy simulations. They can be changed to
increase the accuracy of the produced simulations, and the expense of the number of them
produced, orvice versa.

Detailed information on how these arguments change the operation of the program can be foundin
AppendixD.

Overall, programming the MCTS was quite a challenge due tothe amount of debugging| carried out
to ensure thatthe system was working correctly, fromprinting out allthe legal movesand their victory
percentagesto ensure thatthe right move was being selected, to running the Al withtest GameStates
to check how it determined what move to play in various situations. The result of this processis a
competent decider algorithm that can extensively search the game space, and provide the optimal
move to play withoutaneed forthe game’srulesto be explicitly encoded toit.

? Pseudocode for the functionality of these types of simulations can befound in Section 3.5.3.
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4.5 —Deep Neural Network Development
Relevant packages: Learning, Players, Games, Util

4.5.1 — Utilising the Tournament Dataset

An important ingredient for any Deep Learning process is to acquire enough data for the ANN to
analyse and trainitself with.As Othellois notavery popularboard game, | was initially worried about
my chances of finding a suitable dataset, but | eventually discovered the French Federation of Othello
websitel®, which keeps a large database of over 100,000 Othello games from various tournaments
thatisfree forpublicuse, which was more than enough datafor creatingan ANN.

However, once | downloaded the games | noticed they were stored in a file format | had never
encountered before. The .wtb file format that the games came in could only be opened using Win-
Test!!, whichisapiece of software used to log tournament results. By downloading the necessaryfiles
and a free copy of the Win-Test software, | was able to open the game databases for each year of
competition.

However, Win-Test did not provide any tools for extracting the sequences of moves and final scores
from the database, which led to me having to manually copy each tournament tableinto a text editor,
strip away the unnecessary data, and save the resulting list of games. Additionally, | had to find an
olderversion of Win-Test for some database files, asthey were not supported by the newerversion.
Furthermore, the trial version of Win-Test encourages you to purchase the full version by randomly
terminating the program at any point after half an hour of use. Thankfully, | only needed to use the
software fora short time, and | eventually converted the database tablesinto a usable dataformat.

The next step was to load these games into a program and reformat them into data for the deep
learning process. | began by creating a new class called the NeuralNetDataHandler for this purpose,
and wrote some file readingand writing commands into a class called FileTools, as | expected to make
many calls to the file system over the dataformatting process.

The NeuralNetDataHandler beginsby converting the data extractedfrom the databaseinto a standard
Othello game format | have created, which is comprised of alist of the coordinates of the moves made,
followed by the final scores of the games, and the dimensions of the game board. | chose not to
provide any information about which player carried out each move, as | felt that my implementation
of the game logicshould be able to correctly identify the player without the information.

Once the games are convertedintothe standard format, they are loaded into GameScript objects for
validation. The GameScript class was created to allow any archived game written in the format
mentioned above to be examined and re-simulated. It stores the list of moves made, and can create
a GameState from any point in the game. Its primary use in the NeuralNetDataHandler code is to
simulate each game from the tournament database to ensure that the GameState logic has been
implemented correctly, and to remove any erroneous games. 12

Once the games are validated,they are splitinto training and testing sets. The training set of games is
used when constructingthe ANN, while the testing setis used afterthe construction to evaluate the
network’s accuracy.

10 Availableat: http://www.ffothello.org/informatique/la-base-wthor/
11 Official website: http://www.win-test.com/
12 For more details on the validation of the rules in the GameState class, seeSection 4.2.3.
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The final step of the NeuralNetDataHandler is to iterate through each game in the training/testing
data sets, split them into the GameStates that they are composed of, and create a binary
representation of them. The representation | chose forthe GameStatesis astring of 128 bits, witha 1
representingthe presence of acounter, while aOrepresents an empty space; thefirst 64 bits are used
toshow the presence of dark counters, whilethe last 64 bits are used for light counter representation.
The deep learning processrequires datato be inthisformatasittellsitwhich nodes in the input layer
of the ANN should be activated or not.

| also chose toinvertthe board state to create additional dataforthe learning process, as any Othello
game state can be inverted (i.e. dark counters are inverted to light counters,and vice versa) to create
anotherlegal Othello state.

When writing the data to the final csv files, the program must also provide a label to each binary
representation of agame state to allowitto be usedto train or testan ANN. However, as | wanted to
explore what type of labelling was more effective, | created two different label formats, which are
referred to by the NeuralNetDataHandler as Data Format 2 (DF2) and Data Format 3 (DF3).*2 DF2 labels
each piece of game state data witha 1 if the player controlling the dark counters won the game the
state belongsto, or a 0 if they did not. DF3 tracks the number of times each state appears, and stores
the win/loss ratio for the dark counter playerin each case. The win percentages for each state that
appeared are then calculated, and the label applied to each state is based on the bin that the win
percentage fell into; the number of bins created in this process is equal to the ceiling value of the
average number of times a state appearsin the data set, plus 1.

The only problem | encountered with creating the necessary data was that my computerstruggled to
hold all the gamesin memory during the process; though I was able toincrease Java’s maximum heap
size tosolve the problem, | alsoimplemented various measures to minimise the amount of data used
by the process by clearing unnecessary objects out of memory with manual calls to Java’s garbage
collector.

The NeuralNetDataHandler class can be run from the command line, and requires various arguments
to specify the datasetsit uses, the functions carried out, etc. It should be run before constructingan
ANN so that the data isadequately prepared.

4.5.2 —Creating an Artificial Neural Network

With the DL4J framework installed!* and the data formatted, | could begin work on creatinga neural
network construction class. As it is completely infeasible to build and train an ANN at launch of an
Othellogame, an additional class was needed train and testthe ANN, along with saving the network
to a file for later use. The NeuralNetFactory class was created to serve this purpose; the class allows
for the sources of trainingand testing data, the network structure to use, and operation types to be
altered with command line arguments, and it saved finished ANNsin a ZIP file, along with a statistics
file for each network.

The ANN construction process begins with the training data set being loaded in from the provided
training directory; the data set is splitinto numerous CSV files due to the number of records, so a

13 Data Format 1 will notbe discussed in this report, as itwas ultimately unsuccessful at producing the correct
label data.
14 See Section 3.2 for more information on the DL4J framework.
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temporary merged file of all of them is created. This file is then loaded into a DL4) DataSetlterator,
which allowsitto be used by the neural network duringtraining.

After this, based on one of the program arguments, a neural network configuration is selected; a
configuration consists of a series of settings for the different attributes of a network, from individual
values such as the learning rate and the optimisation algorithm, to the layout and types of hidden
layers. Thisis then usedto create afull neural networkin memory, thatisthen given the training data
to learn from. The training continues until the required number of epochs (the number of passes
throughthe training data) have been carried out.

Afterthe training phase, the testing dataisloadedin and applied to the network. This stage tests how
often the created neural network can accurately predict the labels of the testing data, given the
knowledge ithaslearntfrom the training data. The statistics from the testing process are saved to a
text file after the process, which provides details on how many times the network returned correct
and incorrectreadings, how far off the correct answer it was each time, etc.

With the training and testing complete, all that remainsis to write the network to the ZIP file, which
can be doneviaa built-infunction forthe ANNs produced by DL4)’s framework. This storage method
allows foreasy saving and loading of the networks, with no change to the internal structure after re-
loading asaved network.

4.5.3 —Combining an ANN with the DeeplLearning Evaluator

// Get output from the ANN.

INDArray result = net.output (game.toINDArray(p.getPlayerID(),
game.getOpposingPlayer (p) .getPlayerID()), false);

int numlabels = result.shape()[1l];
if (numLabels > 1) {
=5 a composite score by multiplying the label by the probability that it

is that label.
float weightedScore = 0;
for (int i = 1; 1 < numLabels; ++i) {
weightedScore += (result.getFloat(0, i) * 1i);

}
return (weightedScore * (100/ (numLabels-1)));

} else {
return (result.getFloat (0, 0) * (100));

}

Figure 15: The code usedto query the ANN and return a score from the Evaluator's evaluate() function. The function returns
a score between 0 and 100 based on its confidence that the player can win from the game state.

The finalised ANNs can be used by the DeeplearningEvaluator class, which as the name suggests can
be used as an evaluatorforan Al player. The classisinstantiated by providingit with the file path of a
saved ANN file, whichisthenloadedintothe DeeplearningEvaluator object. Any calls to the evaluate
function of the DeeplearningEvaluator convert the provided GameState to a ND4J array®®, which is
passedto the ANN to evaluate.

Once the ANN finishes its evaluation and returns its values, the Deep Learning (DL) evaluator then
determines how to return the result, by using the segment of code shown in Figure 15. The DL4J ANNs
can return multiple scalarvalues toshow how likelyitis that the provided data belongs to a specified
class if a classification network is used, so the DL evaluator then computes a composite score from
each of the classification values. The evaluatoralso supports regression networks, which only retum

15 The ND4J (N-Dimensional Arrays for Java) packageis partof the DL4) framework.
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one scalarvalue fromtheir ANN operation; as aresult, this value can be directly returned from the DL
evaluator.

4.5.4 —The Mass Network Production Phase

Withthe NeuralNetFactory complete, | could move into the experimenting phase; | quickly set outto
make various neural networks using different parameters and data to determine how to create the
most effective ANN. However, | soon discovered thatthe main challenge in creatingintelligent ANNs
arises from two places; choosing the data format to use, and determining the best structure for the
neural network to use.

As previously mentioned, | created two reliable datasets using the NeuralNetDataHandler, which
solvesthe first of the problemslfaced. Onthe other hand, DL4J offers amassive library of features to
create and alterthe neural network structure, and as a result| had to quickly learn how to create an
effective network structure forthe data | had; the network had to have 128 input nodes for the 128-
bit GameState representation, and had to have output nodes equal to the number of unique labels in
the data. Every othervalue was left to me to decide, but with my lack of knowledgein this area, this
proved quite difficult.

The final networks produced from the network structures | created are likely far from optimal, but |
was able to create network structures | am confident in thanks to an article written by a developer
called Erik Bernhardsson about his experience with developing a neural network for playing chess,
which is somewhat similar to my project. Init, he discussed the various layouts used when creating
his network, includinga “3 layer, deep 2048 units wide artificial neural network” (**1, which he used as
the number of links between the various layers allows for better accuracy in the network’s evaluations
of the provided game states. | have adapted a similar network structure to provide the ANN with
thousands of additional links between nodes, that should in theory improve the accuracy of said
networks. | chose to utilise asimilarnetwork structure to the one Bernhardsson discussed due to the
similarities between the applications of the network, and because it appeared that a wider network
provided more opportunities to finely tunethe network. | have alsoused smaller networksto test how
the decision process is effected by network width and depth.

