
Final Report
Maximising entertainment value in the

vote-reveal problem
Final Year Project (CM3203) - 40 Credits

Author: Iain Johnston (1312579)

Supervisor: Richard Booth
Moderator: Xianfang Sun

Final Report Iain Johnston - 1312579

Abstract

As yet very little research has been undertaken into maximising the ”entertainment” of voting
competitions, however the appeal of having this ability is immediately obvious. This project
attempts to find the most entertaining order for votes to be revealed in competitions; such as
the Eurovision Song Contest. The problem was first formalised into a framework designed in
this project for solving optimisation problems, then functions to describe the entertainment
were designed and then a range of optimisation algorithms were used to try to maximise the
entertainment of the voting orders. A full analysis of the entertainment of the solutions and the
properties of the algorithms was undertaken. A near optimal, if not globally optimal solution
was found for the 2014 Eurovision Song Contest; and a novel problem specific algorithm was
designed. The project also introduces a framework and generalisable methodology for future
work in this field.

Acknowledgements

I would like to thank my supervisor, Richard Booth, for support and insights throughout the
project.

Thanks to the European Broadcasting Union (EBU) for releasing the datasets for the Eurovision
Song Contest for use in this project.

2

Contents

0.1 Introduction . 6
0.2 Background . 7

0.2.1 Project Context . 7
0.2.2 Background Theory . 8

0.3 Algorithm Designs and Approach . 10
0.3.1 ε Functions . 10
0.3.2 Neighbourhoods . 13
0.3.3 Optimisation Algorithms . 15

0.4 Implementation of System . 22
0.4.1 ε function wrappers . 22
0.4.2 ε functions . 24
0.4.3 Neighbourhood functions . 25
0.4.4 Simulated Annealing and Greedy search 26
0.4.5 Brute force . 27
0.4.6 Piecemeal . 28
0.4.7 Re-Use of code for future work . 28
0.4.8 Visualisation . 29

0.5 Results and Evaluation . 31
0.5.1 Overview of goals . 31
0.5.2 Solutions . 31
0.5.3 Testing . 36
0.5.4 Critical Evaluation . 41

0.6 Future Work . 42
0.7 Conclusions . 43
0.8 Reflection on Learning . 44
Glossary . 46
Appendices . 46
References . 56

3

List of Figures

1 2014 Scoreboard . 9
2 Uphill moves in optimisation problems . 18
3 Calculating the cumulative scores per participant 22
4 refinedMaxMin method . 25
5 getAdjacentNeighbour method . 26
6 getRandomNeighbour method . 26
7 Brute Force algorithm implementation in Python 28
8 Visualisation of solution to 2014 competition . 30
9 Running algorithms . 32
10 Snippet of Greedy results . 33
11 Extracting scores from results file . 33
12 Best solution . 34
13 Chart of ε values found by Greedy, Simulated Annealing and Piecemeal 35
14 How to time the algorithms using Python . 36
15 Extracting times from a results file . 36
16 Average time taken to perform full and partial ε calculation on the same solution 39
17 Difference between min value found for MaxMin method and RefinedMaxMin . 40
18 Finding the difference between two orders . 41
19 offsetGetEntertainment method . 49
20 getEntertainment method . 50
21 Simulated Annealing code . 51
22 Greedy Search code . 52
23 Piecemeal algorithm . 53
24 Final Gantt Chart . 55

4

List of Tables

1 Scores for simple example game . 10
2 Scores per round . 10
3 Difference per round for first order . 11
4 Difference per round with Germany and Austria swapped 11
5 Score calculations needed with adjacent neighbour 14
6 Approximate 2014 Eurovision specific calculations 14
7 Worst case Greedy complexity per line . 16
8 Simulated Annealing complexity per line . 19
9 ε values found for small example game . 21
10 Scores for simple example game . 21
11 ε values found for bigger example game . 22
12 Big-O of ε methods . 25
13 Worst Case Big-O complexities of algorithms used 46
14 Final Simulated Annealing cooling values . 54
15 Best and average solutions found by algorithms 54
16 Timing results for main algorithms (all times in seconds to 4 s.f) 54

5

Final Report Iain Johnston - 1312579

0.1

Introduction

In many elections and competitions, a set of voters will rank a set of participants from best to
worst, or will give scores to some of the candidates, with the winner then being the candidate
that gets the highest total number of points. When it comes to revealing the result after all the
votes have been cast but not revealed, some competitions proceed by having a roll-call of all
the voters in which each voter announces their own scores. This is often done for entertainment
purposes such as in the Eurovision Song Contest.[1]

The concept of entertainment, especially with respect to competition, is a heavily subjective
matter and as such is difficult to quantify in simple terms. There are intuitive constituent parts
to an entertaining competition (like Eurovision) such as, if the winner is known early or late,
and how many teams are in the running to win. This project will attempt to find ways to
translate these slightly nebulous concepts into more concrete mathematical functions.

This leads to the two main questions that this project will aim to answer:

1. How can we define the concept of ”entertainment” in the context of an optimisation
problem, and hence try to maximise it.

2. In which order should the votes be revealed in order to maximise that entertainment
value?

To try and answer these questions the Eurovision Song Contest will be used as an example
as it has a good quality datasets and the scoring rules of Eurovision are well documented and
relatively simple (see Section 0.2).

Changes to the voting rules over the years show that the motivation behind this project is a
current problem and there have been attempts to try and solve this problem already, at least
by the Eurovision organisers.

There is no specific intended audience for this project, Eurovision is a test competition as it
fits well with the more general optimisation problem that this project is trying to solve. The
success of the project could be of interest to the organisers of the Eurovision Song Contest as
they generally want a exciting competition. In a more general sense though it could be said that
the beneficiaries of the project would be those who would also attempt to solve this problem
for other datasets or competitions. This project can help set out a framework for approaching
these problems and many parts could even be re-used as long as the problem can be formulated
in a specific way (see Section 0.4.7 for details)

The scope of this project is to try and solve the optimisation problem by finding a globally
optimum solution, or by finding a near optimal solution and hence have a voting order that is
the most entertaining. Also within scope is to produce a way of visualising the solutions found
and from this gaining a better insight into why they are entertaining. This project does not
try and influence other parts of the voting that could also lead to more entertainment (such as
who delivers the votes or how the votes are delivered, only the order itself)

The approach used to tackle this problem is a scientifically minded one. There are three main
sections to the project. Firstly, designing and implementing functions that quantify the enter-
tainment of a given voting order. Secondly, solving the optimisation problem of maximising the
entertainment value given by those functions; using optimisation algorithms. Finally, analysing
the solutions given and comparing and contrasting why there are entertaining and how well

6

Final Report Iain Johnston - 1312579

the algorithms performed. This approach involves iteration on theoretical ideas whilst feeding
back in results as the project goes along.

The important outcomes and deliverables of this project are, a solution that delivers an en-
tertaining competition when the votes are revealed, a way of describing entertainment math-
ematically, and a way of visualising the competition as the votes are revealed. Moreover an
interesting and novel algorithm is devised that can match the more general optimisation al-
gorithms in terms of quality of the solutions produced and do so faster. Furthermore, the
framework that has been built to support the project, has extensive scope for future use.

The attached files include the algorithms used in this project; Brute force: bruteForce.py,
Greedy: greedySearch.py, Simulated Annealing: simulatedAnnealing.py and Piecemeal: step.py.
The main file that controls the problem: order.py, the problem specific supporting methods:
support.py, and the full set of results. This full project can also been found and cloned from
Github here: https://github.com/iainrj/FinalYearProject.

This report will first give some background to the problem and the Eurovision Song Contest as
a dataset. Then the algorithms used to solve the problem will be introduced and their theory
and necessity explained. The supporting problem specific code will be explaining and justified.
How those methods are implemented is then explained with reference to the code produced.
The results collected by running the algorithms are then analysed and the method to collect
the results is outlined and justified; interesting comparisons are then made between the results.
Finally more general testing of the system as a whole is explained and a critical evaluation of
the project is undertaken.

0.2

Background

The more general reason for this project is to try and see if there can easily be found an
optimal solution to a problem when given a mathematical representation of something that
humans experience.

Furthermore as competitions are usually televised and watched live, it is generally in the interest
of those in charge of the competition to produce an entertaining show as this helps them with
many facets of their business such as advertising, but also in building a following for the
competition.

0.2.1 Project Context

Eurovision has been a topic of research for many years now. The main focus of that research has
been in relation to the voting patterns that can be found over the course of many runnings of the
competition. This research such as ”Comparison of Eurovision Song Contest Simulation with
Actual Results Reveals Shifting Patterns of Collusive Voting Alliances”[2], ”Geography, culture,
and religion: Explaining the bias in Eurovision song contest voting”[3] and ”The Eurovision
Song Contest. Is voting political or cultural?” [4] all use the Eurovision Song Contest as a basis
to investigate political and cultural phenomena.

There has also been some research in more computational areas such as ”Using the Clustering
Coefficient to Guide a Genetic-Based Communities Finding Algorithm”[5] which attempts to
find communities within the voting patterns.

7

https://github.com/iainrj/FinalYearProject

Final Report Iain Johnston - 1312579

The particular problem that this project is addressing has not yet been published in a scientific
setting. It does seem to have at least been tackled by those that run Eurovision, however
as they are a private company they have never published any methodology on how they pick
voting orders. They usually state on their website[6] when revealing the voting order to media
that:

"The voting order has been determined by the results from last night’s Jury Final.

An algorithm has been created to try and make the voting as exciting as possible."

There is however no mention of how this algorithm works or what they constitute entertaining
or exciting.

The biggest drawback that can be said about the current Eurovision algorithm, without seeing
it and understanding its methodology, is that it only takes into account Jury votes as they can
be decided on during the dress rehearsals. This is problematic as there are two sets of votes,
one from the Jury and another from tele-voting. These votes can diverge for many reasons and
hence the voting order that purports to be entertaining, may only be such when the viewers at
home agree exactly with the Jury.

This project’s method attempts to take into account both the sets of votes and hence could
give a more correct picture of what will happen, entertainment wise, for any given voting order.
One main constraint on this method is exactly that fact, as it is necessary to wait for all the
votes to be cast before the voting order can be found. In real world terms this may not be
feasible for the Eurovision Song Contest as they may have commitments that require that the
voting order is known in advance. The voting order is usually announced early on the day of
the Grand Final, which the methods set out in this project could not do.[6]

Another drawback for the current Eurovision ”algorithm” as mentioned above, is the fact
that there is no explanation as to why their algorithm believes a given order to be more
exciting than any other. This project will attempt to standardise mathematically a function
for entertainment, which could in future be compared through human tests (see Section 0.6).
By describing a concept mathematically not only can it be used by algorithms but it could also
form part of a proof.

This project only looks at one specific area of the competition to describe and codify entertain-
ment. This can be seen as a drawback of the solutions found, however the way this project has
been undertaken leaves the opportunity for further work in the area of defining entertainment
functions as described in Section 0.6.

The techniques used and implemented in this project have applications outside the strict prob-
lem that is being solved here. For example even though this problem is specifically trying to
produce entertaining orders for Eurovision, there is no reason why other competitions who use
the same type of ordered voting system (sometimes referred to as roll-call voting) could use the
algorithms and framework designed and implemented in this project to solve their problems.
Furthermore, with a little extension and modification this framework could feasibly be used for
any optimisation problems that can be set out in a certain way (see Section 0.4.7)

0.2.2 Background Theory

Understanding how the Eurovision Song Contest voting works is key to this project, as this
affects many parts of the design and implementation of the system. Furthermore the system
for voting has been changed over many years and so to try and standardise the project I will be

8

Final Report Iain Johnston - 1312579

using the system that was in use during the 2014[7] running of the competition, and the main
dataset also comes from that year.1

In this system, each country awards two sets of 12, 10, 8 – 1 points to their 10 favourite songs:
one from their professional jury and the other from tele-voting. Moreover both constituent
parts count 50% towards the final score. The scores used throughout the project will be those
final composite scores.

In the 2014 contest, there were 37 countries that participated and of those 26 reached the final.
All 37 countries vote in the final. From this point on in this report, the countries that vote are
referred to as voters and those 26 competing in the final are referred to as participants. There
is overlap between the two groups i.e the participants set is a subset of the voters ; but it should
be obvious from the context to whom is being referred.

Figure 1: 2014 Scoreboard

This voting system creates a matrix of scores as seen in Figure 1[8] and in the file order.py in
the attached code. The voters are arranged along the top alphabetically, while the participants
are along the left hand side. Points refers to the final total of all the scores received at the end
of all voting, and rank is their final position in the competition.

This is important to look at as it can help clarify what this project’s aim is. A solution to the
problem is found by swapping a voter’s column into different positions and then analysing the
scores after each country has voted, to reach an entertaining order for those countries to reveal
their votes.

Hence the problem that this project is trying to solve is about ordering who votes when so as
to maximise some mathematical concept of entertainment.

12014 voting system is the system that had been in use from 2009 until changed in 2016

9

Final Report Iain Johnston - 1312579

0.3

Algorithm Designs and Approach

This section should give an explanation of the main parts that are needed to solve this problem.
This will include some pseudocode of the algorithms used, explanations of the neighbourhoods
tried and the entertainment functions designed. It is intended to give an introduction to the
why and how these parts of the project exists, before Section 0.4 goes into implementation
details with code and explanations using Python.

Firstly to help clarify the problem it is easier to view a much smaller competition and then run
through the main points of theory, that are then used in the full Eurovision system.

Firstly we design a competition that involves 4 teams total, of which 2 are participants. The
scoring system is even more simple than the one used by Eurovision. Here each voting team
gives 1 point the team they prefer and 0 to the other. A team cannot give itself 1 point. The
scores given in this game are shown in Table 1.

