
Cardiff University
School of Computer Science & Informatics

Final Year Project
(CM3203 One Semester Individual Project)

————————————————————————————————————

Towards Anonymity In Ridesharing Applications By Using
Location Obfuscation Of Origin-Destination Points  

- May 2017 -
 
 

Author: Nikolay Tsonev  

Supervisor : Dr. George Theodorakopoulos  
Moderator : Dr. Kirill Sidorov

Abstract

The number of the ridesharing and taxi ordering applications on the market is constantly
growing. In the busy world we are living these applications help millions of people
commuting on daily basis by saving them time and resources. One of the key elements which
makes these applications so successful is their effectiveness. They are reducing the steps
required for a someone to find a ride or or share his journey with another passengers.
However all this comes with a price - the price of sharing your exact location or home/work
address pairs with another users of the application.  
 
This project aims to show how a privacy functionality that can be build inside the ride-
sharing application can resolve the issue addressed above. In order this to be achieved the
actual GPS coordinates of the user will be slightly altered with technique called location
obfuscation. The alteration process can be described simply as addition of random noise to
the user current location. The artificial location produced by the this technique is then
mapped to the closest nearby establishment an it’s address will be the one that the other users
can see.  
 
The project will also give a general idea how a more complete ridesharing application can be
build. Most of this steps/ideas will be in the future work section of the project.  

!2

 

Acknowledgments

I would like to thank my supervisor, George Theodorakopoulos, for all his help and guidance
throughout this project and for the opportunity to learn and explore the Android development
that he gave me with this project. Up to now this was a big gap in my experience as computer
science student and software developer, but now I feel ready and prepared to work on another
Android projects in the near future.  
 
I would also like to give my special thanks to my parents and brother for their constant
support throughout the years. They are always source of great inspiration for me.  
 
I would like to further thank to everyone who is taking the time to read this work. I would be
grateful if this project has motivated you to learn or explore the any of the topics discussed by
it.

!3

Table of Contents

1. Introduction 6
1.1 Outline 6

1.2. Summary of the project aims 6

1.3. Project Scope 7

1.4 Project Outcomes 7

1.5 Project Structure 8

2. Background 8
2.1. Overview 8

2.2. The location privacy concerns that affect the ridesharing applications? 9

2.3. What is location obfuscation and what are the different techniques of
using it? 10

2.4. Location based services in Android 10

2.5. Software technologies and frameworks used for the project prototype. 11

3. Specification and Design 11
3.1. Overview 11

3.2. Specifications and deviations from the initial plan 12

3.3. Application logic design 13

3.4. Database schema 14

3.5. API design 15

3.6. Android application design 16

3.6.1. UI 16

3.6.2. Classes 17

3.6.3. Location obfuscation algorithm 18

4. Implementation 19
4.1. Hardware and software used for the project 19

4.2. Application code 20

!4

4.3. User Interface 33

4.4. Location obfuscation algorithm 36

4.5. API 37

5. Testing and evaluation 39
5.1. Testing the Android prototype application 39

5.2. Test and evaluation of the API and the DB 42

5.3. Testing the location obfuscation feature 43

6. Conclusions 44
7. Future Work 44

7.1. Location obfuscation feature improvements 45

7.2. The ridesharing prototype application extensions 45

8. Reflection on Learning 46
9. References 47

!5

1. Introduction
 

1.1 Outline

We live in time when the traffic in the big cities is growing at a fast pace with every passing
day and the average car occupancy keeps going down. As a result more and more ridesharing
applications appear on the market in try to free the big cities from their heavy traffic. If they
succeed with their mission they will also lower the greenhouse gas emissions caused by the
vehicles in these urban areas. This is not only encouraging governments to support similar
projects, but also brings money from investors who support environmental causes. Yet the
focus very often stays on the big picture and most of the ridesharing applications don’t take
into consideration some sides of the location privacy and how important this can be for their
users.  
 
This project will attempt to address the issue of the location privacy in the ridesharing
category of mobile applications. The main idea of this project will be to show how location
privacy feature can be embedded into ridesharing android application and what are the
technologies required for that. This kind of privacy will be achieved with the help location
obfuscation. There are a lot of methods and articles about the topic and some of them will be
discussed in this project. Furthermore the current report will describe how the technique for
location obfuscation chosen for the prototype developed in this project works and will also
mention other possible ways for achieving this kind of privacy.

1.2. Summary of the project aims

One of the aims of this project will be the development of a prototype of ridesharing
application and using it as a base application in which a location privacy feature can be
implemented. The ridesharing application will include features like authentication, interaction
with Google Maps and communication with API running on a server in the cloud. The
application will be able to generate a ‘ride bookings’ - an objects containing information
about a request for a ride - including the location of the pick up and the drop off points. The
location obfuscation feature will be embedded as additional feature in one of the screens
responsible for the ‘ride booking’ creation. The technique used for the obfuscation will be
adding a random noise to the original locations so that an artificial locations can be created
within some range from the original ones. We will also consider extending the feature so that
it can give couple of choices for ‘fake’ locations to the user and he will be able to pick the
one he finds the most suitable for his needs.  

!6

 
As a second aim several features and extensions that can be added to the ridesharing
application prototype will be discussed in the future work section. This will demonstrate how
the prototype application can actually be developed into complete and working application
capable of providing ridesharing services.

1.3. Project Scope

The project solution will demonstrate one of the well known techniques for location
obfuscation and also provide information about others that can be used. The prototype
application is developed for the purposes of illustrating the location obfuscation and will have
authentication implemented and working. The authentication will work with the Google
Firebase platform which will allow us to monitor the users using their console tool. We can
also monitor crash reports showing logs from the application when something goes wrong.
The application will have working location and map services with screens using Google map
fragments. This screens will be part of the booking creation screens and will allow addresses
to be searched.  
 
The prototype application will communicate with an API on a remote server in the cloud. For
the HTTP calls the Android project will use the Retrofit library and the API side will use
Flask, a micro web framework written in Python. The API service will be deployed on EC2
instance in the Amazon Web Services (AWS) cloud. This instance will communicate with
Amazon RDS instance (the relational database instances provided from Amazon) in order to
save or retrieve the ‘ride booking’ objects coming from the application.  
 
A ride matching algorithm and possible implementation will be discussed in the future work
section. Furthermore the future work section will contain some ideas showing how with the
help of the Firebase platform and it’s features for cloud messaging and realtime database a
chat functionality can be implemented and added to the application.

1.4 Project Outcomes

The project’s main idea and outcome will be the demonstration of a location obfuscation
feature and how such feature can be added to a ridesharing Android application. It will show
the code needed for the implementation and will discuss another approaches that may be
possible. Furthermore the reader will learn how to implement authentication to an Android
application with Google Firebase, how to set up an API using Flask and how to create an
environment for his project on the cloud. Finally the reader will learn how to build it’s own
ridesharing application based on different ideas and features discussed in the future work
section.

!7

1.5 Project Structure

The project starts with this introduction explaining the ideas and the motivation behind the
work as well as the actual scope of the work. After that it will prepare the reader for the
project by explaining all the background information needed for the development and
implementation of the application. This background includes: synthesised information from
several researches explaining the location privacy problem with the ridesharing applications,
location obfuscation techniques and methods, how the location services work on Android
devices and finally some information about the technologies and the frameworks which are
going to be used in the project.
After the background information the project will go trough the design and specification
showing the design of the location obfuscation algorithm, the database schema and the code
structure of the API and the android project. After that the report will look at the
implementation of the things discussed in the specification part. Detailed code examples will
be given in this section.
A set of test cases for each one of the three main parts of the project will be shown in a
Testing and evaluation section. The tests will be conducted so that we can evaluate the code
and the prototype and show some results. Finally ideas for the project further development
will be given with the clear purpose to demonstrate to the reader some of the things needed
for a complete ridesharing application.

2. Background

2.1. Overview

The growth of the mobile users (which are now around 2 billion) have increased the number
and the variety of the mobile applications that are being developed. Most of them have their
motivation behind the idea to improve parts of our daily life in some ways. Commuting or
getting around in a city is something that takes a big part of our time these days and it was
expected sooner or later solution for making this part of our life easier to appear. We can even
notice the growing traffic of vehicles everywhere. The roads are getting busier and busier.
One of the reasons for this is that most of us don’t utilise our assets at their maximum. People
very often travel alone in their vehicles. What’s more, a several studies show that the average
car occupancy is around 1.5 and tends to fall at 1.2 for people travelling for business. The key
for resolving this issue can be found in the sharing economy. This is an economic model in
which individuals are able to rent or borrow not utilised assets owned by someone else. In the
context of the transportation the non utilised resources are the free/empty seats in the

!8

vehicles. That’s why we often categorise the ridesharing applications as part of the sharing
economy. The idea for them appeared around 2008 and we started witnessing the first
successful ridesharing applications in around 2012. From the day they appeared their user
database have been growing exponentially.