Finally, | also had to decide which of the major deep learning approaches | was going to use;
classification or regression. Both can produce results that the DeeplearningEvaluator can use, and
regression seemed to bethe best fitbecauseit produced ascalarvalue, similarly to the other Evaluator
classes. However, because the data |l had gathered was better suited to a classification-based network,
and that | was unable to create any regression-based networks due to difficulties with using the
associated DL4J libraries, | shifted my focus to only producing classification networks.

Despite the setback of not beingable to create regression ANNs, the results of the network creation
process have been promising; ANNs can now easily be created for use with the Othello program by
any user, and are correctly loaded intoand used by the Evaluator class. The speed of said Evaluatoris
also similar to existing evaluation classes, which allows it to be used alongside Minimax and MCTS
deciders without drastically impacting theirruntimes.
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Section 5 — Evaluating the Al’s Potential

In this section, | will be discussingthe results of the varioustests| carried out on my Othello -playing
Al to determine the extent of its game playing capabilities. As | have already confirmed the accuracy
of my Othello implementation (Section 4.2.3), and that the Al decision algorithms are implemented
accurately (Section 4.4), the following experiments will focus solely on evaluating the game-playing
ability of the various Al classes and ANNs | have created.

For all the experiments run in this section, | used my Othello’s programs arguments system to
automatically run multiple games with the samesettings, allowing for easycollection of the necessary
data. To remove any bias from the data because of one player always starting firstin each game, | also
enabledthe alternation setting of the program, which swaps the playerthat takes their go firstin each
game.

The hardware and software of the computer| used forthese evaluationsis as follows:

e Processor:Intel Core i5-4690K @ 3.5GHz
e Graphics Card: NVidia GeForce GTX970
e RAM: 16GB of DDR3 1666MHz RAM

e 0OS:Windows10

e Javaversion:v1.8.0 131

e DL4J version:v0.8.0

5.1 — Al vs Al Evaluation

To begin the evaluation process, | first decided to evaluate the decider classes against each other to
discover how capabletheir decision abilitieswere. This meant running experiments using the following
Deciders:

e RandomDecider

e FixedMinimaxDecider

e IterativeMinimaxDecider

e MonteCarloTreeSearchDecider

The Positional evaluation function was used in these experiments, to ensure each Al used the same
game state evaluation, so that the performance of the Decider was the deciding factor between the
Al players.

5.1.1 — Experiment 1: Random vs Fixed Minimax
As a preliminary experiment, | compared the performance of the intelligent Fixed Minimax algorithm
against the basic Random move selection algorithm.
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Results:

Experiment 1: Random vs Minimax Player 1 Player 2
Decider Random FixedMinimax
Evaluator Positional Positional
Victories 4 45
Win Percent 8% 90%
Total Games ‘ 50 | Draws ‘ 1

Notes: The FixedMinimaxDecider’'s maximum search depth was set to the default of 6.

As expected, the Fixed Minimax player was able to outplay the Random move playerin 90% of games;
the Random decider lacks any structure or reasoning to its chosen moves, and likely only outplayed
the Minimax playerinthe other games due to sheerluck.

5.1.2 —Experiment 2: Fixed Minimax vs Iterative Minimax
To evaluate the performance of both Minimax deciders, | carried out two different experiments to
determine how the behaviour of the algorithm changed as the search depth was increased.

Results:
Experiment 2A: Fixed Minimax vs Iterative Minimax (Depth of 8) Player 1 Player 2
Decider FixedMinimax IterativeMinimax
Evaluator Positional Positional
Victories 29 10
Win Percent 72.5% 25%

Total Games | 40 | Draws | 1

Notes: Maximum search depth for the FixedMinimax and IterativeMinimaxdeciders was setto 8.

In this test, the Fixed variant of the Minimax algorithm won 72.5% of the games, while the Iterative
variantwon only 25% of the time. | chose the depth of 8 asit allows for the deciders to examine many
moves, while also ensuring they complete their minimaxing operations within the 5second time limit
that Al player must choose a movein.®

Results:
Experiment 2B: Fixed Minimax vs Iterative Minimax (Depth of 12) Player 1 Player 2
Decider FixedMinimax IterativeMinimax
Evaluator Positional Paositional
Victories 32 g
Win Percent 80% 20%

Total Games |

40 | Draws

Notes: Maximum search depth for the FixedMinimax and IterativeMinimax deciders was setto 12.

16 For more information on the operation of the Minimax algorithms, see Section 4.4.1.
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For the other maintest on the Minimax deciders, | set the maximum depth of the decidersto 12, so
that they would most likely be unable to complete their minimaxing within the time limit, due to the
number of game statesto search. Due to this time cut off, | expectedthe FixedMinimax to make many
poor decisions leading to it losing numerous games. However, in the end the Fixed variant of the
Minimax decider won 80% of the games, thus achieving a larger win margin than the smaller depth
test.

Asthe IterativeMinimax algorithmrepeats many of its minimax calculations whenincreasingitssearch
depth (sinceitlacks atranspositiontableforstoring priorresults), it wastes alot of its potential search
time. Onthe otherhand, the FixedMinimax algorithm searches directly to the maximum depth when
examiningamove; eventhoughitwill notbe able to evaluate every possible move, the onesthatare
evaluated will be more informed about the future game state than any evaluation the
IterativeMinimax algorithm could produce. Additionally, as the end of the game approaches, the
maximum searchable depth decreases, and since the Fixed algorithm searches through states depth
first, it will take advantage of this smallersearch space toimprove its calculations before the Iterative
algorithm can. The endgame phase of Othellois where many of the mostimportant moves are made,
so it’s likely that the Fixed decider’s improved foresight at the game’s end allowed it to improve its
victory chances.

To analyse the effect of changingthedepthatlowervalues, | ran more tests with varying depth values,
and graphedthe results:

Win Rates in Fixed vs lterative Experiments

100% 100% 100%
100% 92.50%
90% 80%
O 70%
<
E 60%
w
O 50%
w
a 40%
5%
g 30% ° 20%
20%
7.50%
10% 0% 0% 0%
0%
2 4 6 8 10 12

MAXIMUM SEARCH DEPTH
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Figure 16: A graph showing the win rates of the Fixed and Iterative minimax deciders as the maximum search depth varies.

Overall, the IterativeMinimax decider is more effective at lower depths, likely because the deciders’
evaluations are not affected by the time cut off whatsoever, plus since the minimax players have no
randomness to them, the same games are played repeatedly, resulting to the 100% win rate for the
Iterative decider. However, as the maximum search depth is increased, the Iterative algorithm’s
performance decreases, and the Fixed variantis able to defeatit more and more often.

For future tests requiring acomparison with a Minimax algorithm, | decided to use the FixedMinimax
decider, since the experiments required giving the Minimax decider a deep search depth to compete
with the otherdeciders.



5.1.3 —Experiment 3: Fixed Minimax vs Monte Carlo Tree Search

The final Al typeto evaluate was the Monte Carlo Tree Search decider; | conducted two tests by playing
it againstan Al playerusingthe FixedMinimax decider. Foreach test, | set the MCTS deciderto use a
different methodof running the simulations that are uses to build its search tree, to evaluate how that

impactedits performance.

Results:
Experiment 3A: Minimax vs Monte Carlo (Heavy Simulations) Player 1 Player 2
Decider FixedMinimax MCTS
Evaluator Positional Positional
Victories 3 17
Win Percent 15% 85%
Total Games | 20 | Draws | 0

Notes: Iterative Minimax decider had a maximum search depth of 8. MCTS deciderwas instructed to
run heavy simulations (i.e. using minimax to determine movesin the simulationsitran) to a depth of
three at each move. It also had a random simulation move chance of 0.01, a minimax time of 5,and a
maximum simulation count of 10,000.%7

This test had the MCTS decider use the more intelligent way of running simulations, as it used a
minimax algorithm to predict how the games would progress withinthe simulationsit ran.® The MCTS
alsotakesanargumentfora probability value, which determines how often arandom move is chosen
as the next step of the simulation instead of the optimal minimax-selected move; forthis experiment,
it was set to 0.01, so that some variance in the moves used occurred. The Minimax algorithm used
within the simulation was also given a depth that allowed it to evaluate states a few moves into the
future, sothat it could compete with the MCTS algorithm.

The results of the experiment are quiteclear; the MCTS decider defeatedthe Minimax deciderin 85%
of the games that were run, which was one of the largest victory margins | had seen at this point in
the evaluation process. Clearly, the MCTS algorithms ability to choose moves based on their
probability of victory can outwit the Minimax’s logical approach to selecting moves.

Results:
Experiment 3B: Minimax vs Monte Carlo (Light Simulations) Player 1 Player 2
Decider FixedMinimax MCTS
Evaluator Positional Positional
Victories 6 14
Win Percent 30% 70%
Total Games 20 Draws 0

17 These values arearguments for constructingthe MCTS decider. For more information, see Section 4.4.2 and

Appendix D, Subsection 3.

18 For more information on the types of simulationsavailable, seeSection 4.4.2 or Appendix D, Subsection 3.
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Notes: Iterative Minimax decider had a maximum search depth of 8. MCTS deciderwasinstructed to
runlight simulations (i.e.usingrandomto determine moves in the simulationsitran). It was also given
a maximum simulation number of 10,000.

Meanwhile, the other experiment | ran using this matchup used a MCTS decider with alessintelligent
simulation method; each movein thesimulationsrun by this MCTS algorithm used completely random
moves instead of ones chosen via Minimaxing. This makeseach individual simulation less accurate, as
the randomly chosen movesmay neverbe considered by an intelligent opponent, but allows for more
simulationsto be run, thus balancing out the lack of an informed move selection with alarge sample
size.

This variant of the Monte Carlo Tree Search was also able to handily defeat the Minimaxdecider, with
a 70% success rate. Ultimately it appears that the lowered accuracy of the simulations does affect the
MCTS algorithm’s effectiveness, as the win marginin thistestis notably smaller than the previous test.

5.1.4 —Experiment 4: Monte Carlo Tree Search Comparisons (Simulation Type)
As a follow-up experiment to the previously experiment, I ran a test to evaluate which method of
simulating games used by the MCTS resultsin the best performance againstanother MCTS decider.

Results:
Experiment 4: MCTS Comparisons (Simulations Type) Player 1 Player 2
Decider MCTS (Random) | MCTS (Minimax)
Evaluator Positional Positional
Victories 25 15
Win Percent 62.5% 37.5%
Total Games | 40 | Draws ‘ 0

Notes: Player 1's MCTS decider was instructed to run heavy simulations (i.e. using minimax to
determine moves in the simulations it ran) to a depth of three at each move. It also had a random
simulation move chance of 0.01, a minimax time of 5, and a maximum simulation count of 10,000.
Player2’s MCTS deciderwas instructed to run light simulations (i.e.using randomto determine moves
inthe simulationsitran). It was also given a maximum simulation number of 10,000.