Table 1: Scores for simple example game

Germany France Spain Austria
Austria 1 1 1 0
France 0 0 0 1

From Table 1 we can see how the scores will be calculated in this type of competition. For
simplicity, the order that the teams vote is the order from left to right in Table 1. This means
that after Germany has voted the scores are Austria : 1, F rance : 0, the competition is shown
in Table 2

Table 2: Scores per round

After Germany’s vote After France’s vote After Spain’s vote After Austria’s vote
Austria 1 2 3 3
France 0 0 0 1

We can see that Austria wins this competition, with 3 points. This cumulative scoring extends
to the full Eurovision competition in the exact same way, except for in that case there are 30+
voters.

All that is needed to turn this simple example into Eurovision is to add all the voters and
participants and change the scores given out to be 12, 10, 8− 1 instead of just 1 and 0.

0.3.1 ε Functions

From this small example it can be seen that the ordering used would not be very entertaining
as after the second round of voting, Austria could not lose, only draw.

To justify this mathematically we could look at the difference between the scores of the two
teams at each round (Table 3). By summing that difference over the whole competition we get
a difference of 8, which represents the order [Germany, France, Spain,Austria].

10

Final Report Iain Johnston - 1312579

Table 3: Difference per round for first order

After Germany’s vote After France’s vote After Spain’s vote After Austria’s vote
Difference 1 2 3 2

However if we swap when Austria and Germany vote we would get a total difference of 4 over
all the rounds (Table 4). This would intuitively seem like a more entertaining order as well as
having a lower total difference.

Table 4: Difference per round with Germany and Austria swapped

After Austria vote After France’s vote After Spain’s vote After Germany’s vote
Difference 1 0 1 2

Any entertainment functions (ε functions) talked about in this section share some characteristics
that need to be explained. The first is that they take a solution (Φ) to the problem (see
Glossary-3) as input and they return a single entertainment value (ε) (see Glossary-4).
Moreover they calculate the scores (S) (see Glossary-6) for each participant country every
round (R) (see Glossary-5).

MaxMin

The first entertainment function that was designed is the one described in the small example
at the start of this section, named MaxMin. As it’s name suggests it works by finding the
difference between the highest score (max) and the lowest score (min) after each voting round.
It then sums these values which is the ε value for that solution. This function follows quite
naturally from watching and analysing the Eurovision competition as the way roll-call style
voting works, everything is building towards the latter end of the voting order. Hence it seems
to be a innate part of the competition that you would want every country to be in with a
chance of winning as often as possible. Moreover as there is only one prize, for first place, it is
even less important to worry about positions other than the top.

So each round the distance (Λ) for a set of scores, S is calculated as such:

Λ = max(S)−min(S) (1)

Then keeping the distance per round i as Λi, the entertainment value (ε) is found by:

ε =

nR∑
i=0

Λi (2)

(See Glossary-5 for nR)

This is a relatively simple equation and hence transfers simply to code. However more impor-
tantly, it encodes an intuitive part of entertainment mathematically. This functions encodes
the fact that an entertaining competition is one in which the distance between first and last
place is as low as possible as often as possible. In this case instead of maximising ε, we want
to minimise it.

Over the course of a whole competition i.e: nR voting rounds, it is intuitive to want that distance
to stay as low as possible, by finding the sum of the distance (Λ) in each round and then using
optimisation algorithms to try and find a solution (Φ) that minimises this value.

11

Final Report Iain Johnston - 1312579

There is however one major drawback of the basic MaxMin method, which is that in some
rounds, especially later in the competition, the last place country is actually mathematically
eliminated from the race for first place.

RefinedMaxMin

This leads to a second version of the entertainment function for this problem. As it is essen-
tially a refinement of the first function and not a brand new method it is called Refined-
MaxMin.

Equation 2 is the same across both functions, however where RefinedMaxMin and MaxMin
differ is how the min(S) part of equation 1 is calculated. As some of the countries cannot win
the competition after some number of rounds, they should not be taken into account when
seeing if a solution is entertaining or not.

To find whether a team can still win, the upper bound of points left available to be given is
found. This means that we assume for each team, and for the remaining rounds left to be
revealed, that they gain the maximum (12) points and the hence we find the highest score they
could ever attain. This method does not take into account whether the country has already
given itself a vote (in which case they would not be allowed to get 12 points in that round).
This was done to simplify the method and make testing it’s improvements against MaxMin
easier. Furthermore finding the upper bound is generally safe, especially when removing the
low scoring teams in Eurovision as voting is generally quite uniform past a certain point in
the voting; i.e countries that are given high points already generally get more, and countries
that have received few points continue to get few. Further refinements to this calculation are
discussed in Section 0.6.

The method for finding if a team can still win is to first sort the scores for every country in
round i into ascending order. Then iterating through that list of scores from the start and for
each score checking whether equation 3 is true.

countriesScore+ (maxScorePerRound× roundsRemaining) <= currentTopScore (3)

If equation 3 holds true then that country cannot win even if it received the maximum number
of points (12 in Eurovision’s case) and the leaders received the worst score possible (0), for
the remaining voting rounds. As the scores are in ascending order the last minScore found for
which Equation 3 held true is the minimum score to be returned.

It is quite simple to justify this refinement when looking at the competition. Those teams
who cannot win should not be making a mark on the entertainment of the voting order as
most viewers will not be paying attention to their scores and rank. Moreover this refinement
only works in competitions where there is only interest at the top of the table as opposed to
competitions with relegations or play-offs, where more than just who is the overall winner is
important.

It is important to start with the design of the entertainment functions as they are the main
workhorse for finding solutions to the problem. The approach to describe them was to analyse
the competition and try and identify things in a competition that lead to excitement. From
those ideas, it was a case of trying to formalise that theory into a concrete piece of maths that
could then be programmed. Furthermore the entertainment functions are quite problem specific
and may not transfer well into other problems, whereas the algorithms are entirely agnostic to
the problem at hand. This means the entertainment functions follow much more closely from
the problem itself than any other part of the project.

12

Final Report Iain Johnston - 1312579

0.3.2 Neighbourhoods

An important part of solving optimisation problems is designing and implementing neighbourhoods[9]
for given solutions. As a solution (Φ) is a list of voters in a certain order, then we define a
neighbourhood as any other solution that has two members swapped. This means that there
are only two changes between a solution and any of it’s neighbours.

In this regard an order is a permutation of the voters. Using Cauchy’s two line notation for
permutations[10], we can show the basic theory for our neighbourhoods.

(
x1 x2 x3 · · · xn

σ(x1) σ(x2) σ(x3) · · · σ(xn)

)
(4)

Equation 4 shows the first solution on the top row and a neighbour of that solution on the
bottom row. The functions that map the elements of a solution to a neighbour (σ) are explained
below.

These methods are examples of cyclic permutations i.e a permutation of a set which maps a
subset of elements to each other in a cyclic way, while mapping all other elements of the set to
themselves. The cyclic parts of a permutation are called cycles. A cycle with only two elements
is called a transposition[11]. As both of the following methods only contains two indexes, they
are transpositions.

Random neighbour

The first idea and most simple for this problem, was to swap two random elements of the
ordering. This means that the function σ swaps the two elements at those indexes. This
method can be described as such in equation 5 for two random indexes i and j.

σ = xi 7→ xj,

xj 7→ xi,

∀x 6= i ∨ ∀x 6= j : x 7→ x

(5)

This means that we swap the elements at indexes i and j and swap the rest with themselves.
The code for this will be explored in Section 0.4.3. This method gives a large set of possible
neighbours as theoretically for any single solution there are {length of solution × length of
solution - 1} possible neighbours. In the 2014 Eurovision competition this would mean {37 ×
36 = 1332} neighbours.

This method may be simple, however, when a closer look is taken at the actual ε values of
solutions that are very similar to each other i.e they have 3 or 4 elements swapped and most
elements the same, it is clear that their ε values only differ by a little. This calls into question
if the method detailed above is actually going to help the optimisation algorithm reach an
optimal solution.

Adjacent neighbour

The questions about the efficacy of the random method leads to another method for finding
a neighbour of a solution. As solutions that are close together are usually quite similar, it is
intuitive that swapping adjacent elements may improve the solutions found.

13

Final Report Iain Johnston - 1312579

This method works by finding a random value between 0 and length of solution - 1. Then
swapping the element at that index with its immediate neighbour to the right i.e. index + 1. It
can be expressed in the same way as in equation 5, except that in this case index i is a random
number and index j = i+ 1.

Another difference between this method and the random method is how it can actually be
calculated. After finding a neighbour of a given solution, the ε value of that solution must
be found. By swapping 2 adjacent countries in the solution a partial re-calculation of the
entertainment value can be done using the entertainment value of the previous solution. As
the previous solution and the new solution only differ by one position it is possible to only
partially re-calculate the ε value. This idea is implemented separately to the MaxMin and
refinedMaxMin methods in the code, and explanation as to how can be found in Section
0.4.1.

Re-calculation involves removing the distances of the swapped countries in the old solution and
adding them back in their new positions in the new solution. The equation for this is shown in
6.

εnew = εold − Λijold + Λijnew (6)

The εnew and Λijold values can be found by keeping them from the old solution and passing
them into the next ε calculation. The Λijnew must still be re-calculated however only up to the
higher of the two indexes.

The efficacy of this neighbourhood in reducing the number of calculations needed can be see
when calculating the ε values. A full calculation, such as is used in the random swap method
involves {number of voters × number of participants} or V × P .

However due to the adjacency of the swaps Table 5 shows what this method needs to calcu-
late.

Table 5: Score calculations needed with adjacent neighbour

Number of calculations
Max V × P
Min 2× P
Average ≈ 18× P

Table 6 show that what this would mean in the 2014 competition.

Table 6: Approximate 2014 Eurovision specific calculations

Number of calculations
Max 962
Min 52
Average 468

A deeper comparison and evaluation between the two methods can be found in Section 0.5.3

14

Final Report Iain Johnston - 1312579

0.3.3 Optimisation Algorithms

In the previous section the necessary first steps to solve the problem were outlined. Namely
calculating an entertainment value (ε) which can be optimised. To do this optimisation it is
necessary to use a set of optimisation algorithms which maximise or minimise a value in order
to settle on an optimal solution.

Greedy Search

The first algorithm that was posited was a simple Greedy search algorithm. Greedy search
works on the idea that by selecting the optimal choice at every possible stage, it will lead to a
globally optimal solution.[12]

At first glance it is not obvious if the problem is simple or complex. This lead to Greedy
search as a good first try as it is sufficiently simple so that the code is easy to write, and more
importantly it will likely find the optimal solution if the solution space is simple. If the solution
space is in fact too complex then Greedy may still find a good approximate solution.

An important point to re-iterate, as mentioned when talking about the ε functions, is that even
though in the report it may be mentioned that the algorithms are maximising entertainment
to do this in the code, we have to minimise the ε value produced by the ε functions. All
algorithms described in this report follow this methodology.

The pseudocode for Greedy is shown in Algorithm 1 in the appendix.

As can be seen, it is a very simple algorithm that takes possible solutions and compares them
to the already found best solution. It’s simplicity is, unfortunately, also it’s downfall in this
problem. Although it can find a good approximate solution it is not able to find the higher
entertainment solutions that other algorithms find.

The stopping criterion defines when the algorithms should stop. To maintain parity between
the algorithms, the stopping criterion chosen was to stop when a certain number of iterations
had passed without a new solution being found. The value of the stopping criterion is given by
the variable num iterations in all algorithms that use it. To achieve this idea it is necessary
to reset the value of i when a new solution is found. This can be seen on line 10 of Algorithm
1

Looking at the pseudocode, and with some simplifying assumptions the worst case time com-
plexity for this Greedy search algorithm can be found.

This is done by giving all the instructions that make a difference to complexity, a value Ti from
their line number. This means line 5 is T5, then working out how many times that instruction
will need to be run given an input. The input is the voters and participants, V and P . Some
lines can be ignored as they do very little to complexity. Table 7 shows the complexity added
by some important lines.

15

Final Report Iain Johnston - 1312579

Table 7: Worst case Greedy complexity per line

Line Effect on complexity

T1 run once with V steps

T2 run once

T3 run once with V × P steps

T 5 m times with constant steps

T 6 m times with V × P steps; as worst case, assume that full re-calculation is needed

T 7− T 11 m times as is worst case, so assume this block always run

T12 m

T14 1

N.B The main loop (lines 4 - 13) is constant, given it comes from num iterations. It adds m
times to the instructions inside it.

Factoring this down into equation 7 gives:

f(n) = (V × T1) + T2 + (V · P × T3) + (m× T5) + (m× V · P × T6)
+ (m× T7−11) + (m× T12) + T14

(7)

From this we can safely ignore anything that is less than the highest order as it will dominate
the complexity growth. Moreover we can see that the highest order is T6, so we are left with
equation 8

f(n) = (m× V · P × T6) ≈ m× V · P (8)

where P <= V . As we are looking at the worst case then P = V so this leaves us with a fair
approximation of the complexity in equation 9.

O(n) ≈ m× V 2 (9)

A discussion and comparison with the other algorithms can be found in Section 0.5.3 as well
as the complexity specific to the 2014 competition.2

Brute force

After running the Greedy algorithm and collecting some initial results it became clear that
it would be difficult to know by just looking at the problem, what a good ε value would be.
This lead to the decision about using a Brute force algorithm to try and enumerate all the
solutions.

The idea is extremely simple, try all possible solutions and keep track of the best found. Even
though the pseudocode and the real code will differ, the pseudocode helps to understand the

2A full table of Big-O complexity for all algorithms can be found in the appendix in table 13

16

Final Report Iain Johnston - 1312579

algorithm so is shown in Algorithm 2. The obvious difference with Brute force is the fact that
it does not have to find neighbours of current solutions as it will try every one possible.

When some simple calculations are made about the solution space it is clear as to why the
Brute force method is not ever going to feasible for this problem. Searching all solutions, is
not a simple task. As it must look at all permutations of solutions which are of length V , the
complexity of Brute force follows the number of permutations for n distinct objects.[13]. This
is shown in equation 10.