These applications take advantage of the location of the driver and the user and their Origin-
Destination points of travel. This localisation takes advantage of the Global Positioning
System (GPS) which makes use of satellites to determine the user position. Almost every
smartphone these days has a GPS chipset. Most of the devices that don’t have one use an
alternative support technologies for location based services based on cell tower data to get the
user location. Often the location gathered from the ridesharing applications is not obfuscated
and can reveal the actual position of the users or the places where they live or work in.
 

2.2. The location privacy concerns that affect the ridesharing applications?

The rideshring services rely very heavily on location data, these apps track where the user is
and where he goes. Even further - some of the apps try to expand their location data
collection so that they can improve their pick-ups and drop-offs by learning where the user
lives and where he works. These pairs of locations are very sensitive data for the user and are
serious privacy concern. What’s interesting is that they are very often shared with other users
of the application so that a match between the users can be created. To put it another way -
this information is public within the application users.

The privacy issue arrises when the home/workplace pair (A, B) can be joined with some
other data of any public or private dataset containing users and the same kind of home/
workplace map pair. This can potentially identify the user depending on what additional
information the second source provides. There are several levels of identification that may
appear. For example: The worst case will be an exact match - a record showing a lot of
private information and a specific individual. Another case will be a set of users which have
the same (A, B) pair. The bigger this set is the better chance we have that the actual user
identification is not revealed. Furthermore this location pair (A, B) can be used with
completely different anonymised location data set resulting in re-identification on some of the
data.  
 
The discussed privacy concerns can be prevented via location obfuscation techniques. And a
research shows that the bigger this obfuscation is the better privacy of the original location it
creates.

!9

2.3. What is location obfuscation and what are the different techniques of
using it?

The concern about privacy in terms of the user’s location has led to the discovery and the
development of various kinds of location obfuscation techniques. These techniques are used
for the creation of non reversible alteration of the user original location in ways that the user
position is obscured but still not completely different in terms of information that can be
acquired from it. These allows whoever uses the location to offer the service that needed the
location in the first place and have similar or the same output as if the original location was
used.  
 
Not all of the location obfuscation techniques can be used for hiding a single point. Some of
them are effective when we have list of points. In our project we are concerned only about
single points - the two points of the the user home/workplace pair (A, B) and we will look
only at the most famous and relevant techniques for this scenario.  
 
The most obvious technique for hiding user sensitive geo data is a method which doesn’t
return any data within a certain distance from given sensitive point. This technique is called
“invisible cloaking”. Another method used for location obfuscation is “randomising”. It
works by random noise being added to the original position. The random function can follow
different distributions. The most common distributions for location obfuscation are the
uniform one and the normal (Gaussian) one. The third most famous obfuscation technique
which can be used by our project is the “discretising” method. It uses a rounding technique
that lowers the accuracy of the original point.

2.4. Location based services in Android

The location based services in Android work thanks to the Location API which is build in
inside the Android operating system. The Location API on other hand talks to system libraries
which communicate with the hardware (the GPS chipset for example). Newer versions of
Android have the Location API build in the Google Play Services which combines different
APIs and aims to make the application interaction with operating system APIs easier.

The Location API have two permissions which can be used for different location accuracy
level depending on the requirements. One is ACCESS_COARSE_LOCATION and the other
is ACCESS_FINE_LOCATION.
 

!10

https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_COARSE_LOCATION
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_FINE_LOCATION

 
2.5. Software technologies and frameworks used for the project prototype.

The prototype developed in this project will be build for Android API level 23 (Android 6.0).
One of the big changes for this version of the Android SDK is that the permissions can be
requested during runtime and you can still have a working application with some of the
permissions denied although this may result in some not working functionalities of the
application.

The application will have authentication with the Google Firebase platform. The Firebase
platform provides different tools and APIs to developers which can make the development of
specific features more easier than usual. It works as a Back-End as a Service and provides
tools like Analytics, Cloud Messaging, Authentication, Realtime Database, plugins for
adverts and many more.

The API will be written in Python and will be run on Amazon web services (AWS) instance.
AWS is on-demand cloud computing platform.

3. Specification and Design

3.1. Overview

The project discussed in this report aims to present an android application which has a
location obfuscation feature. This feature will use and demonstrate the ”randomising”
location obfuscation algorithm. The discussed application will imitate a ridesharing
application with limited functionalities called “Zaedno”. The application will make use of
Google Firebase for authentication. This will control which screens the user can access and
will provide information of who is using the application at that moment. Google maps and
Google’s location services are used for searching location points on the map and using these
locations in the “ride booking” module of the application.  
 
Furthermore there will be an API which will take the “ride booking” objects coming from the
instances of the application and will store them in a table inside a database. Both the API and
the database will run on servers in the AWS cloud.
 
The “randomising” technique for the location obfuscation will use a randomly generated
values from random function using the uniform distribution.  

!11

https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Computing_platform

3.2. Specifications and deviations from the initial plan

The specifications presented in the initial plan proposed the development of a complete
ridesharing application which was going to use a location privacy feature. However, after
weeks of research in the area of location privacy I noticed that most of the major ridesharing
applications doesn’t consider the origin-destination points as something they should keep
obfuscated and I decided to address this issue in the project and show how a privacy feature
addressing this problem can be integrated in a project rather than creating a complete
ridesharing application.  

All must have points are required for the project and will be enough for creating a prototype
and implementing the location obfuscation feature. The should and the could have points
were desirable if there was enough time and were more specific for the development of a
complete ridesharing application.

!12

The initial plan had the following aims:
 
 - Design simple and aesthetic user interface. (must have)

- Develop a system which allows user to create a journey by picking
up the initial and the destination points and uploading the journey to a system
which distribute it to other users having common origin-destination points in
order two similar routes to be matched. (must have)

 - Add a private feature which allows the user to disguise the pick-up
and the destination points by randomly selecting an artificial location within a
given range from the original location. (must have)

- Add a social network capabilities to the application by allowing each
user to add people they like travelling with as “friends”. Create a feature
allowing private communication between the users. (should have)

 - Add a feature which allows the application to recognise when two
users are together. Can be created by QR codes which are scanned by the
users. (could have)

Considering that the focus of the project changed to a more narrow and specific location
privacy issue - the should and the could have aims are no longer a priority for this project.
However I decided to use the authentication feature from the “Add a social network
capabilities to the application” point which is going to useful when a “ride booking” is
submitted from the prototype. The authentication will contain some kind of user
identification which will help us to uniquely identify the records stored in our database.

3.3. Application logic design

The application logic design includes 5 main components. An android prototype application,
an API, a database, a Google Firebase service and a Google Maps service. The following
diagram can illustrate the data flow between the different components.  

!13

3.4. Database schema

For the purposes of this prototype we will only need one table in the database which will
store the “ride booking” objects. (the table schema shown below)

In a case when more complex prototype is build, for example an application having more
functionalities which a ride sharing application may usually have, there can be a lot more
tables supporting the additional application functionalities. For example a ‘users’ table can
store more information about the users. Similarly there can be ‘ride matches’ table having
more information about the status of the ‘ride bookings’. Here is an example how the current
basic schema can be extended in this case:

This example is out of the scope of the current prototype and project but can be useful when
we talk about the future work.

!14

The id will be the unique identifier for the
“ride object”. The uid will be the unique
identification for the user which made the
booking. The pLat, pLng and pName will be
the location coordinates and name of the pick
up point and the dLat, dLng and dName will
be the location coordinates and name for the
drop off point.

3.5. API design

The application programming interface (API) will be written in Flask and since the prototype
functionalities will only include storage there will be only one route ‘/ride/new’ which will
expect POST HTTP requests containing a new ‘ride booking’ objects coming from an
instances of the android application application. The API code will have method called
executeQuery() which implement the database connection and the sql query execution. The
method will take an sql query string and will return a status code indicating if the record was
inserted into the table.  
 
Additionally there will be also a separate file containing the config files needed for the
database connection. This needs to be separated because when we upload the API code to a
repository we would like to ignore this sensitive information in the .gitignore file.