Surprisingly, the lessintelligent approach of using light simulations to construct the search tree was
able to win more games than the heavy simulation method. | had initially expected the heavy
simulations to perform the best out of the two simulation types, but the results showedthatit wasn’t
the case.

Player 1 (AI(MCTS-R-510808-T5-PB.B1,Positional)) won 25 games(s).

Player 2 (AI(MCTS-M3-518088-T5-P8.081,Positional)) won 15 games(s).

The Dark player won 23 game(s).

The Light player won 17 game(s).

The players drew @ time(s).

Player 1 Values = [28,44,64,42,48,21,25,13,43,55,55,13,42,23,47,37,44,27,51,44,34,53,55,51,13,51,28,17,52,23,45,50, 28,41,30,23,47,41,44,28]
Player 1 Mean = 37.8

Player 1 Variance = 185.45999999999998

Player 1 Standard Deviation = 13.61836994658975

Player 2 Values = [36,20,0,22,16,43,39,51,21,9,9,51,22,41,17,27,29,37,13,28,30,11,9,13,51,13,36,47,12,41,19, 14, 36,23, 34,41,17,23,20,44]
Player 2 Mean = 26.2

Player 2 Variance = 185.45999999999998

Player 2 Standard Deviation = 13.61836994658975

Figure 17: The statistics file produced for Experiment 4. The file tracks the number of wins per player, the number of wins
per counter colour, a score list, and other additional statistics.
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To explore this matterfurther, | examined the statistics that my Othello program produced once the
games had beenrun. Inthis experiment, the difference between the two players’ ave rage scoreswas
11.6; though this shows that Player 1did have a higheraveragescore, the difference betweenthe two
players scores is smaller | expected, given the difference in number of games won. For example, in
Experiment 1the score difference was 35.9, while in Experiment 3B the difference was 16.7 —a much
largerdifference despitethe two experiments sharing a similar win rate. This likely means that many
of the games played by these two Al players were very close fought matches.

Despite this, it is clear that a MCTS decider using light simulations can handily defeat one that uses
heavy simulations. | believe the reason for this is simple; as the light simulations use random moves
to predicthow a game will end, they will likely explore much more of the game state than the heavy
simulations will, as the Minimax method will likely keep the heavy simulations exploration locked to
similar routes to the end of the game, even as the tree expands. Thus, the light simulations better
summarise all possible outcomes for that move, whereas the heavy simulations model the victory
chances when the optimal route is followed. Additionally, the MCTS decider using the heavy
simulations predicts the path that an optimal player will take; however, in this experimentthe MCTS
decider using light simulations would likely never take that route, resulting in the heavy simulation
MCTS playerbeingunable to accurately predict the opponents moves.

Overall, though the heavysimulation MCTS decider was beaten by alarge margin, thisis likelybecause
the weaknesses of the heavy simulation approach are exploited by the light simulation approach, and
both ways of running simulations still perform very well as Al deciders.

5.1.5 — Experiment 5: Monte Carlo Tree Search Comparisons (Varying Probability)

As mentioned previously in the report, one of my goals for the Othello system was to allow users to
customise the level of difficulty of the Als they play against. | decided to evaluate the random move
chance of the MCTS algorithm next, as it appeared to be a good way to alterthe Al’s difficulty. With
the results from this test, | would be able to assess the extent to which a user can customise the Al
players.

Results:
Experiment 5A: MCTS Comparisons (Probability) Player 1 Player 2
Decider MCTS (P =0.00) | MCTS (P=0.02)
Evaluator Positional Positional
Victories 8 12
Win Percent 40% 60%
Total Games 20 Draws ‘
Experiment 5B: MCTS Comparisons (Probability) Player 1 Player 2
Decider MCTS (P=0.00) | MCTS (P =0.01)
Evaluator Positional Positional
Victories 7 13
Win Percent 35% 65%
Total Games 20 Draws
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Experiment 5C: MCTS Comparisons (Probability) Player 1 Player 2
Decider MCTS (P=0.01) [ MCTS(P=0.02)
Evaluator Positional Positional
Victories 14 6
Win Percent 70% 30%
Total Games 20 Draws ‘
Experiment 5D: MCTS Comparisons (Probability) Player 1 Player 2
Decider MCTS (P=0.01) | MCTS (P=0.10)
Evaluator Positional Positional
Victories 8 12
Win Percent 40% 60%
Total Games ‘ 20 | Draws ‘ 0

Notes: Both players’ MCTS deciders were given the same arguments, except for their random move

chance; run heavy simulations to a depth of three, minimax time of 5, and a maximum simulation
count of 10,000.

In this experiment, | used 4 different probability levels to view the effects that changing the random
move chance had. Oddly enough, settingthe probability to zero, which made the MCTS algorithm rely
solely on minimaxing forits simulations, resulted in poor performance in comparison to the deciders
that allowed for some randomness.

The reasonforthisis tied to the nature of the Minimax algorithm; as the minimaxing functions select
the most optimal move (according to its evaluator), there will be no variance in the move selected
from a game state, no matter how frequently the same state appears. This means many games can
experience novariance intactics, due to the factthere is no chance of different games playing out. As
a result, when a MCTS decider has a small chance to play a random move instead of a minimaxed
move during its heavy simulations, this allows for a larger variety of moves to be simulated, thus
improving the algorithms prediction ability, and by extension its move decision ability.® As aresult, it
appears to be beneficial to the MCTS algorithm to introduce at least some randomness to the
simulation process.

On the other hand, the difference that furtherincreasingthe random probability has on the results is
difficult to determine; since increasing this chance alters the simulation process to be similarto light
simulations, passing a larger value to the MCTS for this parameter can be beneficial if facing a very
logical opponent, while keepingiton the lower end of the scale can provide more accurate simulations
to defeat a less intelligent player. It seems that the optimal value for this parameter is different
dependingonthe playerthat the MCTS algorithmisfacing.

Regardless, theseresults doindicate that the overall difficulty of the Al playeris affected by the change
inrandom move chance, as expected.

5.1.6 — Experiment 6: Investigating the Remaining MCTS parameters

At this point in the evaluation process, the only two MCTS parameters left untested were the heavy
simulation minimax depth and the time per simulation minimax run. These two variables are closely
related to how accurate the heavy simulations are, and how many of these simulations can be run in

19 Further information on the random move chance’s changes to simulation behaviour can befound in Section
4.4.2 or Appendix D.
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the timeframegiven tothe decider.2° Asaresult, | performed some developmental tests while creating
the MCTS to determine a combination of the two variables to carry out the first set of experiments
with.

493ims/504Tms; 0.0097057378640
9133ims,/5134ms; 0.173807347
HEsims,/50%6ms; 0.009419152276295133 5/ms.
G3ims/5157ms; 0.00830773705642815¢ 5/ms.
34Z3ims,/5558ms; 0.06153292551277438 5/ms.

Figure 18: A section of the typical console output of the MICTS algorithm while using heavy simulations. Each line shows the
number of simulations per move chosen, the time taken to run all the simulations, and then the number of simulations per
millisecond.

To analyse how these variables affect the MCTS algorithm, | examined the detailed output of a typical
Othello game between two Al players using MCTS deciders. With the minimax simulation depth of 3
and a time per minimax of 5ms, the above informationis displayed; as these are the outputs of the
first five moves between two MCTS deciders, the search space is at its largest, and at a minimum the
algorithm can run approximately 48 simulations. Thoughthis appearsto be alow number, it is enough
to provide an accurate prediction of the potential moves’ impact, as at this point in the game there
are typically fewmovesto choose from the starting states. As the game progresses, more simulations
can be run, due to the decreasing number of possible states.

| examined the minimum number of simulations that the MCTS decider could run when different
combinations forthe heavy simulation search depth and time were used:

Experiment 6: Remaining Minimax Search Depth
MCTS Parameter Effectiveness 1 2 3 4 5 6
Time |T=2ms 1796 178 73 54 52 50
per |T=5ms 1536 175 48 24 24 23
Minimax [T =10ms 1542 159 39 15 12 11

20 Details on how these arguments affect the MCTS algorithmcan be found in Appendix D.
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Minimum Simulations Ran by a MCTS Decider using Heavy
Simulations as the Simulation Time and Depth Varies
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Figure 19: A graph showing the effect that varying the search depth and time allowed for heavy simulations has on the
minimum number of simulations a MCTS decider can run.

My findings show that the higherthe amount of time provided for the MCTS decider to run the
minimaxing within the simulations, the lesstotal simulationsare run. Similarly, less simulationscan be
run whenthe simulation minimaxingisinstructed to search deeper.

The logical conclusion from this would be to only allow heavy simulations to minimax to a shallow
depth; however, as the depth of the minimax search affects the quality of the MCTS’ predictions, the
depth should be set as high as the computer’s hardware can manage while still producing a useable
number of simulations forthe MCTS algorithm to evaluate.

if (current.isOver() || depth == 0 ||
System. currentTimeMillis() - startTimestamp >= timelLimit) {

return e.evaluate(current, playerToEvaluate);

}

Figure 20: Section of code from the minimax algorithm that determines what to do when the time to minimax is exceeded.
This code is used by both Minimax deciders, and by the heavy simulation system of the MCTS decider.

Additionally, the minimaxing code is set toimmediately return an evaluation of anode once the time
limit has been reached, ratherthan recursively searching deeper. This means that even though using
a shorter amount of time produces more simulations and thus more data, it is also likely that the
simulations’ viewof how the games will progress will be weakened.

Overall, a balance between these two variable needs to be struck to ensure that enough data is
produced forthe MCTS deciderwhile also keeping this data accurate and useful.
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5.1.7 =Summary

Overall, the outcomes of the tests carried out in this section met my expectations; given the way each
deciderfunctions, | expected the MCTS to be the most competent, followedby the Minimax deciders.
The lack of many surprising results also suggests the deciders’ algorithms are working asintended.

However, | did notexpecttogoasindepthas| did when examining the MCTS various parameters and
simulation modes. | had already observed some trends that the decider exhibited when developingit
(hence why | used the preset values for some MCTS arguments), but the outcome of some
experiments warranted further exploration of the effectsthe arguments had on the performance of
the decider.

With all the data | have collected onthe operation of the MCTS algorithm | have implemented, | can
say that | am very pleased with its overall performance against other Al playersin Othello. As it
appearedto be the most competent decision algorithm of the ones that | researched, | had high hopes
forits performance, whichit was able tofulfil.