O(n) ≈ O(V !) (10)

This means that in all cases Brute force will run in ≈ V ! time. Comparison to the other
algorithms used can be found in Section 0.5.3.3

For example in the 2014 running of Eurovision this would be 37! which, after approximating
the time to look at one single solution, would take about 1.2 × 1040 seconds, which is quite
obviously computationally infeasible with the time and resources for this project.

Simulated Annealing

The performance of Greedy and Brute force suggests the fact that this problem is not a simple
one at all and hence another, more capable algorithm is needed to find more optimal solutions.
To do this the Simulated Annealing algorithm was used. First introduced by Kirkpatrick et
al[14] it is a metaheuristic that as well as accepting better solutions, also occasionally accepts
worse ones.

The pseudocode for Simulated Annealing can be found in Algorithm 3 in the appendix. It is
quite a lot more complex than either Brute force or Greedy search.

The skeleton of the algorithm is shared with both the previous algorithms; that is, lines 22 -
25 in Algorithm 21 are the same as lines 5 - 7 in Algorithm 2 (Brute force) and lines 9 - 12 in
Algorithm 1 (Greedy).

The important part where they differ is how they pick a solution to try. Simulated Annealing
finds a neighbour of the current solution, however where Greedy always takes that solution and
compares it to the best, Simulated Annealing does two things before that comparison.

Firstly as can be seen on lines 12 - 14 of Algorithm 3, it checks whether the new solution is
better than the current one. If it is better, then it takes that solution for comparison to the
best. However, if it is not better there is still a chance Simulated Annealing will take it for
comparison.

In lines 16 - 19, a check is performed that allows worse solutions than the current to be checked
against the best. This is usually called an ”Uphill move” as, if ε values of solutions are plotted
then better solutions are nearer to 0 and worse moves are further, meaning they will be moving
upwards on the curve as can be seen in Figure 2.

3A full table of Big-O complexity for all algorithms can be found in the appendix in table 13

17

Final Report Iain Johnston - 1312579

Figure 2: Uphill moves in optimisation problems

The reason for accepting a worse solution is because it allows for a more extensive search for the
optimal solution. Line 17 is a feature that is designed to prevent the algorithm from becoming
stuck at a local minima that is worse than the global one[15]. The local minima is represented
by the bottom of the red curve in Figure 2. Moreover as the likelihood of accepting a worse
solution varies with the value of t, it allows the algorithm to take worse solutions at the start,
but not take the worse solution nearer the end, meaning the ”Uphill moves” occur so that the
algorithm does not get stuck in a local optima early.

Another part that is specific to Simulated Annealing is the concept of the cooling schedule.
The values that make it up are ti, tl and cr coefficient. ti is the initial temperature and
should be high enough so that the final solution is independent of the initial solution, and so
that it encourages a wide exploration of the feasible solutions at the start. tl is the number
of iterations that occur at each temperature and the cr coefficient is the rate at which the
temperature is reduced.[16]

An approximation of the worst case Big-O of Simulated Annealing is shown in Table 8.

18

Final Report Iain Johnston - 1312579

Table 8: Simulated Annealing complexity per line

Line Effect on complexity

T1 run once with V steps

T2 run once with V × P steps

T3 run once with constant steps

T4 run once with V × P steps

T7 m× l times with constant steps

T8 m× l times with V × P steps

T9 m× l times with constant steps

T10 − T19* m× l times with constant steps

T20 − T23 m× l as it is the worst case, the assumption is that this block is always run

T26 m times with constant steps

T27 m times with constant steps

T29 run once

* This if-else block can be treated as one because one of the two blocks will always be run

N.B The main loop (lines 5 - 28) is constant, given it comes from num iterations. It adds m
loops to the instructions inside it. The inside loop (lines 6 - 25) is also constant, given it comes
from the temperature length, tl. It adds l times to the instructions inside it.

Factoring this down into equation 11 gives:

f(n) = (V × T1) + (V · P × T2) + T3 + (m× V · P × T4)
+ (m× l × T7) + (m× l × V · P × T8) + (m× l × T9)
+ (m× l × t10−19)

+ (m× l × T20−23)

+ (m× T26) + (m× T27) + T29

(11)

From this we can safely ignore anything that is less than the highest order as it will dominate
the complexity growth. Moreover we can see that the highest order is T8, so we are left with
equation 12

f(n) = (m× l × V · P × T8) ≈ m× l × V · P (12)

where P <= V . As this is the worst case then P = V so this leaves us with a fair approximation
of the complexity in equation 13.

O(n) ≈ m× l × V · P ≈ m× l × V 2 (13)

A full comparison between the algorithms and their complexities is undertaken in Section
0.5.3.

19

Final Report Iain Johnston - 1312579

Piecemeal

Part way through the project a slightly different approach to building a solution was suggested.
The three algorithms discussed above all have a major thing in common, that they move from a
full solution to another. It was suggested that another methodology for finding a solution could
be used. The development of this algorithm was not directly due to the performance of the
other algorithms. At this time in the project Simulated Annealing was performing very well; the
decision to design this algorithm was more influenced by gaining a deeper understanding of the
problem and the entertainment functions that had been designed. The Piecemeal method shares
some of its theory with Constraint Satisfaction Problems (CSP’s)[17] and more specifically
backtracking algorithms used within them[18]. Backtracking algorithms contain the idea to
incrementally build a full solution by trying different partial solutions.

This method begins with just one voter instead of a full solution. Then to pick the next voter
to add to the solution, the algorithm looks at all the available voters it could add and it picks
the one that gives the lowest overall Λ value if it were to be added. The Λ value is the distance
between the best and worst who can still win. At the end this value is summed to get the
solution’s ε value.

This method hopes that by picking the best possible next choice this will lead to a good
approximation or globally optimal solution. It acts very much like Greedy search that has been
discussed, and the pseudocode supports that, however by working on partial solutions instead
of full solutions, the idea is that it will at least approximate a good solution without having the
need to check many full solutions, hence increasing performance, especially for large solution
problems.

The pseudocode for it is shown in Algorithm 4 and the implementation is discussed in more
detail in Section 0.4.6.

The main points of interest are that even though lines 7 - 9 look very similar to the three
algorithms discussed before, there is a subtle difference. In this algorithm, the value that is
being checked against the best is not entertainment (ε) but the distance (Λ).

Another point of interest is a more academic one. It is a question of choosing which voter to
put at the start. The two most obvious choices are randomly choosing one, which complicates
the code slightly, or picking the first from the given list of voters, making the code simpler. The
choices of first voter and their effect on the ε returned is explored more in Section 0.5.2.

To come to a solution, the algorithm must look at a descending number of possible next solutions
from the length of the solution down to 1. In the 2014 Eurovision, this would be 37 choices in
the first round, 36 in the second, 35 in the third etc. until all voters are accounted for.

The formula in equation 14 describes the worst case that this algorithm will take. This can
be represented as a triangular number[19] as it is the sum of the natural numbers from 1 to
V .

O(n) =
V∑

k=1

k = V + (V − 1) + (V − 2) + ...+ 1 ≈ V (V + 1)

2
(14)

which can then be simplified for Big-O notation into equation 15. This is because for looking
at the complexity of algorithms it is most interesting to look at the term that does the most

20

Final Report Iain Johnston - 1312579

to the complexity, so in this algorithms case it is the V 2 term.4

O(n) =
V (V + 1)

2
=
V 2 + V

2
≈ V 2 + V ≈ O(V 2) (15)

Looking at the Big-O complexity in equation 15 and comparing it to the others is done it
Section 0.5.3.

One thing to note about this algorithm is that when the number of solutions to search is
relatively low, this method is very good at finding the best solution. Moreover in smaller
examples, this method tends to perform better than Simulated Annealing and Greedy. If the
number of possible first choices is relatively low then this algorithm can try them all, hence it
can always find the best solution that it could possibly find. This is shown by the fact that
running against the small example introduced at the beginning of this section this algorithm
will always find the best solution whereas the others find near best solutions. Table 9 shows the
values found by the three main algorithms for the small example. As was discussed in Section
0.3.1 the optimal solution has a ε value of 4.

Table 9: ε values found for small example game

ε value
Greedy 5
Simulated Annealing 5
Piecemeal 4, 4, 4, 4

Piecemeal produced 4 solutions (one with each voter as first choice) all with ε values of 4, whilst
the other algorithms found a near optimal solution of 5 from a random initial solution.

However if the search space is increased to 5 voters and 7 participants such as in the game
described by table 10, we find that Piecemeal begins to show signs of failures.

Table 10: Scores for simple example game

Round 1 Round 2 Round 3 Round 4 Round 5
Federer 0 0 2 0 6
Murray 1 1 3 6 5
Djokovic 2 2 4 4 4
Nadal 3 3 5 5 3
Borg 4 4 6 2 2
Cash 5 5 1 3 1
Henman 6 6 0 1 0

The ε values found by the algorithms are shown in table 11, and we can begin to see that, even
though Piecemeal is still beating Greedy and Simulated Annealing, it is also finding solutions
similar to the other algorithms. It is not too difficult to see that as the competition’s size
increases to as large as Eurovision, with 37 voters and 26 participants, Piecemeal could begin
to fail to find the best solution.

4A full table of Big-O complexity for all algorithms can be found in the appendix in table 13

21

Final Report Iain Johnston - 1312579

Table 11: ε values found for bigger example game

ε value
Greedy 31
Simulated Annealing 31
Piecemeal 19, 19, 27, 27, 19

The hypothesis behind this theory is that as the number of choices this algorithm has to make
increases, there is more opportunities for it to fail to choose the best next voter, hence making
it fail to find the overall best solution.

0.4

Implementation of System

In this section, the main important parts of the project’s code will be explored. This will take
the theory and pseudocode described in Section 0.3 and discuss the actual code implemented
as part of the project. It will both discuss some specific code as well as a discussion as to why
parts of the system were implemented in certain ways. All code referenced in this section can
be found in the attached source code files, submitted along with this report.

0.4.1 ε function wrappers

The ε functions form one of the most important parts of this project, however for them to
be implemented they need some contextual data. The functions described below are larger
functions that wrap around and allow the ε functions to do their work. The ε functions
actually form just the min(S) part of equation 1.

These wrapper functions share an important part, which is shown in Figure3.5

Figure 3: Calculating the cumulative scores per participant

1 for j in range(len(solution)):

2 for i in range(len(countries)):

3 v = voters.index(solution[j])

4 scores[i] = scores[i] + score_board[i][v]

5 ...

The main point of interest is the two nested for loops and specifically lines 3 and 4.

As the distance (Λ) is found as the difference between the max and min scores in each round,
it is necessary to go through and cumulatively add the scores given to each participant in every
round. This is stored in the array scores at the index for that participant : scores[i]. The
score board is the matrix of all scores given, as discussed in Section 0.2.

5Section of code from getEntertainment in support.py. Full function can be found in attached source code

22

Final Report Iain Johnston - 1312579

These lines are interesting to highlight as they are likely the most critical lines in all the system.
Every algorithm must use them at some point and all ε functions will need them to calculate
the ε value.

As the score lookup is done against a matrix of scores, it is necessary to find the correct column
to look in. The row is the current participant : i, however finding the column is a little more
complex.

The columns in the matrix are in a certain order, alphabetical in the case of the 2014 Eurovision
dataset. This, along with the fact that each solution is a permutation of that order, means that
the currently voting country in the solution, solution[j], must be found in the original order
to correctly retrieve the score it gives. By keeping track of the original order as it corresponds
to the scoreboard, the system only ever has to keep one matrix in memory, along with 2 lists
(of voters and participants). Any other method would include shuffling the scoreboard into the
order of the current solution. As the scoreboard grows i.e in other, larger problems, this method
would become untenable and possibly begin adversely affecting the algorithm’s runtimes and
complexities.

The method array.index(element) returns the index in the given array of the given element.
In this case solution[j], would be a country name such as ”Germany”, and the value of v will
be an integer corresponding to the column.

Looking at the full code listings there are actually two methods that wrap around ε calculation
functions to provide them with context and data. These are called offsetGetEntertainment
and getEntertainment, and they both share the code shown in Figure 3. They are also fully
independent of the maxMin and refinedMaxMin functions which are the actual ε functions.
These methods differ because of when and why they can be used.

The main reason for these differences is shown in Section 0.3.2, as using different neighbourhood
methods leads to different ways to calculate the entertainment.

offsetGetEntertainment

Firstly the more complex offsetGetEntertainment6 is used in conjunction with adjacent
neighbour swaps as it relies on using the previous ε value. The theory behind why this works
is explained in Section 0.3.2, specifically the Adjacent neighbours subsection and equations 5
and 6.

This function is shown in Figure 19 in the appendix.

The important parts to understand about this implementation are, that for it to work it must be
given three things. Two keys that correspond to the indexes of the voters that were swapped to
get this solution; the ε value of the old solution, and the array of the distances used to calculate
that solution’s ε value.

One obvious point of difference is between the for loops in Figure 19 and Figure 3. In the
offsetGetEntertainment method the for loops only need to calculate the scores up to the
higher of the two keys as the scores after the swaps are unchanged.

The actual recalculation described in Equation 6 is implemented in line 20. On lines 3 and
4, a copy of countries and solution are taken using Pythons array copy syntax. This is most
likely not really necessary but during implementation there was a couple of times where after

6Can be found in support.py in source code

23

Final Report Iain Johnston - 1312579

amending one of the lists locally inside a method, the global version of that list that should
have stayed the same, was also changed. This small problem is further discussed in 0.5.4.

Lines 22 and 23 are necessary so that the new distance values can be passed to this function
again, with the distances in the correct positions. Essentially what this does is constantly pass
around a list of distances, amending it by swapping values before passing it on.

offsetGetEntertainment is certainly faster and more performant for most solutions. This
does depend on where in the solution the swaps have taken place (explored in Section 0.5.3.)
The main drawback of this method is that is can only be used with adjacent neighbourhood
and not the random neighbourhood method.

getEntertainment

The second entertainment function wrapper is simpler than offsetGetEntertainment. getEn-
tertainment7 is the general purpose wrapper for calculating the entertainment of a given
solution. It can work with either of the two neighbourhoods described. This makes it more
general purpose, however it also make it slower especially when the solution size is large.