The API will require a library for MySQL and there are a lot of good libraries for this. Some
of them even originating one from another. The two most used and distinguishable ones are
MySQLdb which is C based and mysql-connector which is written by Oracle and is python
based. After finding a study which compares the performance of the both libraries I picked
the MySQLdb as a library for this project. It’s much more faster than it’s competitor. The
following comparison diagram created by the author of the study illustrates how big the
difference between the two libraries is:  

!15

3.6. Android application design

 3.6.1. UI

 The application prototype will require several screens so that the information
can be communicated and retrieved from the user and the location obfuscation functionality
can be shown. These screens will be designed as sketches initially with a sketching
application called Sketch. A common user interface methodologies found in several of the top
ridesharing applications on the market will be used as ideas for the prototype user interface.
The views required for the prototype are:  

• Initial screen having the logo and the name of the application and two buttons. One
used to open the login screen and one used to open the register screen.  

• There will be a login and register screens having similar buttons and fields.  

• A main screen for the authenticated user will be created. This screen will have a
bottom navigation with 5 buttons (profile, my rides, new ride, chat, friends). This
buttons will load different content inside this main screen. Additionally there will be
a header having the application name.  

• Several fragments will be created. Each one having different functionality and
being able to be loaded in the main screen. Since our prototype will have limited
functionalities there will be some empty fragments. There will be several fragments
starting their workflow from the ‘new ride’ fragment. The first fragment which loads
when the ‘new ride’ button is clicked will be a view with another button leading to
the fragments needed for creating a “ride booking”, a button which redirects the user
to his rides - the equivalent of clicking ‘my rides’ from the menu. And there will be a
card which can show the next upcoming ride. This will be example of how the
application can be extended in the future. When the “new ride booking” button is
clicked it will load a fragment with Google maps in it and a search field. This view
will be needed for the user to select his pick up point. There will be a button leading
to a similar screen for selecting the drop off point. And finally there will be screen
for selecting additional data about the ride including time, date and a check button
for the privacy feature.

All the sketches will be then written in XML which is the android layout format. This method
used by Android will enable us to add functionality behind the views but at the same time the
XMLs will separate the user interface of the application from the code that controls the
behaviour of the application.  
 
 

!16

 3.6.2. Classes

 The prototype application will have several activities and fragments. Each one
of them is represented by a class in Java. The activity which loads initially will be called
‘MainActivity’ and it will have two button listeners for the two buttons leading to the
‘signinActivity’ and the ‘signupActivity’. The ‘signinActivity’ and the ‘signupActivity’ will
have instance of the FirebaseAuth which will be added in the project via gradle (a build
system).
 After successful sign in or sign up the user will be redirected to the
‘HomeActivity’. This activity will also have an instance of the FirebaseAuth so that we can
keep track who the authenticated user is and redirect it back to the ‘MainActivity’ in case his
authentication token is no longer valid. The ‘HomeActivity’ will have the menu and all the
button listeners connected with it and will be able to change its content with the different
fragments. Several fragment classes will be able to load inside this ‘HomeActivity’ and some
of them will have a fragments inside them as well. For example the
‘PickUpLocationFragment’ and the ‘DropOffLocationFrament’ will have a mapFragments as
part of them.  

 The following diagram can show the workflow of the activities and fragments
controlling the user interface:

The Retrofit library which is responsible for the HTTP requests to the API will require
several classes and one interface in order to work. The interface should represent all the
possible API calls together with the object types submitted and the responses objects. For

!17

instance the new ride request will need a class called ‘Ride’ which will represent the model of
the new ‘ride booking’ objects. Instance of this class will be converted to JSON via the gson
and the Retrofit library and send to the API in case a new ‘ride booking’ is submitted. A
‘NewRideResponse’ class will be also required. This response object will have a message
inside it saying if the send ride object was successfully inserted into the database.  
 

 3.6.3. Location obfuscation algorithm

 The location obfuscation algorithm will be implemented via two methods
inside the ‘timeOfTravelFragment’ class. The first method will add a random shift values
generated by the second method to each one of the geographic coordinates. The core method
of the algorithm will be the one generating the shifted values. It will have the following
structure: 
 

!18

 generateShift(){  

 double minShift // the minimum value that we want to be generated
 double maxShift // the maximum value that we want to be generated
 double shift = minShift + (maxShift - minShift) * randomValue
 // randomValue will be a random number between 0 and 1 selected from the
 // uniform distribution

 // a random boolean will decide whether the method should return negative shift or positive
 // one
 if(randomBoolean){
 return -shift;
 }
 return shift;
 }

4. Implementation

4.1. Hardware and software used for the project

 One of the most important software tools used for the implementation of this project
was Android Studio. It is the official integrated development environment used for the
development of Android projects. The Android prototype application used a several external
frameworks and libraries which were installed and build with gradle - the build tool used by
Android Studio. These external frameworks are:  

• Firebase Auth - The external service which we are using for authentication of the
users. 

• OkHttp 3 - An HTTP client used in Android for HTTP requests.  

• Retrofit - An API mapping library (adapter) which uses OkHttp to send and receive
HTTP requests.  

• gson - Java library used for conversion of Java objects into their JSON representation.  

• converter-gson - This library is used together with retrofit when JSON objects
converted with gson are send or received as HTTP requests.  

• Google play services - a package which combines several of the google APIs
including Location APIs and Google Maps APIs which we are using in this project.  

The API also used several additional libraries as dependencies. All of them were inside the
requirements.txt file which was installed with the following command on the environment
where the API was set up: 

 pip install -r requirements.txt

 The file had the following dependencies listed inside:
 - Flask
 - mysqlclient (MySQLdb)

 
 
 
 
 
 

!19

Additionally the project used the following tools and softwares for testing, project
management and development:

 - Text Editor (Atom)
 - Sketching application (Sketch)
 - Google Firebase Console
 - AWS management console
 - SQL client (Sequel Pro)
 - FTP/SFTP client (CyberDuck)
 - API analysation tool (PostMan)
 - Git repository (Bitbucket)
 - Task tracking and management software (Trello)

 The Android application was tested and deployed on personal Android device having
Android version 6.0.1. Additionally the android emulator (emulating Nexus 5X API 23) was
used for testing during the development.

4.2. Application code

There are several important parts of the application prototype. This part will try to cover most
of them starting with two very important files for the project - the manifest XML file and the
gradle script. After that the report will mention the implementation of things like
authentication, button clicks, transition between activities and fragments, Google maps
search, getting the user location, etc.  

The manifest XML file which is one of the most important files of the Android projects. The
application developed for this project has the following manifest file:

!20

<?xml version="1.0" encoding="utf-8"?>  
<manifest xmlns:android="http://schemas.android.com/apk/res/android"  
 package="com.example.zaedno">  
 
 <uses-permission android:name="android.permission.INTERNET" />  
 
 <!--  
 The ACCESS_COARSE/FINE_LOCATION permissions are not required to use  
 Google Maps Android API v2, but you must specify either coarse or fine  
 location permissions for the 'MyLocation' functionality.  
 -->  
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />  
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />  

!21

 <application  
 android:allowBackup="true"  
 android:icon="@mipmap/ic_launcher"  
 android:label="@string/app_name"  
 android:supportsRtl="true"  
 android:theme="@style/AppTheme">  
 <activity  
 android:name="com.example.zaedno.MainActivity"  
 android:label="@string/title_activity_main"  
 android:theme="@style/AppTheme.Fullscreen">  
 <intent-filter>  
 <action android:name="android.intent.action.MAIN" />  
 
 <category android:name="android.intent.category.LAUNCHER" />  
 </intent-filter>  
 </activity>  
 <activity  
 android:name="com.example.zaedno.SignupActivity"  
 android:label="@string/title_activity_signup"  
 android:parentActivityName="com.example.zaedno.MainActivity"  
 android:theme="@style/AppTheme.Fullscreen" />  
 <activity  
 android:name="com.example.zaedno.ResetPasswordActivity"  
 android:label="ResetPassword"  
 android:parentActivityName="com.example.zaedno.SigninActivity"  
 android:theme="@style/AppTheme.Fullscreen" />  
 <activity  
 android:name="com.example.zaedno.SigninActivity"  
 android:label="@string/title_activity_signin"  
 android:parentActivityName="com.example.zaedno.MainActivity"  
 android:theme="@style/AppTheme.Fullscreen" />  
 <activity android:name="com.example.zaedno.HomeActivity" />  
 <!--  
 The API key for Google Maps-based APIs is defined as a string resource.  
 (See the file "res/values/google_maps_api.xml").  
 Note that the API key is linked to the encryption key used to sign the
APK.  
 You need a different API key for each encryption key, including the
release key that is used to  
 sign the APK for publishing.  
 You can define the keys for the debug and release targets in src/debug/
and src/release/.  
 -->  
 <meta-data  
 android:name="com.google.android.geo.API_KEY"  
 android:value="@string/google_maps_key" />  
 
 <!--  
 ATTENTION: This was auto-generated to add Google Play services to your project for  
 App Indexing. See https://g.co/AppIndexing/AndroidStudio for more information.  
 -->  
 <meta-data  
 android:name="com.google.android.gms.version"  
 android:value="@integer/google_play_services_version" />  
 
 </application>  
 
</manifest>

This file specifies the permission which the application will use. In the case of “Zaedno”
application the Internet permission is used. The application needs the internet permission to
access the google play services for location and Google Maps and for accessing the python
API. The “ACCESS_FINE_LOCATION” and “ACCESS_COARSE_LOCATION” for
accessing the location of the user are also required permissions for this project.  
 