However, thesetests only examined the performance of the deciders against other Al players. For the
next stage of experiments, | decided to evaluate the performance of the Al classes against a different
kind of opponent.
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5.2 —Al vs Human Evaluation

The following section containsinformation on the tests | ran to compare the Al’s capabilities against
human players. To generate the datal needed, | found 6 volunteers (including myself) to play 4 games
againsteach Aliteration. Thevolunteers were provided with the Othello ruleset to learnthe rules, and
the list of 21 Principles from Othello: Brief and Basic?!, but otherwise had no additional information.
The GUI was enabled foreach test, but the console output was disabled so that no player could view
information on how the Al was thinking or playing. This ensured a series of bias-free games were
played.

5.2.1 —Experiment 7: Human Player vs Minimax Player
The first Human tests | ran involved having a player compete against an Al opponent using the
FixedMinimax decider.

Results:
Experiment 7: Human vs Minimax Player 1 Player 2
Decider Human FixedMinimax
Evaluator - Positional
Victories 4 20
Win Percent 16.7% 83.3%
Total Games | 24 | Draws | 0

Notes: The FixedMinimax decider was given a maximum depth of 8 to search to.

Most of the games ran in this experiment resulted in a victory for the Al player; the Human players
founditdifficultto overcome the Al’s ability to rapidly flip counters and reduce the number of moves
the player could make. | expect the high number of Human losses isbecause the FixedMinimax decider
was given alarge maximum depth, resultingin the Al being difficult to play against.

5.2.2 —Experiment 8: Human Player vs Monte Carlo Tree Search Player

| also decided to have the players attemptto defeatthe MCTS algorithm as well, since the approach
to selectingmoves that MCTS decider uses is quite different from the one the Minimax players use.
As aresult, players could have found it easier orharderto play againstan Al using a MCTS decider.

Results:
Experiment 8A: Human vs Monte Carlo (Hard) Player 1 Player 2
Decider Human MCTS (Minimax)
Evaluator - Positional
Victories 3 21
Win Percent 12.5% 87.5%
Total Games 24 Draws 0

21 These 21 Principles can befound in Appendix B.
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Notes: The Al player's MCTS decider was provided with the following arguments; run heavy
simulations to a depth of three, minimax time of 5, with a random move probability of 0.01, and a
maximum simulation count of 10,000.

The results of this experiment are similar to the Humans versus Minimax results; the Al player was
able to defeat the human playersin a large majority of the games that were run. One volunteer
commented that even though they lost all of their games, they felt that this Al was easier to play
againstthan the Al playerusedinthe previoustest. lassume that this is because the MCTS algorithm
focuses on the most likely way to win, which is comparable to how a human views the board. In
comparison, the Minimax deciders view the future game states more mathematically and factually,
which can feel roboticto human players.

The comments given by the volunteers gave me the idea of testing a light simulation MCTS player
against humans, as it changed enough of the MCTS player’s decision process to warrant its own
examination.

Results:
Experiment 8B: Human vs Monte Carlo (Easy) Player 1 Player 2
Decider Human MCTS (Random)
Evaluator - Positional
Victories 7 16
Win Percent 29.2% 66.7%
Total Games ‘ 24 | Draws ‘ 1

Notes: The MCTS deciderwas instructed to use light simulationsto create its search tree, and was told
to run a maximum of 1000 simulations.

By runninganothertest usinga MCTS decider with areduced number of light simulations, the difficulty
of the Al was notably changed; each volunteer defeated the Al at least once during their play time.
This shows that altering the difficulty of the Al through the already provided arguments is viable.
However, additional arguments to change the difficulty could be useful forthe MCTS algorithm, as it
does naturally perform well, even when limited to a small number of simulations.

5.2.3 =Summary

At the outset of the project, | was unsure if the Al programs created for this project would be able to
defeatacompetent humanplayer, due to how complex the strategy of Othello can become. However,
| am glad to see that the Al players have surpassed my expectations, as | was only able to defeat each
one once in the experiments shown above, despite my knowledge of the game and of Al’s
implementation. The Al players were able to adapt to any situation the human player put themin, and
were oftenin full control of the game.

One such example of the control the MCTS decider demonstrated was during a game where | had
beeninthelead with around 8 moves leftto make, whenthe MCTS player determined that, because
of the layout of the board and the fact that | had no legal movesto make if it playedin aspecificorder,
that there was a way forit to playinall 8 of the remaining spacesonthe board. As a result, | watched
it take eight consecutive turns, after which my score had decreased from 50 pointsto 6 points. | was
amazed by how capable it was at manipulating me intolosingthe game so easily.
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5.3 — Artificial Neural Network Performance Analysis

The final evaluation tasks | carried out were all focused on the deep learning side of the project. By
the time | had reached this stage, | had created a set of promising neural networks, so that | could
compare their performance againstone another. My goal wasn’t necessarily to determine which ANN
could win the most games, but ratherto determine how the dataand network structure usedto create
the ANNs affected theirability to evaluate Othello states.

Each DeeplearningEvaluator used one of the ANNSs to calculate the value of the game states it was
given; the ANNs ability to helpan Al player winby returning accurate valuations of the game state was
measured inthe following experiments. The configurations used by each of the ANNsthatfeaturein
the experiments are shown below.

ANN Label [Data Format Used| Network Layout Used
DF2-1 Data Format 2 1
DF2-2 Data Format 2
DF3-1 Data Format 3 1
DF3-2 Data Format 3 2
DF3-3 Data Format 3 3

Figure 21: The data formats and neural network layouts used by each ANN.

Data Format

Description

Data Format 2

Label represents win or loss for the evaluated player.

Data Format 3

Label is the percentage of times the evaluated player won from this state.

Figure 22: The descriptions for each data format.

Layout Number 1 2 3
Type Classification Classification Classification
Learning Rate 0.01 0.01 0.01

Optimisation Algorithm

Stochastic Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

Updater Nesterov's Nesterov's Nesterov's
Updater Momentum 0.9 0.9 0.9
Number of Inputs 128 128 128
Hidden Layers 1 3 3
Nodes per Hidden Layer 100 128 256
Hidden Node Activation Function RelU RelLU RelLU

Number of Outputs

*

*

*

Loss Function

Negative Log Likelihood

Negative Log Likelihood

Mean Square Error

* = Depends on format of training and testing data

Figure 23: The parameters used by each neural network layout.

ANN Label Accuracy Precision Recall F1 Score
DF2-1 0.7100 0.7090 0.7035 0.7062
DF2-2 0.7206 0.7199 0.7142 0.7171
DF3-1 0.7090 0.6105 0.4797 0.5372
DF3-2 0.7067 0.5831 0.4869 0.5307
DF3-3 0.7001 0.6131 0.4741 0.5347

Figure 24: The statistics produced by the learning process for each ANN.
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As you can see above, the maximum number of layersinthe range of ANNsis 3; | decidedtokeep
the number of layers low to improve responsetimes when evaluating a game state, as introducing
many layers would slow down the program by a large degree.

Itisalso worth notingthatevery ANN was created using 100% of the training data; the methods
used to create Data Format 3 rely on creating numerous bins to categorise each game state, with the
number of bins being decided by the average amount of times any game state appeared throughout
the tournament data. As this average was surprisingly low for the data, and the number of data
points and binswere smallerthan expected, | decided to use as much of the data as possible, to
ensure thatthe ANN had enough datato study and train. With regards to Data Format 2, due to the
way its records were produced, there were less of themto be processed, so | chose to use all the
available training datato ensure it had enough data points to examine as well.

5.3.1 —Experiment 9: Comparing the Potential of various ANNs

For the sake of comparison between the created ANNs, | ran numerous games between Al players
using DeeplearningEvaluators fitted withone of the five networks, and examined how frequently the
players would defeat each other.

Results:
Experiment 9: OPPONENT
ANN Comparisons | DF2-1 DF2-2 DF3-1 DF3-2 DF3-3 [TOTAL WINS
DF2-1 - 20 10 10 19 59
= DF2-2 0 - 0 10 19 29
= DF3-1 10 20 = 10 19 59
5 DF3-2 10 10 10 = 19 49
DF3-3 1 1 1 1 - 4

Figure 25: Table of results from comparing various ANNs' performance against each other. To find out how many times X
won against Y, find the cell where row X and column'Y intersect.

Total Games Run: 200 (20 per unique ANN combination)

Notes: All DeeplLearningEvaluators were paired with a FixedMinimaxDecider set to search to a
maximum depth of 5.

Theseinitial results seemtoindicate that ANNs DF2-1, DF3-1 and DF3-2 were the strongest ANNs out
of the group. One reason | wanted to explore how these matchups played out was related to how the
DeeplearningEvaluator interprets the returned data; the ANN within the evaluator returns an array
of the likelihood that the provided data belongs to each known class. The evaluator then regresses
this data into one scalar value between0 and 100 to use as the GameState’s score. 2> Due to the
different data formats, | expected that this regression process could have caused an imbalance of
victories forone type of format.

22 See Section 4.5.3 for more information on how the evaluator does this.
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AT (FixedMinimax, Deeplearning) : Mowve chosen: (1,4). Score: 485.454243, Time remaining: 2Z55ms.
AT (FixedMinimax, Deeplearning) : Mowve chosen: (6,5). Score: 66.12837. Time remaining: l1l20&ms.
AT (FixedMinimax, Deeplearning) : Mowve chosen: (7,5). Score: 41.04823. Time remaining: 4001ms.
AT (FixedMinimax, Deeplearning) : Mowve chosen: (6,3). Score: 66.65426. Time remaining: 1297ms.
Al (FixedMinimax, Deeplearning) : Mowve chosen: (3,2). Score: 33.78425. Time remaining: 2823ms.
AT (FixedMinimax, Deeplearning) : Move chosen: (4,5). Score: 73.45953. Time remaining: 1540ms.
AT (FixedMinimax, Deeplearning) : Mowve chosen: (5,6). Score: 28.353262. Time remaining: 4556ms.
L)

AT (FixedMinimax, Deeplearning) : Mowve chosen: (7,4). Score: .948724, Time remaining: 341Zms.

Figure 26: Output from one of the tests, showing one player's score increasing and the other's decreasing as the game
swings in the favour of one player.

When | examined the Al readouts that showed the evaluation scores the ANNs and
DeeplearningEvaluators were returning, they resembled the same change over time that other
evaluatorscores do; one neural network could tell it was slowly gaining control overthe game, while
another could tell it was moving into less advantageous game states. Additionally, even though two
players may have ANNs that were made with different data formats, the scores produced by each
DeeplearningEvaluator all exhibited the uniformincrease and decrease as seen above, regardless of
how the initial data was formatted.