The points of interest here are found in lines 13, 14 and 15 of Figure 20. These lines implement
that which can be found in Equations 1 and 2 exactly as described. Line 13 finds the difference
between the max of the scores and whatever min was returned by the current ε function. Line
14 adds the Λ value found to an array and then line 15 sums all the Λ values found to finally get
a ε value. To allow it to interact with the offsetGetEntertainment method it also keeps track
of the array of Λ values and returns them so they can be passed to offsetGetEntertainment
in the next iteration.

Some test that compare and contrast these two methods can be found in Section 0.5.3.

0.4.2 ε functions

The refinedMaxMin8 method is the more interesting of the two ε functions to look at in
depth. The original maxMin9 method is very simple and uses the Python in-built min() [20]
method. Both methods use the max() [21] method from Python.

As can be seen in Figure 20 on line 12, the refinedMaxMin method is invoked, with the
current list of scores for all participants, the current solution being tested and what round of
voting the competition is at, j. The maxScorePerRound is used so that different competitions
can define what it is instead of keeping it locally in the function allowing this method to be
easily re-used.

The function is shown in Figure 4

7Can be found in support.py in source code
8Can be found in support.py in source code
9Can be found in support.py in source code

24

Final Report Iain Johnston - 1312579

Figure 4: refinedMaxMin method

1 def refinedMaxMin(scores, solution, j, maxScorePerRound):

2 sorted_scores = sorted(scores[:])

3 currentTop = sorted_scores[-1]

4 minScore = sorted_scores[0]

5 del sorted_scores[-1] # remove highest score

6 roundsRemaining = (len(solution) - 1 - j)

7

8 for score in sorted_scores:

9 if score + (maxScorePerRound * roundsRemaining) <= currentTop:

10 minScore = score

11 return minScore

The theory behind this method was described in Section 0.3.1. Some of the implementation
points to pick up on are, line 1 where the in-built Python function sorted()[22] is used to take
the list of scores and sort them in ascending order. This does slow the method slightly, taking
the method’s complexity to n log n but it also simplifies the logic later on as the method does
not need to keep track of anything other than the minimum found and also only needs to update
it.

This implementation is likely not the most efficient way of finding the refined version of the
minimum, however it is quite a simple method. Refinements to the performance are discussed
in Section 0.6.

An important part of the two methods is their Big-O complexity. As they are affected by the
implementation more than the design they are mentioned here. The complexities are shown in
Table 12. The main point to recognise is that the methods are different in terms of complexity
which can help in the evaluation such as in Section 0.5. The refined method is actually very
similar to maxMin except for the sorting step which increases the complexity.

Table 12: Big-O of ε methods

Big-O time complexity
maxMin* O(n)
refinedMaxMin O(n log n)

* Complexity of Python’s min() function from[23]

More in depth comparisons between the two methods can be found in Section 0.5.3, which take
into account the complexity and the minimum scores that the methods produce.

0.4.3 Neighbourhood functions

The random and adjacent neighbourhood methods, getNeighbour and getAdjacentNeigh-
bour are very similar to each other as can be understood from the theory in Section 0.3.2. Both
can be found in support.py in the attached source code. This does mean they could be written
as one single method which are supplied the keys needed to perform the swaps. This approach
was given some thought during their implementation however in the end it was decided to

25

Final Report Iain Johnston - 1312579

favour duplication over complexity in the system. This means that there are two methods that
are for all intents and purposes exactly the same, but are named differently.

The methods are shown in Figures 5 and 6.

The only difference occurs on lines 3 and 4 in the methods. Firstly in the adjacent neighbour
method (figure 5) the first key is found by getting a random integer between 0 and 2 elements
from the end of the list. It must be 2 elements from the end as the second key is taken as
the first key + 1. In terms of a list this means the element directly to key1’s right. The
len(neighbour) part is using Python’s in-built length function to calculate the length of the list
and hence the last index it can return for correct swapping.[24].

The random neighbour method uses the Python random library in line 3 of Figure 6 to sample
the given order and get two random elements back.[25]. As this method actually returns the
elements and not indexes of those elements, like in the adjacent method, it is necessary to
change them back into indexes (line 4) for simple swapping in line 5.

Figure 5: getAdjacentNeighbour method

1 def getAdjacentNeighbour(xNow):

2 neighbour = xNow[:]

3 key1 = random.randint(0, len(neighbour) - 2)

4 key2 = key1 + 1

5 neighbour[key2], neighbour[key1] = neighbour[key1], neighbour[key2]

6

7 return neighbour, key1

Figure 6: getRandomNeighbour method

1 def getNeighbour(xNow):

2 neighbour = xNow[:]

3 key1, key2 = random.sample(list(neighbour), 2)

4 index1, index2 = neighbour.index(key1), neighbour.index(key2)

5 neighbour[index2], neighbour[index1] = neighbour[index1], neighbour[index2]

6

7 return neighbour

0.4.4 Simulated Annealing and Greedy search

The implementation of the search algorithms is not the most interesting part of this project
and hence only a little time will be spent explaining their implementation. Both Simulated
Annealing and Greedy Search can be found in the appendices, and in the attached source code
in the files simulatedAnnealing.py and greedySearch.py.

The main reason for not going into depth about their implementations is that both algorithms
are essentially general search algorithms that receive the problem specific input from the other
functions already described such as getEntertainment and getAdjacentNeighbour.

A point that is shared across both implementations is the increasing while loop that gets reset
to 0 when a new solution has been found. Using Greedy Search as an example, in Figure

26

Final Report Iain Johnston - 1312579

22, the while loop starts at line 10 with i equal to 0. It is incremented on line 22 after an
iteration and comparison of a new solution. On line 18, the value of i is reset to 0. This allows
the num iterations loop to be the number of iterations since a new best solution was found
instead of a hard number of loops to go through. This minor implementation detail actually
has a very measurable impact on the speed of the algorithms. Due to the nature of the problem
space, it is likely that both Greedy search and Simulated Annealing reach local (possibly global)
optima. When this happens, they are not going to choose a new solution. Furthermore having
the num iterations variable set as a hard number of iterations would require a very deep
knowledge of the problem space and how the algorithms are traversing it; so that there is little
overhead after they have found the best solution they are going to find. This is not really
possible so this method also allows for slightly more flexibility.

Another implementation point that is shared is the fact that both algorithms must pass the
oldEntertainment and oldDistances into the offsetGetEntertainment method. The reason
for this is explained in Section 0.4.1. This also explains the need for the variable key1 to be
returned from the getAdjacentNeighbour method.

A minor point that is related to Python as a language is the ability to return multiple values from
a function in a tuple by default. This hugely simplifies the code as methods can then for example
return both a neighbour and the first key used to find it (getAdjacentNeighbour) or a possi-
ble solution and the individual distances that make up that solution (offsetGetEntertainment).
In other languages there are ways to work around this problem, but this solution is one simple
way in Python.

Specifically looking at the Simulated Annealing code in Figure 21, the main lines of interest in
terms of implementation are line 32 and 34. Line 32 uses the Python random[26] library to get
a random number between 0 and 1. It then uses the Python math[27] library to do the e−deltaC/t

part that is necessary for Simulated Annealing to work. These again, are two examples of the
Python libraries making implementation very simple for this project.

The general cooling ratio values which were explained in Section 0.3.3 on Simulated Annealing,
were experimented with throughout the project. The final values are shown in Table 14 in the
appendix and how they are implemented is quite self explanatory.

0.4.5 Brute force

The implementation for the Brute force10 algorithm was one of the most simple, and this has
much to do with the libraries that Python provides. The library used for the Brute force imple-
mentation is itertools [28], which provides a set of common methods such as permutations [29].
This makes this implementation extremely simple as I did not have to write any code to cor-
rectly permute through the possible solutions without repetitions, as the library handled it for
me. It can be seen on line 5 of Figure 7.

10Can be found in bruteForce.py in the attached source code

27

Final Report Iain Johnston - 1312579

Figure 7: Brute Force algorithm implementation in Python

1 def bruteForce(score_board, countries, voters):

2 best = voters[:]

3 bestCost = support.getEntertainment(voters, countries, score_board, voters)

4

5 for solution in itertools.permutations(voters):

6 currentCost, dist = support.getEntertainment(solution, countries, score_board,

voters)

7

8 if currentCost < bestCost:

9 best = solution[:]

10 bestCost = currentCost

11

12 return best, bestCost

The implementation shares many similarities with the other algorithms described so far. Namely,
the if block on line 8 - 10 that checks if the current solution is better than the best found so far.
Furthermore it uses the same getEntertainment method that is used by both the other search
algorithms described so far. One small but important point is that, in contrast to Greedy and
Simulated Annealing, during the main for loop (lines 5 - 10) in Figure 7, Brute force cannot use
the offsetGetEntertainment method. This is the one drawback of using the itertools library.
As it controls getting a new solution to try, the key needed for offsetGetEntertainment to
work cannot be passed around. This further slows this Brute force implementation.

0.4.6 Piecemeal

The Piecemeal algorithm is the only break from the traditional style of search algorithms that
have so far been discussed. Moreover it is the most novel approach to solving this problem in
this project.

The theoretical differences were discussed in detail in Section 0.3.3. The code for this algorithm
is shown in Figure 23 in the appendix and can be found in step.py in the attached source
code.

The subtle difference in terms of comparing Λ values instead of ε values that was discussed in
the design of this algorithm can be seen on lines 31 - 34.

Secondly, the concept of ignoreIndexes in lines 23, 24 and 35 is necessary so that the correct
score is taken from the scoreboard. As the value of j is used as an index in the scoreboard
matrix, it is necessary to ignore those indexes of countries that have already been added to the
solution. As was discussed in Section 0.4.5, in the Brute force method Python took care of not
having repeats, however in this method as the algorithm is slightly more complex and Python
in-built methods cannot be used, this must be done manually.

0.4.7 Re-Use of code for future work

One of the more general points that relates to how this project was implemented is the possibility
of re-use of the work. Quite early in the project, when discussing other problems that are

28

Final Report Iain Johnston - 1312579

similar in type to Eurovision, it became clear that the code that was being written would be
quite general to all of these problems. Furthermore there was no established framework for this
sort of problem which meant this implementation would have to do that job anyway. This lead
to the attempts to make all the implementations as re-usable as possible.

This can mainly be seen in that all loops have an upper bound that depends on the length of
the lists given and do not use magic numbers that may change. For example Figure 20 on lines
8 and 9.

This is also be seen when looking at the controlling file order.py in the attached source code.
There are 4 inputs that all the algorithms need to run. These are: a list of participants, a
list of voters, a scoreboard (which is a matrix of scores that voters give to participants) and
finally the max score that can be given by each voter (12 in Eurovision). If a problem can
be formalised into these 4 inputs then these methods and algorithms can quite easily be used
for other problems, no matter their complexity or size. The supporting files that implement
the entertainment and neighbourhood functions could also simply be swapped out for problem
specific ones if needed.

The Eurovision Song Contest group released spreadsheets for the 2016, 2015 and 2014 Semi and
Grand Finals. To allow the scoreboard to be taken directly from these results it was necessary
to convert these spreadsheets to csv’s first. This was done for the 2014 file and is attached. To
read this into a matrix scoreboard for use by the algorithms a csv reader was written which
can be found in the attached source code as csvDataReader.py.

As the spreadsheet and hence csv were not optimised for use by computers there were some
modifications to the incoming data that had to be made. One such modification was to change
new lines (\n) at the end of each row to a score of 0 points. This was due to the fact that
the last element on each row was the composite score, and if a team was given 0 points, then
the cell was left blank. When the spreadsheet was turned into a csv the blank cells became
newlines. Another was to track who was currently voting and add an extra 0 points when
they would have voted for themselves as the spreadsheet did not include the country that was
currently voting in the list of countries that received votes. Once run it produces a matrix
that can then be given to the order.py file and then used to solve the problem. Hence allowing
the re-use of the algorithms and supporting functions on another Eurovision competition with
relative ease.

0.4.8 Visualisation

A part of this project that was within scope, but not directly part of solving the problem, was
creating a way to visualise the solutions that the algorithms produced. The main reason for
doing this was to have a way to compare solutions that more closely correlates with how the
real solutions would be viewed.

My idea for this was to produce a simple web application that could be given a competition
and the solution found by one of the algorithms and then ”play out” the competition for a
viewer. A screenshot of the application is shown in Figure 8.

29

Final Report Iain Johnston - 1312579

Figure 8: Visualisation of solution to 2014 competition

The application is a Node.js application that uses two main libraries for rendering the chart
seen in Figure 8. The first is d3.js which is needed to scale the bars to the correct proportions
as the scores are re-calculated. This uses the d3-scale library[30] instead of using the whole of
d3. d3 could have theoretically taken care of updating of scores each round, however I was not
extremely familiar with the way in which it updated state. Moreover for this project I wanted
to produce something rather than getting stuck in the implementation details of learning a new
library, and the more important part of this project was to produce solutions.

For this reason I turned to Preact.js [31], which is a smaller and faster version of the currently
very popular library React [32] from Facebook. I chose Preact, as I have experience with React
however I did not need the large number of functions that React provides and I needed the
state changing to be fast, as there a calculations that need to be done from round to round.
Moreover to speed up starting up the visualisation, the code is based on a Preact example
application.[33].

The visualisation is very simple, the user clicks a button to begin the competition voting and
from there the scores are updated and shown on screen. A timer is used so that only one
button press is needed to start the voting and from then on around every 1.5 seconds the new
scores are shown, until the end of the competition. Moreover when a team cannot win, the
colour of their bar is changed to grey, to help show who can still win. This provides anyone
viewing the voting with a simple way to see how close certain teams are to each other and the
current leader, and hence why the algorithms may have settled on this order. A further goal of
producing this visualisation, which will be explained in Section 0.6, is using this visualisation
as a tool for discovering new entertainment functions for this and other problems.