The activities of the application can be found between the ‘application’ tags in the manifest
file. The MainActivity is marked as initial (main) activity and opens when the application is
started. The SigninActivity and SignUpActivity are the activities needed for the user
authentication and the Activity which controls the main functionalities of this project is the
HomeActivity.

The second file of big importance for the android projects is the gradle script. It contains
information about the build version of the android sdk and the minimum supported SDK
version. This file also contains all the project dependencies inside it. We can see the firebase
dependency needed for the authentication, the play services dependency needed for the
location and google maps, the support design dependency providing some essential design
components, the okHttp3 and the retrofit dependency so that we can send and receive HTTP
requests.  
 
(the file is shown below)

!22

apply plugin: 'com.android.application'  
 
android {  
 compileSdkVersion 25  
 buildToolsVersion "25.0.2"  
 defaultConfig {  
 applicationId "com.example.leaf"  
 minSdkVersion 15  
 targetSdkVersion 23  
 versionCode 1  
 versionName "1.0"  
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"  
 }  
 buildTypes {  
 release {  
 minifyEnabled false  
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'  
 }  
 }  
}  
 

 
One of the first features added to the project was the authentication. As planned it was made
with the Google Firebase plugin. One of the most important code which makes the
authentication to work is the authentication listener which is listening for authentication
changes and if one occurs it redirects the user to the relevant screens. The authentication
listener looks like this:

The code snippet above shows a listener which waits for authentication state change. If the
new state after the change has a user object it redirects the user to the HomeActivity. This
snippet is also a good example of how the intents are made and the redirection works. The

!23

mAuthListener = new FirebaseAuth.AuthStateListener() {  
 @Override  
 public void onAuthStateChanged(@NonNull FirebaseAuth firebaseAuth) {  
 FirebaseUser user = firebaseAuth.getCurrentUser();  
 if (user != null) {  
 Intent intent = new Intent(SigninActivity.this, HomeActivity.class);  
 startActivity(intent);  
 finish();  
 }  
 }  
};

dependencies {  
 compile fileTree(dir: 'libs', include: ['*.jar'])  
 androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {  
 exclude group: 'com.android.support', module: 'support-annotations'  
 })  
 compile 'com.android.support:appcompat-v7:25.3.0'  
 compile 'com.android.support:cardview-v7:25.3.0'  
 compile 'com.android.support:recyclerview-v7:25.3.0'  
 compile 'com.android.support:design:25.3.0'  
 compile 'com.google.firebase:firebase-auth:10.2.1'  
 compile 'com.google.android.gms:play-services-auth:10.2.1'  
 compile 'com.google.android.gms:play-services:10.2.1'  
 compile 'com.android.support:support-v4:25.3.0'  
 compile 'com.squareup.retrofit2:retrofit:2.1.0'  
 compile 'com.google.code.gson:gson:2.6.2'  
 compile 'com.squareup.retrofit2:converter-gson:2.1.0'  
 compile 'com.squareup.okhttp3:okhttp:3.0.1'  
 testCompile 'junit:junit:4.12'  
}  
apply plugin: 'com.google.gms.google-services'

code which handles the logout is similar only the check in the if is different and the intent is
reversed:
 

 
There are parts of the application which we don’t want to be accessed from unauthorised
users and parts of the application which are in no need to authenticated users. Thats why
there is a special logic which restricts the user to some screens depending on his
authentication status:  

The code above checks if the user is authenticated and if he is not - the application will
redirect him to the MainActivity from where the sign in and sign up functionalities can be
accessed. There is similar logic inside the MainActivity which checks if the user is
authenticated and redirects him to the HomeScreen if he is authenticated because.
 
The next thing which was of big importance for the project is how the activities and the
fragments handle the button clicks. There are a lot of buttons around the application and in
order to register a click they need a special onClicklListeners. These onClickListeners allow
the application to make an appropriate action when a button is clicked by the user.  
 
 
 
 
 

!24

//Get Firebase auth instance  
auth = FirebaseAuth.getInstance();  
FirebaseUser user = FirebaseAuth.getInstance().getCurrentUser();  
if (user == null) {  
 Intent intent = new Intent(HomeActivity.this, MainActivity.class);  
 startActivity(intent);  
 finish();  
}

mAuthListener = new FirebaseAuth.AuthStateListener() {  
 @Override  
 public void onAuthStateChanged(@NonNull FirebaseAuth firebaseAuth) {  
 FirebaseUser user = firebaseAuth.getCurrentUser();  
 if (user == null) {  
 Intent intent = new Intent(HomeActivity.this, MainActivity.class);  
 startActivity(intent);  
 finish();  
 }  
 }  
};

The code snippet bellow is taken from the UserProfileFragment showing how the logout
button works: 

With the authentication handling implemented, the intents, the button onClickListeners and a
little bit of additional knowledge the MainActivity, SigninActivity and the SignupActivity
were created.  
 
The next important part of the prototype was the bottom navigation. For the implementation
of this navigation the Bottom navigation component provided from the support design library
was used. It requires a separate XML file describing the items of the menu.  

!25

btn_logout = (Button) view.findViewById(R.id.logout);  
 
btn_logout.setOnClickListener(new View.OnClickListener() {  
 @Override  
 public void onClick(View v) {  
 ((HomeActivity)getActivity()).signOut();  
 }  
});

Type to enter text<menu xmlns:android="http://schemas.android.com/apk/res/android"  
 xmlns:app="http://schemas.android.com/apk/res-auto">  
 <item android:id="@+id/user"  
 android:title="Profile"  
 android:icon="@drawable/user"  
 app:showAsAction="always"/>  
 <item android:id="@+id/pastRides"  
 android:title="My Rides"  
 android:icon="@drawable/history"  
 app:showAsAction="always"/>  
 <item android:id="@+id/newRide"  
 android:title="New Ride"  
 android:icon="@drawable/new_ride"  
 app:showAsAction="always"/>  
 <item android:id="@+id/chat"  
 android:title="Chat"  
 android:icon="@drawable/chat"  
 app:showAsAction="always"/>  
 <item android:id="@+id/friends"  
 android:title="Friends"  
 android:icon="@drawable/users"  
 app:showAsAction="always"/>  
</menu>

In the prototype application this file can be found in the \res\menu folder and it’s called
bottom_navidation.xml  

Additionally to work the bottom navigation requires this component to be placed inside the
home activity.