This not only confirmed that the DeepLlearningEvaluator was correctly interpretingthe ANNs values,
and that all of the ANNs did have agood understanding of the qualities that indicate a beneficial game
state for the player, but also that ANNs could be used to create intelligent evaluation functions.
However, the real test of their evaluation ability would be against an existing evaluation function.

5.3.2 —Experiment 10: Positional Evaluator vs Deep Learning Evaluator

| wanted to observe how a DeeplearningEvaluator could compare to the PositionalEvaluator—which
was the most advanced hard-coded evaluation function in my Othello program —in both a Minimax
match and a MCTS match. | chose to use all five ANNs to see how each of their performances varied
against opponentsthatdo not utilise deep learning information.

Results:
Experiment 10A: Positional vs DL (Minimax) Difference between the two
Positional Player Deep Learning Player players' scores (DL - Pos)

Positional 10 10 DF2-1 -4

Positional 20 0 DF2-2 -64

Positional 10 10 DF3-1 -3

Positional 10 10 DF3-2 -14.9

Positional 20 0 DF3-3 -64

Total Games Run: 100 (20 per ANN)
Notes: Both Fixed Minimax deciders weresetto search to a maximum depth of 5.

The left-hand table displays the number of timesthe player equippedwith the specified evaluator was
able to win. The same three promising ANNs from the previous experiment were able to compete
competently against the Positional evaluator, while the lacklustre performance of ANNs DF2-2 and
DF3-3 continued. As the main Othello program of my project is able to measure the average score
each playerachieved overthe series of gamesrun, the right-hand tableis used to show the difference
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between the scores of the Deep Learning playerand the Positional player. Though some ANNs were
able to draw in overall games won, all networks led their player to have a lower average score than
the playerequipped with a Positional evaluator.

Notably, in the sets of games that ended in a draw, it was the player who was controlling the dark
countersthat won; this means that for these games, whoever placed the first counter was the winner.

I believed that reasonthat each player’s score wasafactor of 10was related to alack of randomisation
and variety in the Minimax algorithm, hence | decided to also run the same tests using the MCTS
decider.

Results:

Experiment 10B: Positional vs DL (MCTS) Difference between the two
Positional Player Deep Learning Player players' scores (DL - Pos)

Positional 8 12 DF2-1 +6.3

Positional 8 12 DF2-2 +7.1

Positional 7 13 DF3-1 +15.7

Positional 10 10 DF3-2 +0.3

Positional 10 10 DF3-3 -5.7

Total Games Run: 100 (20 per ANN)

Notes: Both MCTS deciders were given a maximum simulation count of 500, instructed to carry out
heavy simulations to a minimax depth of 2, given a random move probability of 0.01, and given 5
secondsto run each simulation minimax.

These results shownotable improvements inthe performance of the DeeplLearningEvaluators; though
the number of victories that each evaluator achieved varied, the difference between the average
scores was very consistent. Asa result, | believe that the score differenceis the best way to determine
the difference inskill level of the DeepLearningEvaluators and the PositionalEvaluator:

e DF2-1 — The first of the ANNs to be able to win more games than its opponent, and had a
positive difference betweenits average score and the opponents.

e DF2-2 —Asimilarcase to DF2-1, but somewhat more promising due tothe greater difference
betweenthe player’'s scores.

e DF3-1 — The most successful of the ANNs, in both number of games won and ability to
maximise the score of the player in each game, resulting in the higher score difference
betweenitandthe opposing player.

e DF3-2 — Aless successful result, but this ANN was still able to gain a higher score than their
opponenton average.

e DF3-3 — Though this network resulted in a negative score difference, it was still capable of
winningan equal number of games with the Positional evaluator.

Overall, the ANN-backed DeeplearningEvaluator was able to beat out the Positional evaluatorin
numerous games, with some wins being decided by a sizeable margin. This data demonstrates the
effectiveness of using an ANN for powering an Al’s evaluation function, even against an evaluation
function that factors in numerous aspects of the game state to produce its results.
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5.3.3 —Experiment 11: Altering the Epoch Count

An important factor in generating an ANN is choosing the number of epochs to run in the training
process. An epoch refersto one pass-throughthe training setto allowthe ANN to learnthe features
of the data. The previously examined ANNs used 20 epochs during their construction, which has
produced excellent results; however, | was interestedin examining the effect of lowering this number
to 10 epochs, as it was possible some of the 20 epoch ANNs would have been “over-trained” as a
result of being created with a higherthan necessary epoch count.

Inthe followingresults tables, ANNs that were constructed using with 10epochs have “-10” appended
to theirlabel (e.g.DF2-1has become DF2-1-10). Likewise,the ANNs usedin Experiments 9and 10 will
now be referred to witha “-20” at the end of theirlabel.

Results:
Experiment 11A: OPPONENT

ANN Comparisons (10 epochs) | DF2-1-10| DF2-2-10 | DF3-1-10| DF3-2-10 DF3-3-10 |TOTAL WINS
DF2-1-10 = 20 10 0 20 50

= DF2-2-10 0 = 0 0 5 5

= DF3-1-10 10 20 = 10 19 59

& DF3-2-10 20 20 10 = 20 70
DF3-3-10 0 15 1 0 = 16

Total Games Run: 200 (20 per unique ANN combination)

Notes: All DeeplearningEvaluators were paired with Fixed Minimax decider set to search to a
maximum depth of 5.

| collected dataabout which ANNs could winagainst each otherinthe same way as Experiment 9, but
the results were quite different; the version of DF3-2 made using 10 epochs was the ANN with the
most victories in these games, while many matchups that were draws when the 20 epoch networks
were tested became definitive victories or losses. To further evaluate the ANNs, | used the same
method as Experiment 10to gaininformation on how these ANNscan compete against the evaluation
performance of the PositionalEvaluator.

Results:
Experiment 11B: Positional vs DL (Minimax, 10 epochs) Difference between the two
Positional Player Deep Learning Player players' scores (DL - Pos)
Positional 0 20 DF2-1-10 +42
Positional 0 20 DF2-2-10 +36
Positional 10 10 DF3-1-10 -10
Positional 3 17 DF3-2-10 +15.6
Positional 10 10 DF3-3-10 -21
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Experiment 11C: Positional vs DL (MCTS, 10 epochs) Difference between the two
Positional Player Deep Learning Player players' scores (DL - Pos)

Positional 6 14 DF2-1-10 +13.5

Positional 7 13 DF2-2-10 +5.6

Positional 8 12 DF3-1-10 +8

Positional 5 15 DF3-2-10 +11.8

Positional 10 10 DF3-3-10 +2.7

Total Games Run: 200 (20 per ANN pertable)

Notes: In the tests run in 11B, both Fixed Minimax deciders were setto search to a maximum depth
of 5. Inthe 11C tests, both MCTS deciders were given a maximum simulation count of 500, instructed
to carry out heavy simulations to a minimax depth of 2, given arandom move probabilityof 0.01, and
given 5 seconds to run each simulation minimax.

Surprisingly, all of the 10 epoch ANNs were able to soundly defeat ortie with the PositionalEvaluator
in both the Minimax and MCTS tests. Overall, when comparing these results to the ones from
Experiment 10, it appears that networks DF2-1 and DF3-2 have benefited the most from the epoch
change, while the effectiveness of networks DF2-2 and DF3-1 have decreased. The correct values to
use for constructing an ANN are often hard to determine, due to the amount of domain-spedific
knowledge needed aboutthe data, followed by the variety of possible network configurations.

The results of the above experiment have shown that fewer epochs is not suitable for all types of
networks. To examine how much the networks’ performances have changed because of the epoch
change, | ran one last experiment to determine how well the 10epoch ANNs performed against their
20 epoch counterparts.

Results:
Experiment 11D: ANN-10 vs ANN-20 Evaluation Difference between the two
ANN-10 Player ANN-20 Player players' scores (ANN-10 - ANN-20)
DF2-1-10 23 17 DF2-1-20 +5.2
DF2-2-10 20 20 DF2-2-20 -0.2
DF3-1-10 18 22 DF3-1-20 -3.7
DF3-2-10 18 22 DF3-2-20 -3.1

Total Games Run: 160 (40 per matchup)

Notes: The MCTS decider was used alongside the DeeplLearningEvaluator with the given ANN to run
these tests. The MCTS used heavy simulationsto a depth of 2, with a max of 500 simulations, 5 seconds
to minimax, and arandom move chance of 0.01. The DF3-3 ANNs were omitted dueto their prior poor
performance.

The results from this round are difficult to decipher initially, due to the small margins of victory
between the players using each ANN. However, once you consider the size of each network, aclearer
image beginstoemerge:

e DF2-1—Uses the smallestdatasetandthe network with the least numberof nodesinit.Asa
result, usingasmaller number of epochsis beneficial toits learning process.
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e DF2-2 — Still uses the smaller of the two data formats, but uses a much larger network, so
more epochs are needed foritto fully understand the training data.

e DF3-1 - Learns from the larger Data Format 3 while using the smaller of the network
configurations. The 10-epoch version of the network clearly hasn’t had enoughtime toleam
the data, as its performance is worse than its 20-epoch variant.

e DF3-2 — Though the DF3-2-10 ANN initially showed promise during the Minimax and MCTS
comparisons, it appears that it couldn’t compare to its 20-epoch counterpart, which is
unsurprising since the DF3-2 networks use the largest data set and a network configuration
with a large number of nodes and links.

Overall, it is clear that all of the combinations of Data Formats and network configurations have
potential to becomeintelligent Othello evaluation functions, but care is needed to ensure the network
istrained toan appropriate degree. [t seemsthat DF2-1benefits from 10epochs the most, while DF2-
2, DF3-1 and DF3-2 are more suited toan epoch count in the range of 15 to 20.

As for DF3-3, it clearly needs to be given a lot more time to learn from the training data during the
ANN creation process, as its network configuration means it has more than double the number of
nodes of the second biggest layout. In hindsight, | thinka better approach wouldhave beentoincrease
the number of layers in the network, instead of increasing the number of nodes per layer as | did to
create the configuration for DF3-3.

5.3.4 —Summary

| was glad to see that all the work | had completed for the Deep Learning section of the project has
resulted in competent ANNs whose evaluations can compete with and even defeat the best hard-
coded evaluator| created.

Though there is room for improving the network configurations by utilising full regression networks
and tailoringthe parameters of each ANN to bettersuititsapplication, |am pleased with the current
success of the DeeplearningEvaluatorand the ANNs that powerit.