As with the other code in this project I have attempted to make this as re-usable as possible.
It takes the same types of inputs as the algorithms need, and any work to modify the code

30

Final Report Iain Johnston - 1312579

should only be purely cosmetic, such as changing names of voters or participants.

The visualisation code can be found in the visualisation folder in the source code, along with
explanations on how to run it to view it locally.

0.5

Results and Evaluation

0.5.1 Overview of goals

The main barrier to saying that this project achieved all of it’s stated goals is the fact that the
optimal solution is not know for sure. The goals set out in Section 0.1 were:

1. a solution that delivers an entertaining competition when the votes are revealed

2. a way of describing entertainment mathematically

3. a way of visualising the competition as the votes are revealed.

As it is the most important of the three goals, the goal of finding entertaining solutions is
explored below in Section 0.5.2 in more depth.

Describing the entertainment of a given voting order mathematically was explored theoretically
in Section 0.3.1 and their implementations in Section 0.4.2. In terms of success in achieving
the goal, I think it was very successful. The main entertainment function (refinedMaxMin)
provides a simple and elegant way of enumerating a concept that can be quite difficult to define.
The functions not only define an entertaining solution mathematically, but they also allow them
to be maximised or minimised easily, so in this regard they are also very accomplished in helping
to achieve the first goal. A comparison between the two functions defined during the project
and an explanation as to how they were tested against each other can be found in Section 0.5.3.
Moreover this will also provide more support as to why I believe this goal has been successfully
reached.

It is more difficult to quantify if the goal of creating a way to visualise solutions has been met or
not. In my opinion, the visualisation web application does a very good job of allowing another
dimension of this project to be shown. The side of the project that the visualisation helps
to shed light on, is essentially ignored by the algorithms and only generalised heavily in the
entertainment functions. That is how real people would feel when viewing an ”entertaining”
solution. The visualisation provides a more visual style of feedback to the viewer. Furthermore
it helps to justify the other goals without having to go into as much detail about the correctness
of the algorithms or the entertainment functions, such as is done in this report.

All raw results can be found in the results folder in the attached supporting files.

0.5.2 Solutions

This section will discuss both the general solutions found by all the algorithms and compare how
they performed in finding solutions. Moreover the methodology for collecting and analysing
these solutions will be explored. A table of the best and average solutions along with average
times for each of the four algorithms can be found in table 15 and table 16 in the appendix
respectfully.

31

Final Report Iain Johnston - 1312579

Methodology

To find a set of solutions for each algorithm in order to analyse them, the first step was to do
some repeated runs. To facilitate this some code was added to the main controller order.py so
that an optional command line parameter could be given which would repeat the running of
the given algorithm how ever many times the user input.

The general method was to run each of the algorithms lots of times and record the Φ and
ε values for that solution. From this we can be more confident about the performance of
each algorithm and make some mathematical comparisons between them. To try and keep the
experiment fair all the algorithms that take an initial solution were given the same one, that is
the one given by the method getInitialSolution() in support.py.

An important point to recognise, before explaining the basic methodology, is that only testing
of Greedy search and Simulated Annealing can be done in the exact same way, due to their
similarities. Piecemeal and Brute force cannot be tested in the same way however the same
idea of running them many times to collect many solutions still stands. Their methods are
explained later on.

The experiments were designed to give each of the algorithms as much of a chance as possible
to perform at their best. This meant that I attempted to keep the surrounding computation
at a minimum so as not to add to the load on the CPU.

The experimental method for both Greedy search and Simulated Annealing are the same, apart
from changing filenames. It begins with running a command in the terminal similar to that in
Figure 9.

Figure 9: Running algorithms

>> python order.py simAnnealing 140 >> results/simAnnealingResults.txt

This command needs to be run in the same directory as the controller order.py and the algorithm
that is being run. In this example this command will run the Simulated Annealing algorithm
140 times and then send the output to a file called simulatedAnnealingResults.txt in a results
subdirectory.

The >> part is a bash command that means append the output of the preceding command
into the file after it. Append is used as it was necessary to run this code in smaller chunks to
reach 1000 total runs. So as not to create a new file each time, we append from wherever we
left off. Saving the output could have been achieved quite easily from within Python, however
I felt that it was a sound idea to take the saving of the output away from Python as the
terminal commands are usually faster and, in my opinion safer to use. They are also much
more simple to write and have very little room for error. Moreover, when doing the timing
experiments I wanted the least amount of overhead so that as little external time was spent on
other computations that could accidentally leak into the times for the algorithms.

After doing this I was left with a set of files that contained both a Φ and an ε value per line.
These can be seen in the attached results files such as greedyResults.txt. A snippet of this file
is shown in Figure 10.

32

Final Report Iain Johnston - 1312579

Figure 10: Snippet of Greedy results

...

([’Russia’, ’Portugal’, ’Ukraine’, ’Poland’, ’Sweden’, ’Switzerland’, ’Montenegro’,

’Romania’, ’San Marino’, ’Italy’, ’Latvia’, ’Malta’, ’The Netherlands’, ’Slovenia’,

’FYR Macedonia’, ’Ireland’, ’Hungary’, ’Iceland’, ’United Kingdom’, ’Lithuania’,

’Georgia’, ’Norway’, ’Germany’, ’Greece’, ’Israel’, ’Spain’, ’Armenia’, ’Estonia’,

’Austria’, ’France’, ’Finland’, ’Belgium’, ’Denmark’, ’Albania’, ’Belarus’, ’Moldova’,

’Azerbaijan’], 3409)

([’Italy’, ’Russia’, ’Ukraine’, ’San Marino’, ’Latvia’, ’Norway’, ’Israel’, ’Belarus’,

’Slovenia’, ’United Kingdom’, ’Poland’, ’Portugal’, ’Romania’, ’Georgia’, ’Albania’,

’Denmark’, ’Montenegro’, ’Lithuania’, ’Switzerland’, ’Austria’, ’The Netherlands’,

’Germany’, ’Azerbaijan’, ’Armenia’, ’Ireland’, ’Spain’, ’Greece’, ’Moldova’,

’Hungary’, ’Finland’, ’Belgium’, ’Iceland’, ’FYR Macedonia’, ’Sweden’, ’France’,

’Malta’, ’Estonia’], 3298)

...

Although the Φ are very interesting in their own right, for them to make more sense and the
find the best, it was necessary to extract the ε values from this file so that some analysis could
be done. To do this I used ack [34], which is a tool that allows for searching of plaintext files
for lines that match a given regular expression. This allowed me to extract just the scores
from the files like greedyResults.txt and then send them to a file such as greedyScores.txt11. The
command for this is shown in Figure 11.

Figure 11: Extracting scores from results file

>> ack -o "(?<=,\s)\d{4}(?=\))" algorithmResults.txt > algorithmScores.txt

The ack tool uses Perl regular expressions for matching the given expression. In this case the
regular expression is very simple but looks complex. The \d{4} part matches 4 of any digit.
The parts before in brackets is a positive lookbehind and after in brackets is a positive lookahead.
These match something before or after the digits but do not keep them in the output; and are
used to find a comma and a space before, and the final bracket after the score. The -o part is
a flag that is used to only print whatever is matched, otherwise the whole line where a match
was found would be printed and there would be no difference between the results and score
files. Once again we use the bash commands to send the output to a file, however this time
we do not append, but create the file and write to it immediately.

After doing this we have files that contain 1000 ε values, which can then easily be copied into
Microsoft Excel for analysis.

When running the two search algorithms there are some setup values that are needed. The
main one is num iterations, which both Simulated Annealing and Greedy Search use. To try
and keep the tests as close to each other the same value was used (num iterations = 500).

Specific to Simulated Annealing’s case there are some more input values that are needed, and
they were discussed in Section 0.3.3 in the pseudocode. The final values are shown in Table 14
in the appendix. To reach these values I took into account more general wisdom for each one
as well as trying to apply more problem specific knowledge to reach the values that give the
best solutions. Furthermore, the time taken to find a solution could be heavily effected by the

11greedyScores.txt can be found in the attached code and results.

33

Final Report Iain Johnston - 1312579

values so a balance was struck so that the algorithm did not take too long, but also produced
consistently good ε values.

The methodology for the Piecemeal algorithm was slightly different. This is due to the fact
that given the same first choice the ε value will always be the same. The problem of which
voter should be first, was brought up in Section 0.3.3. It was decided to try and find the best
solution by trying all the possible first choices and saving them all. This takes away the random
element but still allows the algorithm to return it’s best possible solution.

To do this it was necessary to wrap the Piecemeal code as shown in Figure 23 inside a for loop
and instead of hard-coding the first element on lines 10, 11 and 12, using the index from the
loop.

Once again to extract the scores I used the same ack command from Figure 11 to find the
scores and send them to a file.

As the Brute force algorithm can not be run in the same way as the other three, a different
method was devised to test it. The method was to leave it running for 1 hour. This is a fair
time to run it for, as will be discussed in the timing part of this section. The other algorithms
produce solutions consistently in under 20 seconds. As before the experimental conditions were
as similar as possible to the other tests. In this case all the solutions found were saved and the
best solution found was the last one found after 1 hour.

Solutions found

The best Φ for the 2014 Eurovision was found by Simulated Annealing with a ε value of 2554
(using refinedMaxMin). Although is it difficult to say with certainty if this ordering is the
globally optimal solution for the 2014 Eurovision competition, I believe that we can say with
a high degree of confidence that this solution is at least close to optimal. This suggests that
in terms of achieving the goal of finding a solution that delivers an entertaining competition,
this project has been successful. This is true because even if the best solution found is not the
”optimal” one, it is still very much an ”entertaining” one.

Figure 12: Best solution

[’Belarus’, ’Albania’, ’Poland’, ’United Kingdom’, ’Montenegro’, ’Armenia’, ’Malta’,

’Russia’, ’Azerbaijan’, ’Germany’, ’San Marino’, ’Italy’, ’FYR Macedonia’,

’Moldova’, ’Estonia’, ’Austria’, ’Romania’, ’Switzerland’, ’Ukraine’, ’Latvia’,

’Denmark’, ’Georgia’, ’Hungary’, ’Finland’, ’Ireland’, ’Norway’, ’Greece’,

’Spain’, ’Israel’, ’Portugal’, ’Lithuania’, ’France’, ’Belgium’, ’Iceland’,

’Sweden’, ’Slovenia’, ’The Netherlands’]

To try and verify if this was the most optimal solution that could be found, this Φ was given
to both Greedy and Simulated Annealing as the initial solution, and they were run around 10
times. They both returned this same solution, which gives good confidence that this is the best
possible Φ.

Table 15 in the appendix shows some of the other interesting ε values found for all the algorithms
used. The Φ corresponding to those values is not shown as they are very long, however finding
them is a case of searching the results file for the ε value as they are saved together.

Figure 13 shows Simulated Annealing, Greedy and Piecemeal with their minimum, average and
maximum ε values so they can be compared.

34

Final Report Iain Johnston - 1312579

Figure 13: Chart of ε values found by Greedy, Simulated Annealing and Piecemeal

In terms of comparing the algorithms the first point is that Simulated Annealing is the best
algorithm as it found the best ε value and hence solution as discussed above. This is in terms
of ε value found only, and not with respect to any other measure of quality such as speed. How
they compare in other regards is discussed in Section 0.5.3.

The Greedy algorithm does not perform particularly well as it’s average ε is much higher than
the other two. Moreover the best Φ it found has a ε value of 3196, which is about 150 worse
than the worst ε value that Simulated Annealing found. The large range of values as seen
from the large difference between the max and min means that Greedy is not a consistent
algorithm when given consistent input, as in this problem. This backs up the idea that lead
to the development and use of Simulated Annealing and Piecemeal for this project as Greedy
did not find very optimal solutions. If the results produced by Greedy were better, then there
would have been little gained from the rest of the project.

One interesting point that is not shown in Figure 13 is that if we use a solution given by
the Piecemeal algorithm as the initial solution, then Greedy can perform as well as Simulated
Annealing (given the same initial solution as before). This increase in quality when given an
already good Φ is shared by Simulated Annealing. This leads to the conclusion that Greedy is
getting stuck in local minima and as it has no means of escaping them, returns the best Φ that
it has.

The Piecemeal method was a major success for this problem, especially as it is not a general
algorithm like the others, which have been proven and tested on many problems. Referring
to Figure 13 the chart shows that the Piecemeal method held it’s own against a much more
complex and established algorithm in Simulated Annealing. The lowest ε value that it found
was 2690 which is only 17 worse than the globally best solution found. Moreover as can be
seen from the range of values, this method is consistent in returning good solutions, when

35

Final Report Iain Johnston - 1312579

varying the first voter. This may be because the only difference between the attempts is the
first voter, however that is the only part that is changeable between runs. As the averages of
both Simulated Annealing and Piecemeal are very similar we can say that Piecemeal is almost
as good as Simulated Annealing at finding consistently good solutions.

The results in this section provide evidence for the theory that was put forward in Section
0.4.6, where it was suggested that the Piecemeal method would fail to find the best solution
for larger problems. It was shown in that section that Piecemeal handily beats the other two
search algorithms on small examples but begins to deteriorate as the problem space grows. The
Eurovision dataset is a large problem, and Piecemeal did indeed fail to keep up it’s high quality
results.

0.5.3 Testing

The entertainment of a solution is not the only thing that gives it value. This is why some
other testing was undertaken to try and give a more well rounded picture of how well the
algorithms performed on this problem. Taking all the tests executed together gives a higher
level of confidence in the results as there is more experimental data that can then be leaned
on when evaluating the project as a whole and when making future decision about algorithm
choice for other, similar, problems.

Timing and Big-O Complexity

As well as producing results that maximise entertainment, it is necessary for the algorithm to
do so in a reasonable time. Table 16 contains some results for timing of the algorithms.