The bottom menu updates and fragment changes are controlled by the following code in the
HomeActivity.java

!26

<android.support.design.widget.BottomNavigationView  
 android:id="@+id/bottom_navigation"  
 android:layout_width="match_parent"  
 android:layout_height="wrap_content"  
 android:layout_alignParentBottom="true"  
 app:itemBackground="@color/blue_light"  
 app:itemIconTint="@color/white"  
 app:itemTextColor="@color/white"  
 app:menu="@menu/bottom_navigation" />

// bottom navigation  
BottomNavigationView bottomNavigationView = (BottomNavigationView)  
 findViewById(R.id.bottom_navigation);  
 
bottomNavigationView.setOnNavigationItemSelectedListener  
 (new BottomNavigationView.OnNavigationItemSelectedListener() {  
 @Override  
 public boolean onNavigationItemSelected(@NonNull MenuItem item) {  
 Fragment selectedFragment = null;  
 switch (item.getItemId()) {  
 case R.id.user:  
 selectedFragment = UserProfileFragment.newInstance();  
 break;  
 case R.id.pastRides:  
 selectedFragment = UserRidesFragment.newInstance();  
 break;  
 case R.id.newRide:  
 selectedFragment = NewRideFragment.newInstance();  
 break;  
 case R.id.chat:  
 selectedFragment = ChatFragment.newInstance();  
 break;  
 case R.id.friends:  
 selectedFragment = FriendsFragment.newInstance();  
 break;  
 }  
 FragmentTransaction transaction =
getSupportFragmentManager().beginTransaction();  
 transaction.replace(R.id.fragment_space, selectedFragment);  
 transaction.commit();  
 return true;  
 }  
 });

The next important part of the prototype were the pickUpLocationFragment and
dropOffLocationFragment. They are part of the “ride booking” object creation workflow and
help the user to select his addresses of interest. The fragments have several methods
providing functionalities like: getting the user current location and showing it on the map,
converting location points to address string (street, number of building, etc) by making calls
to the Google Maps API, updating the location points and the address string when the map is
moved under the pin and also allowing the user to search location by entering address in a
search filed. There is also a method which asks for location permission for Android devices
running SDK 23 and above. The method looks like that:  

 

 
 
 
 
 

!27

@Override  
public void onRequestPermissionsResult(int requestCode,  
 String permissions[], int[] grantResults) {  
 switch (requestCode) {  
 case MY_PERMISSIONS_REQUEST_ACCESS_COARSE_LOCATION:  
 case MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION: {  
 // If request is cancelled, the result arrays are empty.  
 if (grantResults.length > 0  
 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {  
  
 setCurrentLocation();  
 
 } else {  
  
 Log.i("PErr", "Permission denied location");  
 }  
 return;  
 }  
 
 }  
}

FragmentTransaction transaction = getSupportFragmentManager().beginTransaction();  
transaction.replace(R.id.fragment_space, NewRideFragment.newInstance());  
transaction.commit();  

 
Once the permission is acquired the setCurrentLocation function is called. This function
updates the location variables and loads the current location on the map fragment. (the
function is shown below)

!28

private void setCurrentLocation() {  
 if (ActivityCompat.checkSelfPermission(getActivity(),
android.Manifest.permission.ACCESS_COARSE_LOCATION) !=
PackageManager.PERMISSION_GRANTED) {  
 ActivityCompat.requestPermissions(getActivity(),  
 new String[]{android.Manifest.permission.ACCESS_COARSE_LOCATION},  
 MY_PERMISSIONS_REQUEST_ACCESS_COARSE_LOCATION);  
 return;  
 }  
 if (ActivityCompat.checkSelfPermission(getActivity(),
android.Manifest.permission.ACCESS_FINE_LOCATION) !=
PackageManager.PERMISSION_GRANTED) {  
 
 ActivityCompat.requestPermissions(getActivity(),  
 new String[]{android.Manifest.permission.ACCESS_FINE_LOCATION},  
 MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION);  
 return;  
 }  
 mLastLocation =
LocationServices.FusedLocationApi.getLastLocation(mGoogleApiClient);  
 if (mLastLocation != null) {  
 
 pickupLoc = new LatLng(mLastLocation.getLatitude(),
mLastLocation.getLongitude());  
 CameraUpdate center =  
 CameraUpdateFactory.newLatLng(pickupLoc);  
 CameraUpdate zoom = CameraUpdateFactory.zoomTo(16);  
 
 mMap.moveCamera(center);  
 mMap.animateCamera(zoom);  
 }  
 
 mLocationRequest = new LocationRequest();  
 mLocationRequest.setInterval(5000); //5 seconds  
 mLocationRequest.setFastestInterval(3000); //3 seconds  

mLocationRequest.setPriority(LocationRequest.PRIORITY_BALANCED_POWER_ACCURACY);  
 
 LocationServices.FusedLocationApi.requestLocationUpdates(mGoogleApiClient,
mLocationRequest, this);  
}

The following method is used to get latitude and longitude points from address entered in the
search field:

The process performed by this method is called geocoding. The reversed geocoding is not as
accurate as the actual geocoding. It may return partial data. For reverse geocoding we use the
following function:

!29

private void getLocationByAddress(EditText pickup_input) {  
 Geocoder geoCoder = new Geocoder(getActivity(), Locale.getDefault());  
 try {  
 List<Address> addresses =
geoCoder.getFromLocationName(pickup_input.getText().toString(), 1);  
 if (addresses.size() > 0) {  
 Double lat = (double) (addresses.get(0).getLatitude());  
 Double lon = (double) (addresses.get(0).getLongitude());  
 
 pickupLoc = new LatLng(lat, lon);  
 
 updatePickupSearchField();  
 
 CameraUpdate center =  
 CameraUpdateFactory.newLatLng(pickupLoc);  
 CameraUpdate zoom = CameraUpdateFactory.zoomTo(16);  
 
 mMap.moveCamera(center);  
 mMap.animateCamera(zoom);  
 }  
 } catch (IOException e) {  
 e.printStackTrace();  
 }  
}

private void updatePickupSearchField() {  
 try {  
 
 Geocoder geo = new Geocoder(getActivity().getApplicationContext(),
Locale.getDefault());  
 List<Address> addresses = geo.getFromLocation(pickupLoc.latitude,
pickupLoc.longitude, 1);  
 if (addresses.isEmpty()) {  
 } else {  
 if (addresses.size() > 0) {  
 pickup_input.setText("");  
 pickup_input.setHint(addresses.get(0).getFeatureName() + ", " +
addresses.get(0).getThoroughfare() + ", " + addresses.get(0).getLocality() + ", "
+ addresses.get(0).getCountryCode());  
 }  
 }  
 } catch (IOException e) {  
 e.printStackTrace();  
 }  
}

This method of reverse geocoding is needed when the user moves the map around. In that
way the application keeps track of the address name of the new location points under the
location pin.  

 
The next fragment of interest is the TimeOfTravelFragment. This is the last step of the “ride
booking” creation workflow and it has several fields for selecting the date of the travel, the
time of the travel and the ride type. The methods taking care of the location obfuscation and
the code which sends the “ride booking” object to the database can be also found in this
fragment.  
 
 
There are also two functions assisting the date/time selection fields:  
 
 

The code snippet above shows a simple method using switch to convert month number to a
month name. This is needed for better representation of the month in the UI.  
 
 
 
 
 
 
 

!30

private String monthToString(int month){  
 switch (month) {  
 case 1: return "January";  
 case 2: return "February";  
 case 3: return "March";  
 case 4: return "April";  
 case 5: return "May";  
 case 6: return "June";  
 case 7: return "July";  
 case 8: return "August";  
 case 9: return "September";  
 case 10: return "October";  
 case 11: return "November";  
 case 12: return "December";  
 default: return "Invalid month";  
 }  
}

The next function used for the date/time selection fields is the method button which opens the
time picker dialog:  

 
Probably one of the most important functions part of this fragment is the function which
sends the “ride booking” object to the API. The first thing that happens in this is the
initialisation on an object of class Ride with all the information collected from the forms.
This is how the class ride looks like:  

!31

btnChangeTime.setOnClickListener(new View.OnClickListener() {  
 @Override  
 public void onClick(View v) {  
 TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(),  
 new TimePickerDialog.OnTimeSetListener() {  
 
 @Override  
 public void onTimeSet(TimePicker view, int hourOfDay,  
 int minute) {  
 
 time.setText(timeToString(hourOfDay, minute));  
 mHour = hourOfDay;  
 mMinute = minute;  
 }  
 }, mHour, mMinute, true);  
 
 timePickerDialog.show();  
 }  
});

package com.example.zaedno;  
 
public class Ride {  
 final String uid;  
 final Double dLat;  
 final Double dLng;  
 final Double pLat;  
 final Double pLng;  
 final String dName;  
 final String pName;  
 final long time;  
 final String rideType;  
 
 Ride(String uid, String dName, String pName, Double dropOffLng_o, Double dropOffLat_o,
Double pickUpLat_o, Double pickUpLng_o, long time, String rideType){  
 this.uid = uid;  
 this.dName = dName;  
 this.pName = pName;  
 this.dLat = dropOffLng_o;  
 this.dLng = dropOffLat_o;  
 this.pLat = pickUpLat_o;  
 this.pLng = pickUpLng_o;  
 this.time = time;  
 this.rideType = rideType;  
 }  
 
}

 
This Ride class is needed from gson library which converts it from a Java class to a JSON
object which can be send over HTTP request with retrofit.  