As for the Data Formats that | created, | believe that both are suitable for creating an ANN with, as
they both capture the necessaryinformation thatshould be learned by a network.
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5.4 — Evaluating the Accuracy and Suitability of the Implementation

During all of the games run for the experiments throughout Section 5, there were no exceptions
thrown by the program. As a result of the existing validationin the program, | can derive the following
results:

1. The Othello game logic is once again confirmed to be correctly implemented. An lllegal
Argument Exceptionwould have arisen from the playMove method of GameState ifthere had
been a violation of logic?3. This also confirms that the GameState provides the Al with the
correct logicas well.

2. TheAlplayersare once again confirmedto be functioning as intended, as if they had provided
illegal moves or null references, the playMove method would have also detected this. As a
result, this confirmsthat the deciders and evaluators are correctly carrying out their tasks and
are returning legal movesto play.

These facts, combined with the GameState validation carried outin Section 4.2.3, and the various Al
behaviourchecks carried out in Section 4.4, ultimately prove thatall of the implemented game logic
and Al algorithms are in working order.

Inthe end, I think my approach toimplementing the Othello game logic and the Al systems was a good
choice, as the customisability of the Al allows for a varied number of games to be played, while the
Othellogameis fully playable by either Al or Human players, which are two goals | wanted to achieve.

5.5 — Discussing the Flaws in the Implementation of Deep Learning

Personally, | am pleased with the fact that | was able to implement the DeepLearningEvaluator as
expected; its performance as an evaluator is capable of exceeding that of any other evaluator class
currentlyinthe Othello program.

| feel that my approach to the Deep Learning process was also successful in producing a suitable
numberof ANNs to examine and analyse.Plus,despite my troubles withlearning the DL4J framework,
| feel that its usage withinthe project benefitted the final result, due to the amount of methodsand
classesit providedto help create the neural networks.

However, | feel that it is important to discuss the aspects of the Deep Learning process that did not
turn out as successfully. Though | will elaborate on how these problems could be fixed in the next
section, this section will highlight the effect that each one had on the outcome of the project.

1. The Lack of Regression-based Networks

At the start of the project, | planned to investigate regression networks alongside the
classification networks that were eventually created. However, a combination of technical
difficulties with DL4) and the tournament data’s ability to be classified easily resulted in a
focus on classification networks.

Overall, this has very little of an impact on the final system, due to the
DeeplearningEvaluator’s built-in regression, but the ability to compare an actual regression
network tothe evaluator’s pseudo-regression would have been interesting.

23 See Section 4.2.1 for information on how the playMove function upholds the legality of playable moves.
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2. The Lack of Variance in Evaluated Networks

For my evaluationonthe ANNSs, | used a variety of networks, but the configurations of these
networks were not particularly varied, as most of them shared similar parameters. For many
of these parameters, the similarity made sense, such as for the networks’ learning rates or
input node count. However, other parameters could have been varied more to create a better
set of ANNs to work with, as definitive conclusions were difficult to identify in my ANN
experiments, due to the similarity between the networks.

The main cause for this was my inexperience with determining what network layouts and
parameters would benefit the final ANNs. Itisan aspectthat| could definitely improveif | had
more time to spendonit.

3. Limitingthe Deep Learning applications to an Evaluator

During my research, | overlooked the possibility of integrating Deep Learning routinesintoa
decider class to augment their operation. There was the opportunity for altering the UCT
algorithm—which determines what nodes the MCTS expands when constructing its game tree
— to utilise deep learning methods as a way of improving its selection process. Rather than
usingadatasetof archived games, the Deep Learning UCT algorithmcould have used previous
game simulations to determine what types of moves are the best to explore, which ensures
that the most likely moves to benefit the player are adequately explored within the Al’s
decisiontime limit.

Though | did missthe opportunity toimplement this, | feel thatl alsowould not have had the
time toimplementitalongsidethe other ANN work | have done.Additionally,due to the large
amount of simulations and states the current version of the MCTS algorithm can examine
within the timelimitenforcedby my Othello program, | believe that thereis notanimmediate
needto optimise its selection process further.

Despite the fact that these areas of Deep Learning were not fully explored by my project, | believe that
the way | have applied ANNs in my project has still been very beneficial in improving the Al player's
ability tocomprehend and play Othello, which was the original goal of this project.
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Section 6 — Future Improvements for the System

Overall,  am very pleased with the quality of the Othello program, the Al algorithms implemented
within, and the results of the evaluation stage. But as previously mentioned, | have noted some areas
where the work | carried out could be reimplemented to a higher standard, or where functionality
could be could be altered or improved as a result of conclusions derived from the Evaluation phase. |
will discuss these pointsin this section.

6.1 —Improvements to Existing Features

One of the most glaring issues | see with the project at this time is the way caching has been
implemented. Although analysing and storing where a player can carry out legal moves at object
instantiation results in faster computation time for deciders that require said information, the
additional time added to the construction of the GameState is problematic. If a state is created and
the informationit has cachedis neverused, thenthe time spent computing the cache is wasted.

Logically, the best way to improve thiswould toinitialise the object with empty caches, then run the
code to calculate these values when they are first requested. Once this first calculation has been
completed, the result can be cached and used for future calls for the data. This ensures only needed
informationis cached instead of all possible information. | believe the additional construction time for
GameState objects is currently holding back many of the program’s algorithms, especially the MCTS
algorithm, as thousands of GameStates are generated by deciders whenthey are determining what
move to play. The current algorithms still function correctly, but this change to the GameState would
speed up the run times of many of the program’s classes and objects.

Additionally, my decision to change the legal move list to a legal move array was alsoa poor one, as
many algorithms waste time iterating over the array looking for the locations where moves can be
played, whereas alist could be iterated over without this worry. This change would be easy to carry
out, as all of the data about the legal moves is already contained in the GameState class; only the
interface andthe algorithms that accessit would need to be altered.

Moving away from optimisations, | would also like to see changes to the GUI of the program, as the
one currently in place could be improved. Most of the volunteers for the Human vs Al analysis
commentedthatthey would preferif the counter placing and flipping process was more animated, as
the change happens quite rapidly in the current version of the program. Though linitially saw it as
unnecessary since the Alwould notrelyonthe GUlin anyway, | agree thatimproving the clarity of the
moves made via animations would aid a human player’s understanding of the game. Furthermore,
even though the ability to enter command line arguments allows the program to be customised quite
easily, Ithinkmany users would prefer a graphical options screen to edit these parameters. This screen
could appearafterlaunchingthe program, but priorto initiating the main Othello game.

As for improvements to be made to the Deep Learning facilities of the project, | think that a proper
exploration of regression networks’ potential use as part of the DeeplLearningEvaluator class should
be carried out, as discussedin Section 5.5. | was unable to fully create aregression network with DL4J’s
tools, butthe final DeepLearningEvaluator classdoesact as afinal regression layer for the classification
networks that have been made. Nonetheless, | believethat creatingan actual regression network will
provide more accurate values due to the expanded number of tools available within the DL4J
framework forregression operations.

Finally, there is always the possibilityforiterating on the structure used to create ANNstoimprove it;
my lack of knowledge in the field has likely limited the potential of the current networks’ ability due
to theirsomewhat mismatched internal structures. With more timeforthe project, | would have liked
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to create many more network layouts to determine the best configuration of nodes and links for
creating an ANN for evaluating Othello. From the Evaluation section, | have already identified
increasing the number of layers of the ANNs as a potential areaforimprovement, butl am sure there
are many othersas well.

6.2 — New Features

If | was to continue the project from this stage, the nextarea of development|would explore would
be to convert the project from an Othello-focused program to a general game playing program. |
believethatthe current GameState object could be refactored into an OthelloGameStateclass, and a
new interface class could then be created to allow for GameState objects to be created for other
games. This would lead to an interesting analysis on how easily the currently implemented Al
algorithms could be re-applied to a general game playing environment, and how the performance of
a general game-playing Al would compare to one built specifically foragame. Though this would be a
very large undertaking, | feel it would be a necessary step if the project was to continue, as | have
almost completely explored Othello game playing at this point.

| have already discussed improving the existing caching in the GameState class, but there is also the
possibility of adding cachingto the evaluators, as many states are likely to reappearin the evaluation
process. | experimented with this concept during development, but | soon discovered that
implementing an efficient caching system forall evaluators would require too much time and testing
to ensure it was correctly working.

Concerningthe performance of the DeeplearningEvaluator and the ANNs, | believe that the accuracy
of the network could be improved with an additional amount of data; however, rather than source
this from an archive of Othello games, | think that adding the ability for the ANNs to learn from the
game states passed to it would be a much better option. DL4J’s representation of ANNs allow for
additional learning after the initial training stage, and adding this feature could allow the prediction
ability of the DeeplearningEvaluator and the ANN it is using to improve just by playing against itself
repeatedly. In my evaluation of the current set of ANNs, | believe that the performance of said
networks was held back by gaps in the database of Othello games; adding self-learning to the
DeeplearningEvaluator could solve thisissue quiterapidly.

Additionally, I think exploring the potential application of integrating Deep Learning techniquesintoa
MCTS decider to improve its search tree construction and evaluation abilities would be an excellent
direction to take the projectin next, as with the rightimplementation, it would resultin adecider that
needslesstime toeven betterresults than existing decider classes.

While on the topicof the ANNs, would also recommend that tests be carried out comparing Human
players to a DeeplearningEvaluator to evaluate how well humans can play against the ANNs'
evaluation methods. | was unable to carry out this test, as the volunteers | used in other Human tests
were unavailable during the final part of the project.

One lastfeature that could be added would be an open book for Al players?®. | discussedthe possibility
of implementing afeature like this at the outset of the project, but as time passed | determined that
the ANNs were ultimatelya superiorversion of an open book, due to theirgeneralisedunderstanding
of how to advance from any state inthe game.

24 See Section 2.2.4 for more detailed open book information.
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Section 7 — Conclusion

This project’s aim was to explore how an Al player could be created ortrained to play the board game
Othello, viamethods such as Minimax searching, Monte Carlo Tree Searching, and Deep Learning. To
facilitate this Al analysis, the project would also include a programmatic recreation of the Othello
game, along with a graphical interface todisplay it.

The project and all the work associated with it has now been completed; | was able to implement
every key feature that had been stated at the project’s outset, along with adding various other
featurestothe final system.

The Othello game program created forthe project utilises a fully-featured game state representation
class that is capable of validating moves and states to ensure full satisfiability of the original board
game’s rules, while also providing numerous methods to allow Al agents to analyse the state to any
degree necessary.

The Othello program itself has been equipped with a command line argument system to allow for
multiple degrees of customisability, including Al difficulty adjustment, board size alteration, and
statistical measurementoutput.

The GUI createdto allow forviewing the Othello game state provides users with away to play against
anotherHuman or Al opponent, and displays helpful notificationsand relevant data to aid new players
inlearning how to play the game.