The methodology for analysing the timing was to run each of the algorithms 100 times each
and have timing set to show how long it took for the function that runs the algorithm to
finish. The timing is done using the timeit [35] library in Python, which purports to take care
of many common pitfalls when timing code. It should be advised that these timing values are
not necessarily the best, which is why they are averaged over 100 runs.

Figure 14: How to time the algorithms using Python

from timeit import default_timer as timer

...

start = timer()

print(gs.greedySearch(SCOREBOARD, PERFORMING_COUNTRIES, VOTING_COUNTRIES, 12))

end = timer()

print(’algorithm took: ’, end - start)

After sending those results into a file using the same method as for the solutions, I again used
ack to extract the times and send them to a timing file. An example of the command to do
this is shown in Figure 15.

Figure 15: Extracting times from a results file

ack -o "(?<=\(’algorithm took: ’,\s)\d+.\d+" greedyTiming.txt >> greedyTiming.txt

36

Final Report Iain Johnston - 1312579

This varies slightly from the ack command for the solutions, as it must look for values with
decimals, which it does by looking for any number of digits followed by a decimal place, followed
by any number of digits.

From there I copied the values into the attached Results excel file. Direct comparison is quite
difficult to visualise as there is a huge difference in the running times of the main algorithms.
Due to Brute force’s special situation no results are collected for it.

The first thing to notice is that Simulated Annealing is the slowest, taking an average of almost
13 seconds to return a solution. Greedy on the other hand is very quick taking on average half
a second to return a solution. Finally by far the fastest is Piecemeal which on average takes
around 8 milliseconds to return a solution.

So compared to Simulated Annealing, Greedy is ≈ 25 times faster (4s.f) and Piecemeal is
≈ 1606 times faster (4s.f). Moreover Piecemeal is ≈ 63 times faster than Greedy.

When these timing results are taken with the ε values that each algorithm found, we can make
judgments as to why some algorithms are better than others. For example, even though Greedy
returns solutions in less than a second the quality of those solutions are not very good. This is
especially obvious when comparing Greedy to Piecemeal as the later is faster, and also returns
solutions with a better ε value. This leads to the conclusion that Piecemeal should always be
used over Greedy. When looking at Simulated Annealing, a large point in it’s favour is the
fact that it found the globally best solution. However a major point to it’s detriment is the
fact that it does so over 1600 times slower than Piecemeal, which finds a near to best solution.
When deciding between Piecemeal and Simulated Annealing, a value judgment would have to
be made in regards to what is more important speed or finding the best result. If speed is
the main factor, and a close to best solution is good enough then Piecemeal is the obvious
choice. If waiting ≈ 15 seconds for a solution but having a good chance of finding the best is
the overriding goal then Simulated Annealing is the better choice. As was described previously
Piecemeal performs better when the search space is smaller so that must also be taken into
account when deciding on which algorithm to use.

Another inherent part of the algorithms is their Big-O complexity. This describes how the
algorithms will scale to different size inputs. Explanation of each algorithms complexity in
turn can be found in Section 0.3.3 and Table 13 summarises them. The complexity has a large
effect of the runtime of the algorithms so it is useful to look at the theorised complexities and see
if they compare to experimental runtimes. Although the algorithms have not been run against
various sizes of input it can still be interesting to compare between the algorithms.

For example, following the complexities in Table 13, Piecemeal should be the fastest followed
by Greedy and then Simulated Annealing, with Brute force taking a computationally infeasible
time. This is true as in the 2014 competition the values for m and l are greater than V , so the
complexity of Greedy is actually closer to O(V 3) and the complexity of Simulated Annealing
is closer to O(V 4).

This theory is backed up by the timing results that suggest the same. So in this way running
the timing experiments is useful for proving the hypotheses explained in Section 0.3, as well as
helping with decision making.

Partial and Full ε calculation

It was theorised that, as well as producing more realistic and exciting solutions, the partial
calculation method described in Section 0.4.1 also reduces computation time for any algorithm

37

Final Report Iain Johnston - 1312579

that uses it.

To find out if that is true first it was necessary to run both of the functions getEntertainment
(which uses full calculation each time) and offsetGetEntertainment (which uses partial cal-
culation) side by side. When doing this the actual final solutions that were found were discarded
as the extra overhead of doing 2 calculations of the same entertainment value could have ad-
versely affected the results. The timing method was the same as used for the general algorithms
(see Figure 14).

To get the results, the Greedy algorithm was run and its output saved to a file as before. To
distinguish the times, the full calculation was output with ”full” before it and the partial time
with ”reduced” before it. Once again an ack command similar to Figure 15 was used to extract
the times and save them to another file specific for either reduced or full times. This produced
10,000 values for each of the methods which were then analysed in Excel.

Figure 16 shows the average time over those 10,000 iterations. The actual time taken is not
the interesting part, more interesting is the fact that the reduced method takes around half the
time. This result supports the hypothesis above in that it shows that the computation time
for the reduced calculation is indeed lower. This also means that the computation time for any
algorithm using it is also going to be lower. A further point that speaks to why the reduced
method is better is that it is used many, many times during the course of finding a solution
to this problem, so any saving in terms of computation time will be heavily felt by the overall
time to reach a solution.

One drawback of this method is that it does not always guarantee the same reduction in time
over the full method. As was described in Section 0.3.2, the amount of calculations needed is
dependent on where in the order the swaps take place. The number of calculations range from
being at worst the same as the full method to being only around 50 total calculations. If the
reduced method must calculate the same or nearly the same number as the full method, it is
likely that the time reductions will have been unfortunately lost due to setup overhead in the
function.

38

Final Report Iain Johnston - 1312579

Figure 16: Average time taken to perform full and partial ε calculation on the same solution

To make sure that the reduced method was indeed correctly calculating the ε value it was
decided to run them side by side and compare their results. This could quite easily be done as
the testing setup necessary to log the times required that they both be run every time. The test
was essentially to equate the two outputs after they were run and to print ”true” or ”false” if
they were the same or different. This adds to the confidence in the method as it was quite easy
to return to test that at any time after any major changes to the algorithms or main support
methods.

maxMin and refinedMaxMin

The theoretical reasons why the refinedMaxMin method is better, such as giving a more
real picture of entertainment, have been discussed. To try and find some evidence for this, the
minimum values that each method returned were found. To do this the same method as for the
full and partial ε calculations test was followed. That was to run both methods side by side and
return the minimum values that were found in two lists which could then be analysed.

The effect that the refined method has on the minimum value that is used in Equation 1,
is shown in Figure 17. The graph shows the minimum scores that are returned by the two
methods as green and blue points, as well as the difference between the two values (red line
and red numbers) over a single typical competition. From this graph it can be seen that the
maxMin method stays relatively low as in this competition the lowest score at the end was
only 2 points. On the other hand, the refinedMaxMin method diverges at around round 22.
This is when it can start ruling out performers from winning the overall crown. By the last
few rounds the difference is quite large as there are only a few countries that could still win; so
only their scores are being taken into account for entertainment.

39

Final Report Iain Johnston - 1312579

Figure 17: Difference between min value found for MaxMin method and RefinedMaxMin

This chart helps to explain why the idea of removing teams that can no longer win from the
calculation can aid in achieving better solutions. The maxMin method only ever really returns
a value less than 5, which corresponds to the country currently in last place. It is easy to see that
nearer the end of the competition those countries are not adding anything to the entertainment
of who will win as their scores are near 0. On the other hand, the refinedMaxMin method
begins to prune the losing countries, and by the end is only looking at a small group of countries
that can still win.

Another point to take into account is the complexities that these methods have and how they
can affect the choice to use them. Table 12 in Section 0.4.2 shows the complexities of the
two methods. Taking this with the results from Figure 17, even though the complexity of the
refined method is slightly higher, the value that it adds means that the trade-off is worth it in
my opinion.

Comparing solutions

Throughout the project the same problem kept appearing while trying to compare the interme-
diate or final solutions. For my piece of mind I wanted to know if similar Φ were giving similar
ε values and have a quick way to compare two Φ without having to manually look at country
names and compare in what position they were. Moreover having a way to almost immediately
know if two orders were the same was very helpful as separating orders based solely on their
ε values was not good enough as the values could be shared by vastly different orders. It was
also helpful to find a way to see if there were common groupings or positioning of voters in
different solutions.

To solve this problem a quick and simple Python script was written which can be see in Figure
18. In the full source code that is attached, the code differs slightly as this code is not meant

40

Final Report Iain Johnston - 1312579

for use during the running of any algorithms so the file has manually hard-coded values for the
orders, order1 and order2.

The idea behind it is very simple, if there are two orders that are different, sum up by how many
places the same voters are separated in each. This occurs on line 4, where the dist variable
is the total sum of the difference between the indexes of the same voter. By using the abs()
method from the Python standard library it was possible to not worry about which index was
higher and hence keep the code simple.

Figure 18: Finding the difference between two orders

1 dist = 0

2 for country in (order1):

3 index1, index2 = order1.index(country), order2.index(country)

4 dist = dist + abs(index1 - index2)

5 print(dist)

Unit tests

As the main algorithms do not have repeatable behaviour, due to the fact that they rely on a
random step to help pick solutions to look at, it is not possible to unit test them without de-
feating the purpose of unit testing. There are however some functions that can be unit tested.
The file orderTest.py contains these tests. The methods that are tested are getAdjacent-
Neighbour, getNeighbour, and refinedMaxMin.

The tests themselves should be fairly self explanatory they call the function with set inputs
and assert that the output from that function matches some value or set of values.

Although these tests are not strictly necessary for the completeness of the project, they help to
provide another level of confidence along with the in-place testing described in this section. The
tests are not the most comprehensive and only really test the simple working of the methods.
The main reason for the lack of unit testing is that this project does not have an already known
result, which is something that unit tests require.

0.5.4 Critical Evaluation

The main strength of the results lie in the analysis and the methodology for collecting and
analysing them. These results, and the tests that were run to verify them, point to the fact
that the project’s results are correct and that they can hold up to scrutiny. The analysis has
also shown that the results are significant in terms of reaching the goals set out at the start of
the project.

On the other hand, a weakness of the results is the small amount of testing of the overall system
as it is running. This could be seen as problematic as there are many moving parts that allow
an algorithm to be run and produce solutions. Although some of these have been mitigated
through other testing, it is always possible that there are still mistakes. Furthermore even
though the manual testing attempted to reduce the likelihood of any problems showing up, as
always with manual testing, human error can cause problems to be missed.

41

Final Report Iain Johnston - 1312579

Another strength of this project was the scientifically-minded method in which each stage
was undertaken. Each decision, such as writing a new algorithm or method, was based on
intermediate experiments and experimental data. By doing this at every stage throughout the
project, a higher level of confidence is gained in the final results, as there are explainable reasons
for all the decisions made, and data to support them.

One important point to evaluate is the use of Python as the programming language for this
project. Overall the biggest strength that Python brought to the project was it’s ease of
use. This manifested itself not only in the actual writing of code for the project, but also the
supporting overheads that any programming language brings with it. For example, the good
quality and reliable standard libraries helped to reduce workload for the more complex parts
of the code. Moreover running the algorithms was simple, allowing manual testing to be done
with little hassle, where using another language would have added extra setup and time.

A common weakness that is levelled at Python is it’s lack of complex data structures and
types. For this project, this was not a problem as although the algorithms may be complex,
the data structures needed were not anything more complex than an array (list in Python).
Having experience with Python also helped to mitigate any problems before they cropped up,
such as stopping the global amendment of lists by copying them instead of passing the same
list between functions. This can be seen in many places in the code as there is heavy use of
code similar to newList = oldList[:], which sets newList equal to a copy of oldList instead of
setting it equal to oldList itself. In other languages such as Java this would not be problem,
however it would likely bring its own quirks. Overall it is fair to say that Python performed
extremely well for this project.

0.6

Future Work

The first and most obvious point for future work would be finding out if the best Φ found
is globally optimal and if it is not, then finding the globally optimal solution. Although the
Brute force method had to be abandoned due to it’s computational infeasibility, it may be
possible that by using heuristics with the Brute force algorithm to cut down the search space,
the globally optimal solution could be found.

Another thought for future work relates to testing the entertaining solutions that were produced,
using people. This would be taking a more Psychological or Sociological approach to the
project instead of just mathematical. This testing could take place as a sort of mock version of
Eurovision where different groups of spectators are shown the voting in different orders and then
must rank them in terms of excitement and entertainment. Moreover, by using questionnaires
of those who undertake the study, it could be possible to uncover new entertainment functions
that were as yet unrealised.

New functions could also be developed separately. In this project we have concentrated only
on who can win the competition, however entertainment will contain many more parts. For
example, maximising the entertainment for as many spectators as possible who are rooting for
each country, possibly taking into account population and engagement of the viewers. Other
functions could be ones that maximise those who can reach a certain position, in competitions
that involve multiple prizes such as finishing above a certain place. Another would be for
competitions with relegations, keeping as many participants in the fight to stay up for as long
as possible.

42

Final Report Iain Johnston - 1312579

Specifically related to the refinedMaxMin method, some future work would be to improve
the upper bound score calculation, as it currently does not take into account the possibility
that teams may have to vote for themselves and hence not be able to receive 12 points in every
following round. This improvement should be as simple as tracking who has voted and who is
yet to vote and remove 12 points if the current team is yet to vote.

A final piece of future work would be to try and optimise the code for performance. This would
take a little more of a deeper understanding and investigation into Python as although I was
experienced in using it, never for high performance code. Moreover there are likely places in
the code that are not optimised as I prioritised getting correct results over the code being the
most performant.

0.7

Conclusions

The main aims of the project were to find an ordering of voters that maximises entertainment,
to develop some functions that could codify entertainment mathematically and to produce a
way of visualising an ordering.

The order that was actually used by the Eurovision Song Contest in 2014 has a ε value of
3104. This is a relatively entertaining value however this project has shown that there are
significantly more entertaining orders, using the same definition of entertainment. Therefore
it can be said that this project has at least reached the same level of quality as the current
”algorithm” in use by the contest.