!32

btnSubmitRide.setOnClickListener(new View.OnClickListener() {  
 @Override  
 public void onClick(View v) {  
 Calendar timeOfTravel = Calendar.getInstance();  
 if(btnTomorrow.isChecked()){  
 timeOfTravel.add(Calendar.DATE, 1);  
 }  
 Calendar timeData = Calendar.getInstance();  
 timeData.set(timeOfTravel.get(Calendar.YEAR), timeOfTravel.get(Calendar.MONTH),
timeOfTravel.get(Calendar.DAY_OF_MONTH), mHour, mMinute);  
 
 Ride newRide;  
 if(privacy.isChecked()){  
 newRide = new Ride(((HomeActivity)getActivity()).getUserId(),
dropOffName.getText().toString(), pickUpName.getText().toString(), mDlat_f, mDlng_f, mPlat_f,
mPlng_f, timeData.getTime().getTime(), rideType.getText().toString());  
 }  
 else{  
 newRide = new Ride(((HomeActivity)getActivity()).getUserId(),
dropOffName.getText().toString(), pickUpName.getText().toString(), mDlat, mDlng, mPlat, mPlng,
timeData.getTime().getTime(), rideType.getText().toString());  
 }  
 
 Retrofit retrofit = new Retrofit.Builder()  
 .baseUrl(“http://api_address_here/“)  
 .client(new OkHttpClient())  
 .addConverterFactory(GsonConverterFactory.create())  
 .build();  
 
 ZaednoAPI api = retrofit.create(ZaednoAPI.class);  
 
 Call<NewRideResponse> upload = api.newRide(newRide);  
 
 upload.enqueue(new Callback<NewRideResponse>() {  
 @Override  
 public void onResponse(Call<NewRideResponse> call, Response<NewRideResponse>
response) {  
 NewRideResponse res = response.body();  
 if(res.getMessage().equals("success")){  
 FragmentTransaction transaction = getFragmentManager().beginTransaction();  
 transaction.replace(R.id.fragment_space, NewRideFragment.newInstance());  
 transaction.commit();  
 }  
 else{  
 Toast.makeText(getActivity(), "An error occurred. Try again.",
Toast.LENGTH_SHORT).show();  
 }  
 }  
 
 @Override  
 public void onFailure(Call<NewRideResponse> call, Throwable t) {  
 Toast.makeText(getActivity(), "An error occurred. Try again.",
Toast.LENGTH_SHORT).show();  
 }  
 });  
 }  
});

Once when the Ride object is created and has the new ride data a retrofit instance with the
API address is created, the http client (OkHTTP) and the converter library (gson). After that
the retrofit class generates an implementation of the API interface. Thanks to this interface
we can make calls to the actual API. It’s important to note that the calls need to be
asynchronous because if made from the UI thread an exception will arise. This is buld in
from android and ensures that the UI will stay responsive.  
 
When response comes back from the API the response message is checked and if the the
INSERT operation was successful the user is redirected to another fragment. If the message
reports for some error a simple text message shows saying that there was an error.

 
4.3. User Interface 

Designing the user interface was the first point and aim from the initial plan and it took me a
lot of time to design these screens which lead to the best user experience for the prototype
developed in this project. Part of the screens from the user interface are shown bellow:  
 
 

 

!33

!34

!35

4.4. Location obfuscation algorithm

The main idea of the project was to demonstrate how a location obfuscation feature can be
implement inside a ridesharing application. As mentioned earlier the location obfuscation
feature is implemented in the TimeOftravelFragment and it is located in two methods:  
 

In this implementation the minimum and maximum shift points are fixed and can generate
offset of maximum 300 meters. This offset won’t work everywhere on the Earth because the
distance in meters between any two points in longitude varies depending how far from the
equator the point is. For more precise calculations a haversine formula can be used.  
 
The random function in this algorithm uses the uniform distribution.  

!36

private void generateFakePoints() {  
 mPlat_f = mPlat + generateShift();  
 mPlng_f = mPlng + generateShift();  
 
 pickUpName.setText(locToString(mPlat_f, mPlng_f));  
 
 mDlat_f = mDlat + generateShift();  
 mDlng_f = mDlng + generateShift();  
 
 dropOffName.setText(locToString(mDlat_f, mDlng_f));  
 
 return;  
}  
 
private Double generateShift(){  
 Random r = new Random();  
 double minShift = 0.0003;  
 double maxShift = 0.0015;  
 double shift = minShift + (maxShift - minShift) * r.nextDouble();  
 if(r.nextBoolean()){  
 return -shift;  
 }  
 return shift;  
}

4.5. API

The API handling is handling part of the back end service of the application and is written
with Python. The API project is separated on 3 files - api.py, config.py and requirements.txt.  
 
 - The requirements file lists all the dependencies which the API is using. Thanks to
this file the environment for the project can be easily created on a new instance of the same
type.  

 - The config file contains a dictionary with the important config data for the database
connection. The file is separated from the main project (api.py) because we don’t want
unauthorised people to have access to the database password and login credentials if the
project is uploaded to public git repository or posted online. The config file has the following
dictionary object inside it:

The apy.py file imports all the dependencies so that it can use them later in the code.

!37

db_config = {  
'host': ‘db_host',  
'username': ‘db_username',
 
'password': ‘db_passowrd',
 
'database': ‘db_database'  
}

from flask import Flask
from flask import request
from datetime import datetime
import json
import MySQLdb

importing config data
import config

After that it creates the Flask application and calls the run method of the the Flask instance
and runs the HTTP server.

The API contains only one route “/ride/new” which receives POST requests containing “ride
booking” objects. The function receiving the request checks if the expected data can be found
in the POST request and returns error message if there is something missing in the request.
Provided that all the data is available, an SQL insert query is created and passed to a method
called executeQuery. This method connects to the database, creates a cursor and in a try/catch
block tries to execute the query. If the query executes successfully the changes are committed
to the database, if not there is a rollback. After that the database connection is closed and if
the insertion was successful the the method returns 1 which says to the function working on
the POST request to return successful message because the insertion was indeed successful. If
the insertion was not successful the method returns -1 which generates an error message as a
response to the request. Here is how the executeQuery method looks:  
 
 
 
 

!38

app = Flask(__name__)

if __name__ == "__main__":
 app.run(host='0.0.0.0')

def executeQuery(sql):
 # Open database connection
 db = MySQLdb.connect(config.db_config["host"], config.db_config["username"],
config.db_config["password"], config.db_config["database"])

 # prepare a cursor object using cursor() method
 cursor = db.cursor()

5. Testing and evaluation

5.1. Testing the Android prototype application

The following tests were performed to ensure that the application prototype is working
correctly and that it meets the criteria specified in the Specification and Design point.

No Description Expected result Actual Result Fix/
Action

1 The application
successfully loads
when the application
icon is clicked.

The application opens
and loads one of it’s
activities (depending on
the authorisation state)

The application opened
and loaded it’s
MainActivity.

N/A

!39

try:
 # Execute the SQL command
 cursor.execute(sql)

 # Commit your changes in the database
 db.commit()
 except:
 # Rollback in case there is any error
 db.rollback()

 # disconnect from server
 db.close()

 if cursor.rowcount > 0:
 return 1;
 else:
 return -1

2 If application doesn’t
have authorised user
the MainActivity loads
when the application is
open.

The user opens the
application and the
MainActivity loads.

As expected the
MainActivity is shown
on the display.

N/A

3 The user is redirected
to the SigninActivity
when he clicks the
“Sign in” button from
the MainActivity.

When the “Sign In”
button is clicked the
SigninActivity shows
on the screen.

As expected the
SigninActivity loads.

N/A

4 When the user enters
his email and password
on the SigninActivity
and he clicks the “Sign
in” button he is
automatically
redirected to the
HomeActivity if his
login credentials are
correct.

When correct login
credentials are entered
in the Sign in screen the
user is redirected to the
HomeActivity.

As expected the user
authenticates and he is
redirected to the
HomeActivity.

N/A

5 When the user enters
wrong email or
password on the
SigninActivity and he
clicks the “Sign in”
button an appropriate
message for failed
authentication is
shown.

When wrong login
credentials are entered
in the Sign in screen a
message appears saying
that the login credential
were wrong.

As expected a message
appears containing the
text: “Authentication
failed, check your email
and password or sign up”

N/A

6 The user can
successfully navigate
between the different
fragments from the
bottom navigation.

When an icon from the
bottom navigation is
clicked the fragment
inside the
HomeActivity is
changed.