The Al system | have implemented allows for easy assembly of an Al playerfrom a variety of different
move decision algorithms and evaluation functions. Despite some doubts during development about
the capability of the Al systemversus a human player, my evaluationhas shown that the performance
of the Al’sdeciderand evaluatorclassesis as expected; the Monte Carlo Tree Searchis a particularly
notable decider for its ability to analyse each move’s probability of leading to a victory based on
various simulations of the future of the game.

Finally, the Deep Learningresearch and experimentation | carried out has led to the ability to create
ANNSs via the project’s deep learning classes. Once created, the ANNs can be loaded into their own
evaluation function class to use with an Al player; these DeeplearningEvaluators have the ability to
surpass the performance of any other evaluator in the program when given a correctly trained
network to use.

| am very satisfied with the outcome of this project; though | am somewhat disappointed that |
couldn’t spend more time improving the quality of the ANNs, the ones that have been produced and
analysed are still very capable at evaluating the game states they are given. | believe that the program
| have created can be used as a tool to allow Othello novices to hone their skills against varying
difficulties of Al opponents, while also providing useful facilities to enable Al performance analysis and
neural network development.

Overall, the main goal of producing an Al capable of playing Othello was met; the Monte Carlo Tree
Search deciderand Deep Learning evaluator combine to produce a player capable of playing the board
game Othelloto a high degree of skill, and is capable of defeating both Human and other Al players.
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Section 8 — Personal Reflection

Overall, Ithink this project has progressed relatively smoothly; during the first 2 months, | stuck to the
schedule | outlined in my Initial Plan, and | was even able to complete some implementation tasks
ahead of time. This in turn allowed me to devote more time to the Al and Deep Learning
implementation tasks, as | felt they would require alot of effort to complete.

However, the final few weeks involved me frantically catching up on the work | had yet to complete,
as | had required even more time than | had thought to implement both the MCTS algorithm and the
Deep Learning system. Though this did not affect the quality of the work I carried out, it caused more
stress for myself than necessary.

Considering how large of atask the Deep Learning systemwas, | should have had more milestonesin
place forit, such as “Complete Data Formatting class”, “Complete Network Constructing class”, etc. |
feel that | would have had a better target to aim for if these kinds of milestones had been in place,
rather than the single “Al uses Deep Learning” milestone atthe end of the allotted time forthe task.
Inthe future, | willmake sure to use milestones more wisely to keep my workschedule more balanced.

As | chose to create this project, | have always been very passionate about working on and improving
it as much as | could. Whether it was designing the interface orimplementing decider code, | was
committed to producing the best possible deliverables for the project. However, | feel that this has
resultedinthe needless addition of some features.

For example, it was not necessary for me to add the Minimax decider beforeimplementing the MCTS
decider, since the latter was always goingto be superiorto the former. However, | do feel that using
the extra time to implement the Minimax decider provided me with valuable experience that then
aided the development of the MCTS decider. Additionally, providing this easier decider class allows
for more customisation of the Al difficulty for users of the system.

Despite this, there are other examples of my passion forthe projectresultingin “feature creep”, such
as some unnecessarycommand line options, the multiple Minimax players, some of the statistics data
inthe main Othello class, and the game archiving system.Though | believe these features aid the final
product’s quality, it would have been best to take a step back, observe the project as a whole, and
decide if the feature was truly necessary, ratherthan implementingit as soon as | thought of it. | will
keep thisapproachin mindin future projects | workon.

Though the results of the Deep Learningwork | carried out were successful, | think that my approach
to it was flawed, and resulted in the evaluation process becoming tedious. After creating the code
necessary to format the data and construct the networks, | began creating ANNs very quickly, by
changingvarious values betweeniterations. Atthe time, | thought this was beneficial forthe project,
as | was able to see how the statistics foreach ANN changed, but since | had not decided onany way
to evaluate the networksto determine their worth to the project, much of the work carried out in this
time was wasted.

It was only as | beganto run out of time on my schedule that | began using the techniques shownin
Section 5.3 for examiningand comparingthe ANNs. | would have benefited from this system being in
place earlier, as | could have gathered much more data to support the evaluation of the networks. |
hadn’t done any work prior to this project that involved iterating on content repeatedly, so | didn’t
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expect to need to evaluate each ANN so thoroughly to better inform the decisions for the next
produced network, despite the system | laid out in Section 3.6.1. | will make sure to clearly define a
work planfor this type of exercise should | come acrossit againinthe future.

Despite these missteps towards the end of the project, much of the work | carried out during the first
tasks of the project was done in a way that made the later work easier to complete. For example,
when | was constructing the GameState class, | understood that despite how well | checked the
functionality of the code, there would be times where inexplicable errors would crop up with the Al
system. From a previous tast | had completed during my Al university module, | knew that debugging
these kinds of errors would be a huge hassle, due to the web of classes that could be responsible for
the error by that pointin development.

To combat this, | added validation methods in the GameState class to ensure that any obvious errors
would be caught and output with a clear error message specificto the project. For example, the
playMove method will throw an exception if a null object or illegal move is passed to it; when this
specificexception would arise, | knew that the culprithad to be the deciderthat lastran, as the decide
method directly returnsan object to the playMove method. With this type of validationin place, | was
able to narrow down the search area to one method instantly, which saved me alot of time overthe
course of the project. This kind of forward thinking and consideration for future development of the
program is a skill  have honed over the course of this project, and | hope to put itto good use in my
future endeavours.
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Glossary

Othello Terms

Counter— The piece that players use to play Othello.Can be two colours: light (white) or dark
(black).

Board — The 8 by 8 playingareathat counters can be placedin, thus allowing for sixty moves
to be played in a game at maximum, due to the game beginning with four counters already
placed.

Flipping—Process of turninga light counterto a dark counter, or vice versa.

Phases— Othelloissplitinto three phases of 20 turns each, known as the Opening, Midgame
and Endgame phases. I¥!

Bracketing — Another name for placing two countersin a horizontal, vertical or diagonal line
with each other, thus “bracketing” the counters of the opposite colour betwe en these two
counters. Thisresultsinthe bracketed counters being flipped. B!

Stable — A counterisstableifitcannot be bracketedin any way in the current game state, and
therefore cannot be flipped. B!

Game State — A single configuration of the game board and the counterson it.
Manoeuvrability — A Measure of how many moves a player can play onto the current game
state. The more moves a player can choose from, the more manoeuvrabletheyare said to be.

Game Theory Terms

Perfect Information — A Game Theory descriptor. A game with Perfect Information is one
where any playercan view all observable information at any giventime. Opposite of Imperfect
Information game.

Zero-sum Game — A Game Theory descriptor. A Zero-Sum Game is any game where the gain
observed from a move for one playeris equal to the loss the other player receives for the
same move.

Solved Game — A Game Theory descriptor. Agame is said to be solved if all possible outcomes
fromall possible states have been predicted by acomputer.

Decision Tree — A model for structuring the way game states can be connected. The nodes of
the tree represent the various game states, while the edges represent the moves that
transition one game state into another.

Pruning — The process of removing game states from a decision tree if it is not beneficial to
explore them.

Al Terms

Minimax algorithm — A type of game-playing algorithm that determines which moves to play
based on how disadvantageous the move is for the opponent, while still being as
advantageous as possible foritself.

Monte Carlo algorithm — A category of algorithms thatdepend on repeatedly sampling their
search space ina random mannerto obtain the necessary results.

Monte Carlo Tree Search algorithm — A type of game-playing algorithm that determines which
moves to play by samplingthe possible outcomes of each move viarepeated simulations.
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Deep Learning Terms

Neural Network—A collection of neurons and links capable of interpreting information passed
to it. Requirestraining before it can be fully useable.
o Classification Network — A neural network that returns a classification or other
discrete value forthe dataitis given.
o Regression Network — A neural network that returns a scalar value for the data it is
given.
Neurons / Nodes — The main objects that make up neural networks. Can output signals of
varying strength dependingon the strength of the inputsignals.
Links — Connect the various nodes in the network and transmit signals between them. The
signal strength depends on the weight of the link.
Training Data — The dataset thatis provided toanew neuralnetwork to configure the weights
of its links.
Testing Data — The data setthat is provided to a trained neural network to evaluate how well
the weights of its links can produce the necessary values/classifications.
Epochs — The number of times that the training datais passed through the neural network.

Java Terms

Exception — A type of object thrown by Java processes to signify that something has gone
wrong. Typically halts the execution of the process when it happens.

Garbage Collector — A process responsible for evaluating whether or not objects in memory
are inuse. Alsoclears these areas of memory so they can be returned tothe heap.

Project-specific Terms

Decider — A class representing an algorithm for searching through the possible future game
states and determining which moves a playershouldplay. Examplesinclude Minimax deciders
and the MCTS decider.
Evaluator — A class representing an implementation of an evaluation function, which Al
players can use to determine the worth of a game state. Examples include the Positional
evaluatorandthe Deep Learning evaluator.
Simulation— A possible sequence of game states from a provided starting state to the end of
the game. Used by the MCTS algorithmtoinformitself about how a game may play out from
a certain move or game state.
o Heavy Simulations—Simulationsthat use anintelligent way (e.g. Minimaxsearching)
of determiningthe movesaplayerwould playin the future.
o LightSimulations—Simulations that choose the future moves lessintelligently or even
randomly.

69



Table of Abbreviations

Abbreviation

Long Name

Al
ANN
DF
DL4J
GUI
JAR
JVM
mMC
MCTS
ND4J
UcCB1
ucr
ul

Artificial Intelligence
Artificial Neural Network
Data Format

Deep LearningforJava
Graphical User Interface
Java Archive

Java Virtual Machine
Monte Carlo

Monte Carlo Tree Search

N-Dimensional ArraysforJava

Upper Confidence Bound 1
UCB1 appliedtotrees
User Interface
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Appendices

Appendix A — Example of Othello Game States

Figure 27: An initial set up of the game; white squares are where the dark player can potentially place counters, (as they
play first) while grey squares are where counters cannot be placed until the game state changes (or because counters
already exist there)

Figure 28: A state following on from the initial state, where the dark player has placed a counter, resulting in a light counter
being flipped to dark. The white grid squares show where the light player can place a counter.

Example layouts used from https://en.wikipedia.org/wiki/Reversi
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Appendix B —Ted Landau’s 21 Key Strategies and Tactics

10.

11.

Get More Stable Discs, Not Just More Discs — “...a player will take the move that flips the
maximum number of discs. Thishas been clearly shownto be aninferiorstrategy.” “The point
therefore isnotsimply to acquire discs, but acquire discs that cannot be flipped...”