In terms of these goals, I believe all of them have been achieved to a high degree of quality. The
algorithms produced found a solution to the problem that successfully maximised the enter-
tainment. The functions that were produced to describe entertainment were very successful in
taking the intuitive feelings of entertainment and turning them into mathematical functions. It
could be said that the development of the ε functions is the most successful part of this project,
as the optimisation algorithms, once given something to optimise, will rarely fail to do so; at
least to some extent. However the functions that have taken a human experience and described
it mathematically are much more valuable than any implementation of algorithms. Finally the
visualisation produced can clearly be shown to aid in the understanding of what makes these
good solutions better than the bad ones. Moreover the experimental results outlined in Section
0.5 help to support the idea that these goals have been achieved.

From this report it should be possible to see that novel implementations for use in these types
of problems have been produced, such as the Piecemeal algorithm and the refinedMaxMin
method. Moreover these novel methods have been properly backed up with experimental results
in order that their correctness is not in doubt. Also the upmost has been done so that this
project does not stand alone with no use for any future work in this area. I think it is fair to
say that this project could lay some groundwork for solving more problems from this specific
area of optimisation problems, albeit with some additions or modifications.

As can be seen from the context of this project in Section 0.2.1, there has not been a large
amount of research into maximising entertainment, especially in the field of Computer Science.
This means that although this project began with concrete goals, there was no real context
to give an insight into how to best approach the problem, or how simple or complex finding a
solution would be. In that respect, achieving the stated goals shows the overall success of the
project.

43

Final Report Iain Johnston - 1312579

Furthermore it can be said that due to the lack of current research, this project has added a
good amount to the research area of optimising competitions for entertainment, by providing a
good base for other similar projects, and some useful insights into how to approach these types
of problems.

0.8

Reflection on Learning

I think that by assuming that the problem we were undertaking would be complex, we avoided
a range of problems that could have arisen. This way of approaching problems (that have
an unknown solution) is extremely transferable. From this project I have learnt that not
underestimating the complexity of problems will also mean that you are more open to pivoting
when problems do arise. Moreover the idea to continually look at data and use that to make
decisions, could only be achieved if the problems complexity is thoroughly thought through
before starting the project.

Giving myself the freedom to change tact based on changing results also relied on having a
solid plan that was still flexible. For this plan to be useful whilst also following the learning
from above, it needed to be sufficiently detailed so that I was never lost, but also allow me the
freedom to swap tasks around depending on how things were going. In that respect I learnt a
lot about planning complex projects in an Agile fashion. I think having the ability to react to
changing contexts and information is a valuable skill that this project has given me.

On the point of planning in this project, another new skill gained is to be very industrious with
my time. Even though throughout I had the aid of my supervisor, how I spent the majority of
the time had to be decided by me. Especially for such a long project with many parts to it, this
was complicated. I believe that I gained a deeper understanding of managing my time for a large
and complex problem by splitting it up and attacking specific areas. For example by breaking
the project up into the three sections (Entertainment functions, optimisation algorithms and
visualisation) in the Initial Plan and then looking at those as the major milestones, it took
some pressure off me. I could happily change details of what tasks I needed to complete next
and still reach that larger milestones. This again is an extremely useful skill to have gained by
virtue of this project.

The work plan is attached in the appendix, and shows a fully updated version of the Initial
Plan. The main overarching point is that for many of the tasks the plan start and actual
start differ. As discussed this did not really adversely affect the project, as it was possible to
bring forward the implementation of the visualisation and then return to implementing new
algorithms easily. I learnt a lot about flexible planning by having this type of plan to refer to
when changes were necessary.

Another major skill I have learnt from this project, is to always be sceptical of results until after
a deeper analysis. On a couple of occasions during the project I was faced with intermediate
results that did not match up with my hypothesis. When faced with this data, I did not
immediately throw away the hypothesis and formulate a new one, but I used that initial data
to start a deeper investigation. From this I learnt that in problems such as this, there can be
hidden phenomena that do not necessarily match up with your first thoughts. These hidden
problems can be causing side affects, that are observable, however the problems actually lie
deeper.

44

Final Report Iain Johnston - 1312579

For example after initially developing the Piecemeal algorithm it was producing solutions with
very good ε values. This was not especially strange however as it was not using the same
methods as the other algorithms, which had been more thoroughly tested, it seemed wise to
investigate more. I compared the outputted solutions of Piecemeal and ran them through
the full calculation method to see if the values matched up. When they did not I assumed the
problem was with the Piecemeal code so I began investigating the code thoroughly. After finding
nothing I decided to look at the supporting code that is shared between all the algorithms. As
it turned out, the refinedMaxMin method was incorrectly calculating the min for the Piecemeal
code but not for the others. This problem may have gone unnoticed had it not been because
I was sceptical at it’s initial results. I learnt that a deeper investigation is never a bad thing,
and will always lead to a deeper understanding of the system.

45

Final Report Iain Johnston - 1312579

Glossary of Terms

1. Voters (V): All countries that are in the Eurovision song contest who vote in the final.
The voters is a list of countries. It looks like [”Ukraine”, ”Austria”, ”France”,....]

2. Participants (P): A subset of the voters that perform songs in the final and receive
points from the other voters.

3. Solution (Φ): A solution to the optimisation problem this project is attempting to solve.
A solution consists of two things:

• An ordering of the voting countries as a list

• An entertainment value found by an entertainment function

4. Entertainment Value (ε): A value given to a solution that describes how entertaining
it is. Calculated using an entertainment function, given a solution.

5. Round (R): One round is when one voter has given all the participants a score. The
competition is made up of nR rounds where nR = length of V.

6. Scores (S): How many points each country has received per round. The scores are an ar-
ray of the same length as the number of participants. It looks like [0,0,2,12,7,4,0,0,3,2,10,....].
When referring to it in the report along with rounds it is most likely cumulative so that
after the final round the scores are the total scores for each country.

Appendices

Table 13: Worst Case Big-O complexities of algorithms used

Big-O time complexity
Greedy Search O(m · V 2)
Brute Force O(V !)
Simulated Annealing O(m · l · V 2)
Piecemeal O(V 2)

All algorithms are expressed in terms of V : voters and P : participants. More explanation and
calculations can be found in Section 0.3.

46

Final Report Iain Johnston - 1312579

Algorithm 1 Greedy Search

Require: list of voters
Require: scoreBoard
Require: list of performers
1: xNow ← getInitialSolution()
2: xBest← getInitialSolution()
3: entertainmentXBest← getEntertainment(xBest)
4: while i < num iterations do
5: xNow = getNeighbour(xNow)
6: entertainmentXNow = getEntertainment(xNow)
7: if entertainmentXNow < entertainmentXBest then
8: xBest = xNow
9: entertainmentXBest = entertainmentXNow
10: i = 0
11: end if
12: i = i+ 1
13: end while
14: return XBest, EntertainmentXBest

Algorithm 2 Brute Force

Require: list of voters
Require: scoreBoard
Require: list of performers
1: xBest← getInitialSolution()
2: entertainmentXBest← getEntertainment(xBest)
3: for all S ∈ Solutions do
4: entertainmentXNow = getEntertainment(S)
5: if entertainmentXNow < entertainmentXBest then
6: xBest = xNow
7: entertainmentXBest = entertainmentXNow
8: end if
9: end for
10: return XBest, EntertainmentXBest

47

Final Report Iain Johnston - 1312579

Algorithm 3 Simulated Annealing

Require: list of voters
Require: scoreBoard
Require: list of performers
Require: ti: Initial Temperature
Require: tl: Temperature length
Require: cr coefficient: cooling coefficient
1: xNow ← getInitialSolution()
2: entertainmentXNow ← getEntertainment(xNow)
3: xBest← getInitialSolution()
4: entertainmentXBest← getEntertainment(xBest)
5: while i < num iterations do
6: for j to tl do
7: xPrime = getNeighbour(xNow)
8: entertainmentXPrime = getEntertainment(xPrime)
9: deltaC = entertainmentXPrime− entertainmentXNow
10: if deltaC <= 0 then
11: xNow = xPrime
12: entertainmentXNow = entertainmentXPrime
13: else
14: q = random int between 0 and 1
15: if q < e−deltaC/t then
16: xNow = xPrime
17: entertainmentXNow = entertainmentXPrime
18: end if
19: end if
20: if entertainmentXNow < entertainmentXBest then
21: xBest = xNow
22: entertainmentXBest = entertainmentXNow
23: i = 0
24: end if
25: end for
26: t = t×cr coefficient
27: i = i+ 1
28: end while
29: return XBest, EntertainmentXBest

48

Final Report Iain Johnston - 1312579

Algorithm 4 Piecemeal Search

Require: list of voters
Require: scoreBoard
Require: list of performers
1: [solution]← chooseF irstV oter()
2: best← chooseF irstV oter()
3: [distances]← 12
4: for k = 0 to length(voters) -1 do
5: for all V oter ∈ possibleNextV oters do
6: calculate Λ with that voter as next in solution
7: if Λ < bestDistance then
8: bestDistance = Λ
9: best = V oter
10: end if
11: end for
12: [solution]← best
13: [distances]← bestDistance
14: end for
15: entertainmentSolution← sum(distances)
16: return solution, entertainmentSolution

Figure 19: offsetGetEntertainment method

1 def offsetGetEntertainment(solution, countries, score_board, voters, key1,

oldEntertainment, oldDistances, maxScorePerRound):

2 entertainmentValue = 0

3 performing_countries = countries[:]

4 current_solution = solution[:]

5 distances = oldDistances[:]

6 key2 = key1 + 1

7

8 oldDistance1, oldDistance2 = oldDistances[key1], oldDistances[key2]

9

10 l_dist = []

11 scores = [0] * 26

12 for j in range(key2 + 1):

13 for i in range(len(countries)):

14 v = voters.index(solution[j])

15 scores[i] = scores[i] + score_board[i][v]

16 otherMin = refinedMaxMin(scores, solution, j, maxScorePerRound)

17 l_dist.append(max(scores) - otherMin)

18

19 newDistance1, newDistance2 = l_dist[key2], l_dist[key1]

20 entertainmentValue = oldEntertainment - (oldDistance1 + oldDistance2) +

(newDistance1 + newDistance2)

21

22 distances[key1] = newDistance2

23 distances[key2] = newDistance1

24

25 return entertainmentValue, distances

49

Final Report Iain Johnston - 1312579

Figure 20: getEntertainment method

1 def getEntertainment(solution, countries, score_board, voters, maxScorePerRound):

2 entertainmentValue = 0

3 performing_countries = countries[:]

4 current_solution = solution[:]

5

6 distances = []

7 scores = [0] * 26

8 for j in range(len(solution)):

9 for i in range(len(countries)):

10 v = voters.index(solution[j])

11 scores[i] = scores[i] + score_board[i][v]

12 otherMin = refinedMaxMin(scores, solution, j, maxScorePerRound)

13 distance = max(scores) - otherMin

14 distances.append(distance)

15 entertainmentValue = sum(distances)

16

17 return entertainmentValue, distances

50

Final Report Iain Johnston - 1312579

Figure 21: Simulated Annealing code

1 def simulatedAnnealing(score_board, performers, voters, maxScorePerRound):

2 num_iterations = 500

3 ti = 4000

4 tl = 40

5 cr_coefficient = 0.92

6 i = 0

7

8 t = ti

9

10 xNow = support.getInitialSolution(performers, score_board, voters,

maxScorePerRound)

11 entertainmentXNow, distxNow = support.getEntertainment(xNow, performers,

score_board, voters, maxScorePerRound)

12

13 xBest = xNow[:]

14 entertainmentXBest = entertainmentXNow

15 oldEntertainment = entertainmentXNow

16 oldDistances = distxNow

17

18 while i < num_iterations:

19 for j in range(tl):

20 xPrime, key1 = support.getAdjacentNeighbour(xNow)

21

22 entertainmentXPrime, distXPrime = support.offsetGetEntertainment(xPrime,

performers, score_board, voters, key1, oldEntertainment,

oldDistances, maxScorePerRound)

23

24 deltaC = entertainmentXPrime - entertainmentXNow

25

26 if deltaC <= 0:

27 xNow = xPrime[:]

28 entertainmentXNow = entertainmentXPrime

29 oldEntertainment = entertainmentXPrime

30 oldDistances = distXPrime

31 else:

32 q = random.randint(0, 1)

33

34 if q < math.exp(-(deltaC)/t):

35 xNow = xPrime[:]

36 entertainmentXNow = entertainmentXPrime

37 oldEntertainment = entertainmentXPrime

38 oldDistances = distXPrime

39

40 if entertainmentXNow < entertainmentXBest:

41 xBest = xNow[:]

42 entertainmentXBest = entertainmentXNow

43 i = 0

44

45 t = t * cr_coefficient

46 i = i + 1

47 return xBest, entertainmentXBest

51

Final Report Iain Johnston - 1312579

Figure 22: Greedy Search code

1 def greedySearch(score_board, performers, voters, maxScorePerRound):

2 num_iterations = 500

3 xNow = support.getInitialSolution(performers, score_board, voters,

maxScorePerRound)

4 xBest = xNow[:]

5 entertainmentXBest, distances = support.getEntertainment(xNow, performers,

score_board, voters, maxScorePerRound)

6 oldEntertainment = entertainmentXBest

7 oldDistances = distances

8 i = 0

9

10 while i < num_iterations:

11 xNow, key1 = support.getAdjacentNeighbour(xNow)

12

13 entertainmentXNow, distancesXNow = support.offsetGetEntertainment(xNow,

performers, score_board, voters, key1, oldEntertainment, oldDistances,

maxScorePerRound)

14

15 if entertainmentXNow < entertainmentXBest:

16 xBest = xNow[:]

17 entertainmentXBest = entertainmentXNow

18 i = 0

19

20 oldEntertainment = entertainmentXNow

21 oldDistances = distancesXNow

22 i = i+1

23

24 return xBest, entertainmentXBest

52

Final Report Iain Johnston - 1312579

Figure 23: Piecemeal algorithm

1 def stepByStepSolution(score_board, countries, voters, maxScorePerRound):