As expected the user is
able to navigate between
the fragments by clicking
the icons from the bottom
navigation menu.

N/A

7 When the user clicks
the logout button found
in the
UserProfileFragment he
is unauthenticated and
redirected to the
MainActivity.

The user is redirected to
the MainActivity.

As expected the logout
button triggers the
unauthentication method
and redirects the user to
the initial screen.

N/A

!40

8 When the user clicks
the “new ride” button
in the
newRideFragment the
PickUpLocationFragme
nt appears and the map
shows with the user
current location in it.

The Google map should
appear showing the user
current location.

As expected the
PickUpLocationFragmen
t loads and shows the
user current location on
the Map.

N/A

9 When the user searches
for an address by
entering the address in
the search field - the
new address appears
below the pin on the
map.

The new address shows
below the pin. The
address text of the new
point changes as well.

As expected the location
changes and the search
field now shows the
address of the searched
location

N/A

10 When the “Change”
button of the time of
travel is clicked a Time
Picker Dialog appears
on the screen allowing
the user to set a new
time.

The time picker dialog
appears on the screen.

As expected the time
picker dialog shows on
the screen.

N/A

11 When the user changes
the time from the time
picker dialog - the new
time is shown.

The change of time
works successfully
changing the time
displayed inside the
fragment once the time
picker dialog is closed.

The change of time
function works
successfully changing the
time displayed inside the
fragment.

N/A

12 When the user submits
the ride from the
TimeOfTravelFragment
the new ride appears in
database table.

The record should
appear in the table.

As expected the new ride
is stored into the
database.

N/A

!41

5.2. Test and evaluation of the API and the DB

The following tests were performed to ensure that the Application programming interface
and database work as expected:

No Description Expected result Actual Result Fix/
Action

1 Successful installation
of the needed
dependencies from the
requirements.txt file on
a new environment

A successful
installation of the
dependencies without
any errors or warnings.

The installation was
successful and the api.py
script run without any
dependency errors.

N/A

2 Send a POST request to
an unknown route on
the API server

404 Error - Not fount As expected the response
of the request is 404 -
Not found

N/A

3 Send empty POST
request to the
‘\ride\new’ route.

An error message that
some data is missing
from the POST request.

As expected an error
message is returned -
“{"message": "Data is
missing in the request.”}"

N/A

4 Send POST with some
values missing from the
required data to the
‘\ride\new’ route.

An error message that
some data is missing
from the POST request.

As expected an error
message is returned -
“{"message": "Data is
missing in the request.”}"

N/A

5 Send POST request
with all data required to
the ‘\ride\new’ route.

A message that the
request was
successfully stored in
the database should
appear.

As expected a message
for successful query
appears - “{"message":
“success"}"

N/A

6 Send POST request
with all data required to
the ‘\ride\new’ route
but turn off the db
server.

An error message that
the object was not
stored into the database
should appear.

As expected an error
message appears -
“{"message": "There was
an error inserting the
record."}"

N/A

7 Send a “ride booking”
from the application.

The record should
appear in the database.

As expected a record
appears in the table
storing the information
send from the
application.

N/A

!42

The results from the tests show that the records coming from the mobile application are
successfully stored in the database. If there is some error with the data or the database server,
appropriate message is returned from the API. This message ensures that the mobile
application will react appropriately in both cases: when the data is uploaded successfully and
when there was some error preventing the data from being uploaded.

5.3. Testing the location obfuscation feature

The following tests are performed to ensure that the privacy feature works as expected:

 

 

No Description Expected result Actual Result Fix/Action

1 Select addresses in
Cardiff and activate the
privacy. Check if the
obfuscated addresses
are within 0.5 km of the
original addresses.

The obfuscated
locations are below 0.5
km from the original
addresses.

As expected the
addresses are within
the specified range.

N/A

2 Send a ‘ride booking’
object to the API with
privacy feature
activated. Check if the
addresses saved in the
database are the
obfuscated ones.

When a ‘ride booking’
object is submitted with
obfuscated addresses,
these addresses are the
ones saved in the
database.

As expected the
obfuscated addresses
are saved inside the
database table.

N/A

3 Check if the original
addresses are returned
in the
TimeOftravelFragment
if the user unchecks the
privacy check button.

The textfields showing
the pick up and drop off
locations change to
show the original
locations selected by
the user.

As expected clicking
the checbutton for a
second time returns
the original
addresses.

N/A

!43

6. Conclusions

This project successfully addressed the privacy issue of the origin-destination location points.
These pairs of locations, very often used in ridesharing applications can lead to a potential
user identification when combined with another public datasets.

A ridesharing application prototype was developed during the project to demonstrate how the
location obfuscation can address this privacy issue and to show how the feature can be
embedded inside the application. Several relevant to this project location obfuscation
methods were discussed in the background section and a solution using the most suitable one
was shown.

The project showed that a company don’t need to invest a lot of time and resources for
addressing this privacy. The location obfuscation methods discussed in this project are well
researched and can provide very good anonymity if embedded in ridesharing application.  
 
The project also showed a key elements needed for the development of an android
application using location, google maps, authentication services and communication with
API.

7. Future Work
 

 The prototype developed in this project has very limited functionalities needed only to
address the specific location privacy issue discussed in the project. We are going to check two
ways in which the application and the project can be extended. The first idea for future work
involves the location obfuscation algorithm and more precisely how the algorithm can be
improved. The second idea is showing several functionalities that can be added to the
ridesharing prototype in order to extend the functionalities that it currently has. This can help
converting this project into more functional ridesharing application.  

!44

 

7.1. Location obfuscation feature improvements

 
 In this section we will address the location obfuscation algorithm since this was the
main focus of the project. The algorithm can be modified so that it works everywhere on
Earth by having very precise shift range from the initial locations. This can be achieved with
the Haversine formula base equation. Such equation will be able to calculate the distance
between two [latitude, longitude] pairs into great-circle distance between them. In this way
we can generate points which are always within some range in meters specified in the code.
Another way in which the algorithm can be extended is writing a module which will generate
several proposition addresses for each original location and a choice will be given to the user.
This will allow the user to pick an address which is known to him near his original address.
Further the algorithm can use random distribution different from the uniform one. For
example a different distribution can have bigger chances of getting the shifted location near
the shift range limit than getting the location near the original one.  

7.2. The ridesharing prototype application extensions

 The prototype application can be extended and turned into more functional
ridesharing application with several updates. I have already started to work on additional
feature which can show the user rides by taking the objects from the database. The
application side of this feature is done and we can see the actual Ride CardViews controlled
by the RecyclerView adapter. This cards can be populated with data from the database if the
API is extended to return these objects.  
 During the project I had considered three additional functionalities which can extend
the application even further:
 One of them is a ride matching algorithm which compares similar active ‘ride
bookings’ from the ride table and proposes the closest rides to match a ride created by the
user.
 Another functionality can be a chat between the users which will allow the users to
discuss further details about their travels once a match between them is created. This chat
functionality can be easily developed with the Firebase Realtime Database and the Firebase
Cloud Messaging since we already have adapted the Google Firebase platform in our project.  
 Another good idea for extension will be a payment system with QR codes ensuring
that the payment is only happening once when the two users are together.

!45

8. Reflection on Learning

Working on this project was clearly a challenge but this is what I was looking for when I was
picking the project topic. At the time when I started the work on the project I had no previous
experience with Android development. I wanted to focus on learning Android and during the
three months in which I had to work on the project i learned a lot about the platform and I
managed to prepare myself for eventual job involving Android mobile development. I also
learned a lot about location privacy and the different methods used to ensure it - one of which
location obfuscation.  
 
I spent time researching and evaluating ridesharing applications in order to find location
privacy issues and map these issues with ones found in studies.  
 
During the project I had to make choices about the outcome of the project having in mind the
limited time for work that we had. I also had to find the right balance between research,
learning and development. There was definitely several parts of the project which required
very serious research skills. These parts improved my abilities to read and analyse academic
text and also my abilities to extract key elements from very complex studies.  
 
The project definitely improved my project planning skills. Even during the initial plan I had
to design the complete architecture of the project in order to set up the aims and the scope of
the project. During the development I had to work with various technologies, frameworks and
languages and this definitely improved my programming knowledge. I also spend a lot of
time sketching and designing the user interface of the application and when I look now what
the final version of the application is I think I definitely gained some experience evaluating
different UI elements and what user experience they can create.  
 