NotAll Squares Were Created Equal — “A crucial ideathat beginning playersinevitably realise
is the importance of the 4 corner squares on the board. A corner is important because it can
never be flipped. That is, it is a stable disc.” “In summary, the incorrect strategies place
unwarranted value on flipping large number of discs even though they are not stable.”

Control of the Game: Mobility Optimization and Dynamic Square Evaluation —“Your hope is
to getyour opponent to make apoor move thatwill allow youtowin the game.... Yourgoal is
to force him to make a poor move.”

Good Moves and Bad Moves: Gaining Control — “... a good move can typically be defined in
terms of the principles of gaining and maintaining control (with the ultimate aim of acquiring
stable discs).” “... most expert players agree that the easiest way to get control of the game is
by maintaining fewer discs that your opponent... Thisisreferred to as evaporation strategy.”

Good Moves and Bad Moves: Planning Ahead —“[Success]depends not merely on what is best
forthe current position, but whatis likelyto be bestbased on whatthe board will be like 2, 3,
4 or even more moves later.”

Isolated C-square Traps—“... in this section we demonstrate a “trick” or “trap” that will force
your opponent to concede a corner, no matter how many moves he might have available at
the time.”

Unbalanced Edges — “An unbalanced edge is defined as an edge occupied by five adjacent
discs of the same colour immediately adjacent to a vacant corner.” “Knowing whetherornot
totake an unbalanced edge, orto attack a currently existing one, are among the more difficult
decisionsin Othello.”

Controllingthe Main Diagonal: Stoner Traps and More — “Main diagonals can be so powerful,
that a good playeris constantly on guard for possibilities of gaining or losing control ofthem...”

Gaining and Losing Tempo — “A player is said to gain tempo when he achieves an advantage
of timing by deriving one more viable movethan his opponent from play within alimited area
of the board and thereby forcingthe opponenttoinitiate play elsewhere.”

Odd and Even Regions of the Board — “... as the game develops, the board is frequently
subdivided in separate regions of vacant squares. In this section we discuss a particularly
noteworthy aspect of these regions... whether there are an odd or even number of vacant
squares in the region.” “... it is typically disadvantageous to move into an even-numbered
region...”

Blocking Techniques: Access and Poisoned Moves — “Blocking techniques refer to ways to
preventyouropponentfromtaking an otherwise good move.” “A poison move is [a] type of
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

blocking move...you do notlegally preventthe opponent frommovingto asquare; you simply
make it undesirable.”

The Semi-Forcing Move —“A semi-forced moveis amove which is force not by the rules of the
games, butrather by tactical considerations.”

Mobility Reconsidered — “In some situations, there may be several safe moves that all flip
aboutthe same number of discs... How do you decide between them?”

The Opening: The Three Basic Variations —“... generalizations of strategy have such limited
applicability inthe opening, asto be practically useless.”

The Opening: Quiet Moves —“Players frequently findthemselves in the positionthat anything
they do only make their positions worse. Their ideal move would be to pass, but they can’t.
So they attempt to “disturb” the board as little as possible...these types of moves are called
quiet moves.”

Midgame Strategy: Patterns —“In many cases, a global view of the midgame can assistin your
decision making. This can be achievedby viewing the board position as one of several possible
patterns.”

The Endgame: The Final Count— “... clearly with only a few moves left, nowisthe time to go
for broke and flip the mostamount of discs each turn right? Well, it’s almost right. The ideaiis
not necessarily to flip the most amount of discs on each turn, but to flipthe mostamount of
discsrelative toyouropponent.”

The Endgame: Counting on More than Just Counting — “Probably the best overall advice for
endgame play is “expect the unexpected” ... Players need to be on guard for the hidden
dangers and/oropportunities that may existin a given position.”

Edge Play: General Concepts and Initiating Edges —“As the end of the openingphase of Othello
approaches, the players are inevitably presented with the decision as whether or not to
occupy an edge square... These next two sections present some useful guide lines for dealing
with this issue.” “... how does a playerdecide which edge square move is the best to initiate
on?”

Edge Play: Developingand Resolving Edges — “Is it a good ideato resolve an edge as soon as
you can, or should you leave it unresolved forawhile, oreven letyouropponentresolve it?”

Decisive Moves and Prioritising of Moves — “... at some point, a move is made after which,
barring any major blunders, the outcome seems decided. This is called the decisive move.”
“Decisive moves are really a special case of a still more general concept: how to read the
position and prioritise the possible moves.”

All names and descriptions are taken from reference [3], Othello: Brief and Basic by Ted Landau.

N.B. What Landau refers to as “discs” are the counters on the board in Othello.
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Appendix C —The UCT Formula

The UCT formula can be used to determine the most promising node to select when navigating a
Monte Carlo Search Tree. The formulais:

- e
ver = Wiy o [In®
n; n;

Where:

e w;isthe numberof wins whenthisnode/move is chosen as the next move from the previous
state.

e n;isthe numberof times thisnode/move has beenchosenasthe next move fromthe previous
state, regardless of whetheritresultedinawinor loss.

e cisthe exploration parameterthat effects howoftenmovesthat haven’t beenexplored much
are chosen. Typically, this is set to the square root of 2, but may change based on the
application UCTis usedin.

e trepresentsthe total numberof timesthe parent node of the currentnode has been chosen
(i.e.thatnodesvalue forw;)

UCT information used from reference [14]
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Appendix D — BlancheNoire’s Command Line Arguments

Available Arguments
These arguments can be provided directly into the command line, in the format (-x y), where -x is one
of the argumentlabels shown here, andyis a value matchingthe requested typeforthat argument.

Argument Label

Type

Default

Description

-playerl

-player2

-useGUI
-showOutput

-archiveGame

-alternate

-writeStats

-moveDelay

-AlRunTime

-runCount

-boardSize

String

String

Boolean
Boolean

Boolean

Boolean

Boolean

Integer

Integer

Integer

Integer

Human

Al(Random,Score)

True
False

True

False

False

100

5000
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Definesthe type of playertorepresent player
1. Human playersrequire no extraarguments.
Definesthe type of playertorepresent player
2. Al players must be given a decider and an
evaluator.

Toggles the graphical interface on or off.
Tells the program whether or not to display
the output the Al players produce in the
console.

Determines whetheror not the played games
are written to an archive file upon
completion.

If set to true, will swap which counters the
players control in each game. Only affects
runs where -runCountis greaterthan 1.
Determines if the game should record the
scores of each player to allow for statistical
analysis.

Number of milliseconds to wait before
allowing the next player to move. Allows
games state to be viewed beforeitis changed
again.

Number of milliseconds that an Al player is
allowed to use to determine the move it
wants to play.

Number of times to repeat the execution of
the Othello games.

The width and height of the Othello board in
board spaces.



Available Deciders and Evaluators
Thisis a list of all available Deciders and Evaluators that can be used for Playerarguments.

DeciderName
RandomDecider

FixedMinimaxDecider

IterativeMinimaxDecider

MonteCarloTree
SearchDecider

Evaluator Name
ScoreEvaluator

PositionalEvaluator

DeeplLearningEvaluator

Argument
Random

FixedMinimax

IterativeMinimax

MCTS

Argument
Score

Description

Usesrandom selection to determine what moves
to play.

Searches to a fixed depth and determines what
move to play via evaluation of possible moves.
Execution can be halted by timeout, resultingin
some states not being evaluated.

Alternate Minimax decider that iteratively
searched to deeper depths until max depth is
reached. On timeout, will always return a value
for each state.

Chooses moves based on simulations of possible
futures from each move. The returned move has
the highest predicted victory chance.

Description
Evaluates states based on the difference betweenthe

two player's scores.

Positional

Determines the worth of a state based on what

counterstheyownand inwhat positionstheyarein.

Deeplearning

Returns the valuation of the games state based on the

result of the evaluator's artificial neural network. Must
be giventhe ANN to use as an additional argument.

Additional Decider/Evaluator Arguments
This table contains all additional arguments that can be added to Deciders or Evaluators to change
theirbehaviour. There mustbe no spacesbetween the main Decider/Evaluator name, the argument

labels, and theirvalues.

Arg Name Type Used By Default Example Description
Label
-D# Depth Integer MinimaxDeciders | 6 FixedMinimax- | Defines the max depth
D9 that a Minimax Al will
search to.
-R Use Random | String MonteCarloTree InUse MCTS-R Applies a Random
Simulations SearchDecider Decider fora MCTS Al to
use for simulating
moves during its
decision process. (i.e.
sets the MCTS decider to
run lightsimulations)
-M# Use Minimax | String + | MonteCarloTree Not In | MCTS-M7 Applies a
Simulations Integer SearchDecider Use FixedMinimaxDecider
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for a MCTS Al to use for
simulating moves during
its decision process. (i.e.



-S# Simulation Integer MonteCarloTree Infinite
Maximum SearchDecider

-P# Random Move | Double | MonteCarloTree 0.10
Probability SearchDecider

-TH Time per | Integer MonteCarloTree 10
Minimax SearchDecider

-F(“”) | Deeplearning String Deeplearning None,
ANN Filename Evaluator path s

required
Examples
Goal Command

Set Player1 to be a Human Player

Set Player 2 to be a Fixed Minimax Al
player with depth 6

Set Player 2 to be an Al using MCTS and
DL

Turn offthe GUI

Play 10 games with archiving on, but no
move delay

Run 6 games between a Human and a
MCTS Al, with the GUI and alternating
players, but with no output, archiving or
move delay

-playerlHuman

MCTS-525000

MCTS-P0.01

MCTS-T25

Deeplearning-
F(ann/net.zip)

sets the MCTS decider to
run heavy simulations)
Takes a number to
specify the Minimax
decider's depth
(Recommended range
for this valueis between
2 and 6 inclusively,
depending on the power
of the computer's CPU).
Sets the max number of
simulations a MCTS Al
will carry out before
halting. If not specified,
no limitwill be placed.

Specifies the chance
that a Random Decider
is used to determine
moves in the MCTS
simulations instead of
the provided decider
(see -R and -M
arguments).

Sets the time the
internal decider can
spend deciding a move.
Larger times result in
more accurate
simulations, but less of
them.

Used to specify the file
to load the pretrained
NN  from for the
DeeplearningEvaluator.
This argument is
mandatory.

-player2 Al(FixedMinimax-D6,Positional)

-player2

-useGUI false

Al(MCTS-M6,Deeplearning-
F(ann/othello_net_second df3_1.0.zip))

-runCount 10 -archiveGame true -moveDelay 0

-playerl Human -player2 Al(MCTS-M3-510000-T5-
P0.01,Positional) -useGUI true -showOQutput false -
archiveGame false -moveDelay 0 -runCount 6 -

alternate true
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