2 for p in range(len(voters)): # used for testing all solutions

3 entertainmentValue = 0

4 performing_countries = countries[:]

5 solution = []

6 voting_countries = voters[:]

7 distances = []

8 best = voting_countries[p]

9 ignoredIndexes = []

10 bestScores = [row[p] for row in score_board]

11 solution.append(voting_countries[p])

12 ignoredIndexes.append(p)

13 distances.append(maxScorePerRound)

14

15 for k in range(1, len(voting_countries)): # go through and add to solution

16 scores = bestScores[:]

17 bestDistance = -1

18

19 for j in range(len(voting_countries)): # go through all voters and try

their votes as next

20 local_scores = scores[:] # get base scores

21 current_country = voting_countries[j]

22

23 if j in ignoredIndexes: # ignore those youve already tried

24 continue

25

26 for i in range(len(performing_countries)): # add on the votes from

this country to all the participants

27 local_scores[i] = score_board[i][j] + local_scores[i]

28 minScore = support.refinedMaxMin(local_scores, voting_countries, k,

maxScorePerRound) # find the min for that with that voters round

29 distance = max(local_scores) - minScore

30

31 if distance < bestDistance or bestDistance < 0:

32 bestDistance = distance

33 best = current_country

34 bestScores = local_scores[:]

35 ignoredIndexes.append(voting_countries.index(best))

36 distances.append(bestDistance)

37 solution.append(best)

38

39 entertainmentValue = sum(distances)

40

41 print(solution, entertainmentValue) # used for testing all solutions

42 # return (solution, entertainmentValue)

53

Final Report Iain Johnston - 1312579

Table 14: Final Simulated Annealing cooling values

Value
maxIterations 500
ti 4000
tl 40
cr coefficient 0.92

Table 15: Best and average solutions found by algorithms

Algorithm Type of solution ε value
Brute force* Best 3125

Greedy Search
Best 2908
Average 3368

Simulated Annealing
Best 2426
Average 2673

Piecemeal Best 2519
Average** 2586

Average taken over 1000 solutions unless otherwise stated

* Brute force was only run once so only has 1 solution, it’s best.

** Piecemeal was run 37 different times, one for each different starting country.

Table 16: Timing results for main algorithms (all times in seconds to 4 s.f)

Greedy Simulated Annealing Piecemeal
Min 0.2377 11.8288 0.0063
Max 1.4933 17.4252 0.0130
Average 0.5030 12.8072 0.0080
Median 0.4074 12.5793 0.0075

54

F
in

al
R

ep
ort

Iain
J
oh

n
ston

-
1312579

Figure 24: Final Gantt Chart

55

Final Report Iain Johnston - 1312579

References

[1] Wikipedia, “Voting at the eurovision song contest — wikipedia, the free encyclopedia,”
2016. https://en.wikipedia.org/w/index.php?title=Voting_at_the_Eurovision_

Song_Contest&oldid=756839176; [Online; accessed 28-January-2017].

[2] D. Gatherer, “Comparison of eurovision song contest simulation with actual results reveals
shifting patterns of collusive voting alliances.,” Journal of Artificial Societies and Social
Simulation, vol. 9, no. 2, p. 1, 2006. http://jasss.soc.surrey.ac.uk/9/2/1.html.

[3] L. Spierdijk and M. Vellekoop, “Geography, culture, and religion: Explaining the bias in
eurovision song contest voting,” February 2006. http://doc.utwente.nl/66198/; [On-
line; accessed 28-January-2017].

[4] V. Ginsburgh and A. G. Noury, “The eurovision song contest. is voting political or cul-
tural?,” European Journal of Political Economy, vol. 24, no. 1, pp. 41 – 52, 2008. url-
http://www.sciencedirect.com/science/article/pii/S0176268007000547.

[5] G. Bello, H. Menéndez, and D. Camacho, “Using the clustering coefficient to guide a
genetic-based communities finding algorithm,” in Intelligent Data Engineering and Au-
tomated Learning - IDEAL 2011: 12th International Conference, Norwich, UK, Septem-
ber 7-9, 2011. Proceedings (H. Yin, W. Wang, and V. Rayward-Smith, eds.), pp. 160–
169, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/
978-3-642-23878-9_20.

[6] EBU, “’good evening copenhagen’ - voting order revealed,” 10 May 2014.
http://www.eurovision.tv/page/news?id=good_evening_copenhagen_-_voting_

order_revealed; [Online; accessed 11-April-2017].

[7] EBU, “Eurovision song contest 2014,” 2016. https://eurovision.tv/event/

copenhagen-2014/profile; [Online; accessed 27-April-2017] - new website without score-
board.

[8] EBU, “Eurovision song contest 2014 - original,” 2016. https://web-beta.archive.org/
web/20160308084207/http://www.eurovision.tv/page/history/by-year/contest?

event=1893#Scoreboard; [Online; accessed 4-February-2017 - Original page with
scoreboard].

[9] Wikipedia, “Neighbourhood (mathematics) — wikipedia, the free encyclopedia,” 2016.
https://en.wikipedia.org/w/index.php?title=Neighbourhood_(mathematics)

&oldid=735515564; [Online; accessed 3-May-2017].

[10] H. Wussing, The Genesis of the Abstract Group Concept: A Contribution to the History
of the Origin of Abstract Group Theory, ch. 2, p. 94. Courier Dover Publications, 2007.
”Cauchy used his permutation notation—in which the arrangements are written one below
the other and both are enclosed in parentheses—for the first time in 1815.”.

[11] Wikipedia, “Cyclic permutation — wikipedia, the free encyclopedia,” 2016. https://

en.wikipedia.org/w/index.php?title=Cyclic_permutation&oldid=755419947; [On-
line; accessed 18-April-2017].

[12] Wikipedia, “Greedy algorithm — wikipedia, the free encyclopedia,” 2017. [Online; accessed
15-February-2017].

56

https://en.wikipedia.org/w/index.php?title=Voting_at_the_Eurovision_Song_Contest&oldid=756839176
https://en.wikipedia.org/w/index.php?title=Voting_at_the_Eurovision_Song_Contest&oldid=756839176
http://jasss.soc.surrey.ac.uk/9/2/1.html
http://doc.utwente.nl/66198/
http://dx.doi.org/10.1007/978-3-642-23878-9_20
http://dx.doi.org/10.1007/978-3-642-23878-9_20
http://www.eurovision.tv/page/news?id=good_evening_copenhagen_-_voting_order_revealed
http://www.eurovision.tv/page/news?id=good_evening_copenhagen_-_voting_order_revealed
https://eurovision.tv/event/copenhagen-2014/profile
https://eurovision.tv/event/copenhagen-2014/profile
https://web-beta.archive.org/web/20160308084207/http://www.eurovision.tv/page/history/by-year/contest?event=1893#Scoreboard
https://web-beta.archive.org/web/20160308084207/http://www.eurovision.tv/page/history/by-year/contest?event=1893#Scoreboard
https://web-beta.archive.org/web/20160308084207/http://www.eurovision.tv/page/history/by-year/contest?event=1893#Scoreboard
https://en.wikipedia.org/w/index.php?title=Neighbourhood_(mathematics)&oldid=735515564
https://en.wikipedia.org/w/index.php?title=Neighbourhood_(mathematics)&oldid=735515564
https://en.wikipedia.org/w/index.php?title=Cyclic_permutation&oldid=755419947
https://en.wikipedia.org/w/index.php?title=Cyclic_permutation&oldid=755419947

Final Report Iain Johnston - 1312579

[13] Wikipedia, “Permutation — wikipedia, the free encyclopedia,” 2017. https://en.

wikipedia.org/w/index.php?title=Permutation&oldid=772638699; [Online; accessed
19-April-2017]; ’The number of permutations of n distinct objects is n factorial, usually
written as n!,...’.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

[15] Wikipedia, “Simulated annealing — wikipedia, the free encyclopedia,” 2017. https:

//en.wikipedia.org/w/index.php?title=Simulated_annealing&oldid=775987067;
[Online; accessed 19-April-2017].

[16] R. Booth, “Sa parameters,” 2016. [Slides from Lecture 8(SA Parameters) - Combinatorial
Optimisation(CM3109) - Cardiff University].

[17] Wikipedia, “Constraint satisfaction problem — wikipedia, the free encyclopedia,”
2017. https://en.wikipedia.org/w/index.php?title=Constraint_satisfaction_

problem&oldid=775578554; [Online; accessed 3-May-2017].

[18] Wikipedia, “Backtracking — wikipedia, the free encyclopedia,” 2017. https://

en.wikipedia.org/w/index.php?title=Backtracking&oldid=775406206; [Online; ac-
cessed 3-May-2017].

[19] Wikipedia, “Triangular number — wikipedia, the free encyclopedia,” 2017. https://

en.wikipedia.org/w/index.php?title=Triangular_number&oldid=777530447; [On-
line; accessed 3-May-2017].

[20] Python-Software-Foundation, “Python built-in functions - min,” 2017. https://docs.

python.org/2/library/functions.html#min; [Online; accessed 22-April-2017].

[21] Python-Software-Foundation, “Python built-in functions - max,” 2017. https://docs.

python.org/2/library/functions.html#max; [Online; accessed 22-April-2017].

[22] Python-Software-Foundation, “Python built-in functions - sorted,” 2017. https://docs.
python.org/2/library/functions.html#sorted; [Online; accessed 22-April-2017].

[23] Python-Software-Foundation, “Common python method’s complexity,” 2017. https://

wiki.python.org/moin/TimeComplexity; [Online; accessed 25-April-2017].

[24] Python-Software-Foundation, “Python built-in functions - len,” 2017. https://docs.

python.org/2/library/functions.html#len; [Online; accessed 22-April-2017].

[25] Python-Software-Foundation, “Python random library - sample,” 2017. https://docs.

python.org/2/library/random.html#random.sample; [Online; accessed 22-April-2017].

[26] Python-Software-Foundation, “Python random library,” 2017. https://docs.python.

org/2/library/random.html; [Online; accessed 22-April-2017].

[27] Python-Software-Foundation, “Python math library,” 2017. https://docs.python.org/
2/library/math.html; [Online; accessed 22-April-2017].

[28] Python-Software-Foundation, “Python itertools library,” 2017. https://docs.python.

org/2/library/itertools.html; [Online; accessed 22-April-2017].

[29] Python-Software-Foundation, “Python itertools library - permutation,” 2017. https://

docs.python.org/2/library/itertools.html#itertools.permutations; [Online; ac-
cessed 22-April-2017].

57

https://en.wikipedia.org/w/index.php?title=Permutation&oldid=772638699
https://en.wikipedia.org/w/index.php?title=Permutation&oldid=772638699
https://en.wikipedia.org/w/index.php?title=Simulated_annealing&oldid=775987067
https://en.wikipedia.org/w/index.php?title=Simulated_annealing&oldid=775987067
https://en.wikipedia.org/w/index.php?title=Constraint_satisfaction_problem&oldid=775578554
https://en.wikipedia.org/w/index.php?title=Constraint_satisfaction_problem&oldid=775578554
https://en.wikipedia.org/w/index.php?title=Backtracking&oldid=775406206
https://en.wikipedia.org/w/index.php?title=Backtracking&oldid=775406206
https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=777530447
https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=777530447
https://docs.python.org/2/library/functions.html#min
https://docs.python.org/2/library/functions.html#min
https://docs.python.org/2/library/functions.html#max
https://docs.python.org/2/library/functions.html#max
https://docs.python.org/2/library/functions.html#sorted
https://docs.python.org/2/library/functions.html#sorted
https://wiki.python.org/moin/TimeComplexity
https://wiki.python.org/moin/TimeComplexity
https://docs.python.org/2/library/functions.html#len
https://docs.python.org/2/library/functions.html#len
https://docs.python.org/2/library/random.html#random.sample
https://docs.python.org/2/library/random.html#random.sample
https://docs.python.org/2/library/random.html
https://docs.python.org/2/library/random.html
https://docs.python.org/2/library/math.html
https://docs.python.org/2/library/math.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html#itertools.permutations
https://docs.python.org/2/library/itertools.html#itertools.permutations

Final Report Iain Johnston - 1312579

[30] d3, “D3 - scalelinear,” 2016. https://github.com/d3/d3-scale#scaleLinear; [Online;
accessed 17-February-2017].

[31] Preact, “Preact.js,” 2016. https://preactjs.com/; [Online; accessed 11-February-2017].

[32] Facebook, “React,” 2016. https://facebook.github.io/react/; [Online; accessed 11-
February-2017].

[33] J. M. (developit), “Preact-boilerplate,” 2017. https://github.com/developit/

preact-boilerplate; [Online; accessed 11-February-2017].

[34] “ack,” 2017. https://beyondgrep.com/; [Online; accessed 10-April-2017].

[35] Python-Software-Foundation, “Python timeit library,” 2017. https://docs.python.org/
2/library/timeit.html; [Online; accessed 23-April-2017].

58

https://github.com/d3/d3-scale#scaleLinear
https://preactjs.com/
https://facebook.github.io/react/
https://github.com/developit/preact-boilerplate
https://github.com/developit/preact-boilerplate
https://beyondgrep.com/
https://docs.python.org/2/library/timeit.html
https://docs.python.org/2/library/timeit.html

	Introduction
	Background
	Project Context
	Background Theory

	Algorithm Designs and Approach
	 Functions
	Neighbourhoods
	Optimisation Algorithms

	Implementation of System
	 function wrappers
	 functions
	Neighbourhood functions
	Simulated Annealing and Greedy search
	Brute force
	Piecemeal
	Re-Use of code for future work
	Visualisation

	Results and Evaluation
	Overview of goals
	Solutions
	Testing
	Critical Evaluation

	Future Work
	Conclusions
	Reflection on Learning
	Glossary
	Appendices
	References