The project also gave me a great experience with self discipline, time management and
planning. And after these three months of hard work i believe these three things go hand in
hand.  
 
Writing this report gave me a huge experience in evaluating my work and it’s results. I also
improved my writing skills and more precisely my ability to write and think under pressure.  

!46

9. References

(1) Shared Economy [Online]. Available: http://www.investopedia.com/terms/s/sharing-
economy.asp [Accessed: 25/04/2017] 

(2) 2017: The Year The Rideshare Industry Crushed The Taxi - Infographic [Online].
Available: https://rideshareapps.com/2015-rideshare-infographic/ [Accessed:
28/04/2017] 

(3) The Ridesharing Revolution: Economic Survey and Synthesis, Robert Hahn and Robert
Metcalfe, January 10, 2017 [Online]. Available: https://www.brookings.edu/wp-content/
uploads/2017/01/ridesharing-oup-1117-v6-brookings1.pdf [Accessed: 28/04/2017] 

(4) Ride-sharing: The rise of innovative transportation services, Emily Nicoll and Sally
Armstrong, April 12, 2016 [Online]. Available: https://www.marsdd.com/news-and-
insights/ride-sharing-the-rise-of-innovative-transportation-services/ [Accessed:
25/04/2017] 

(5) A Short Guide to Writing Your Final Year Project Report Or MSc Dissertation, Cardiff
university, February 2011 [Online], Available: https://www.cs.cf.ac.uk/PATS2/wiki/lib/
exe/fetch.php?media=project-report.pdf [Accessed: 20/04/2017] 

(6) The protection of user location privacy in mobile applications, Shazaib Ahmad, May
2016 [Online]. Available: https://www.cs.cf.ac.uk/PATS2/@archive_file?
c=&p=file&p=527&n=final&f=1-CM3203_C1312433.pdf [Accessed: 22/04/2017] 

(7) Occupancy rates of passenger vehicles, EEA [Online]. Available: https://
www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/
occupancy-rates-of-passenger-vehicles-1 [Accessed: 25/04/2017] 

(8) High Level Summary of Statistics Trend - Car Occupancy [Online]. Available: http://
www.gov.scot/Topics/Statistics/Browse/Transport-Travel/TrendCarOccupancy
[Accessed: 25/04/2017] 

!47

http://www.investopedia.com/terms/s/sharing-economy.asp
http://www.investopedia.com/terms/s/sharing-economy.asp
https://rideshareapps.com/2015-rideshare-infographic/
https://www.brookings.edu/wp-content/uploads/2017/01/ridesharing-oup-1117-v6-brookings1.pdf
https://www.brookings.edu/wp-content/uploads/2017/01/ridesharing-oup-1117-v6-brookings1.pdf
https://www.brookings.edu/wp-content/uploads/2017/01/ridesharing-oup-1117-v6-brookings1.pdf
https://www.marsdd.com/news-and-insights/ride-sharing-the-rise-of-innovative-transportation-services/
https://www.marsdd.com/news-and-insights/ride-sharing-the-rise-of-innovative-transportation-services/
https://www.marsdd.com/news-and-insights/ride-sharing-the-rise-of-innovative-transportation-services/
https://www.cs.cf.ac.uk/PATS2/wiki/lib/exe/fetch.php?media=project-report.pdf
https://www.cs.cf.ac.uk/PATS2/wiki/lib/exe/fetch.php?media=project-report.pdf
https://www.cs.cf.ac.uk/PATS2/@archive_file?c=&p=file&p=527&n=final&f=1-CM3203_C1312433.pdf
https://www.cs.cf.ac.uk/PATS2/@archive_file?c=&p=file&p=527&n=final&f=1-CM3203_C1312433.pdf
https://www.cs.cf.ac.uk/PATS2/@archive_file?c=&p=file&p=527&n=final&f=1-CM3203_C1312433.pdf
https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles-1
https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles-1
https://www.eea.europa.eu/data-and-maps/indicators/occupancy-rates-of-passenger-vehicles/occupancy-rates-of-passenger-vehicles-1
http://www.gov.scot/Topics/Statistics/Browse/Transport-Travel/TrendCarOccupancy
http://www.gov.scot/Topics/Statistics/Browse/Transport-Travel/TrendCarOccupancy
http://www.gov.scot/Topics/Statistics/Browse/Transport-Travel/TrendCarOccupancy

(9) On the Anonymity of Home/Work Location Pairs, Philippe Golle and Kurt Partridge
[Online]. Available: https://crypto.stanford.edu/~pgolle/papers/commute.pdf
[Accessed: 26/04/2017] 

(10) Exploring End User Preferences for Location Obfuscation, Location-Based Services, and
the Value of Location, A.J. Bernheim Brush, John Krumm and James Scott [Online].
Available: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/
ubicomp243-brush.pdf [Accessed: 28/04/2017] 

(11) Evaluation of Location Obfuscation Techniques forPrivacy in Location Based
Information Systems, Pedro Wightman, Winston Coronell, Daladier Jabba,Miguel Jimeno
[Online]. Available: http://www.academia.edu/889879/
Evaluation_of_Location_Obfuscation_Techniques_for_Privacy_in_Location_Based_Infor
mation_Systems [Accessed: 28/04/2017] 

(12) Overview of Google Play Services [Online]. Available: https://developers.google.com/
android/guides/overview [Accessed: 10/04/2017] 

(13) Requesting Permissions at Run Time [Online]. Available: https://
developer.android.com/training/permissions/requesting.html [Accessed: 10/05/2017] 

(14) Introduction to Android [Online]. Available: https://developer.android.com/guide/
index.html [Accessed: 10/04/2017] 

(15) Add Firebase to Your Android Project [Online]. Available: https://firebase.google.com/
docs/android/setup [Accessed: 10/04/2017] 

(16) Python MySQLdb vs mysql-connector query performance [Online]. Available: http://
charlesnagy.info/it/python/python-mysqldb-vs-mysql-connector-query-performance
[Accessed: 20/04/2017] 

(17) Python MySQL Database Access [Online]. Available: https://www.tutorialspoint.com/
python/python_database_access.htm [Accessed: 22/04/2017] 

(18) Chapter 3: An Analysis of Android App Permissions [Online]. Available: http://
www.pewinternet.org/2015/11/10/an-analysis-of-android-app-permissions/ [Accessed:
15/04/2017] 

!48

https://crypto.stanford.edu/~pgolle/papers/commute.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ubicomp243-brush.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ubicomp243-brush.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ubicomp243-brush.pdf
http://www.academia.edu/889879/Evaluation_of_Location_Obfuscation_Techniques_for_Privacy_in_Location_Based_Information_Systems
http://www.academia.edu/889879/Evaluation_of_Location_Obfuscation_Techniques_for_Privacy_in_Location_Based_Information_Systems
http://www.academia.edu/889879/Evaluation_of_Location_Obfuscation_Techniques_for_Privacy_in_Location_Based_Information_Systems
https://developers.google.com/android/guides/overview
https://developers.google.com/android/guides/overview
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
http://charlesnagy.info/it/python/python-mysqldb-vs-mysql-connector-query-performance
http://charlesnagy.info/it/python/python-mysqldb-vs-mysql-connector-query-performance
http://charlesnagy.info/it/python/python-mysqldb-vs-mysql-connector-query-performance
https://www.tutorialspoint.com/python/python_database_access.htm
https://www.tutorialspoint.com/python/python_database_access.htm
http://www.pewinternet.org/2015/11/10/an-analysis-of-android-app-permissions/
http://www.pewinternet.org/2015/11/10/an-analysis-of-android-app-permissions/
http://www.pewinternet.org/2015/11/10/an-analysis-of-android-app-permissions/

(19) Calculate distance, bearing and more between Latitude/Longitude points [Online].
Available: http://www.movable-type.co.uk/scripts/latlong.html [Accessed: 01/05/2017] 

(20) Haversine formula [Online]. Available: https://en.wikipedia.org/wiki/
Haversine_formula [Accessed: 01/05/2017]

(21) Welcome to Flask [Online]. Available: http://flask.pocoo.org/docs/0.12/ [Accessed:
10/04/2017] 

(22) MySQLdb User's Guide [Online]. Available: http://mysql-python.sourceforge.net/
MySQLdb.html [Accessed: 20/04/2017]

!49

http://www.movable-type.co.uk/scripts/latlong.html
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula
http://flask.pocoo.org/docs/0.12/
http://mysql-python.sourceforge.net/MySQLdb.html
http://mysql-python.sourceforge.net/MySQLdb.html

