
The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 1	

	

CM3203	–	One	Semester	Project	(40	Credits)	
May	2017	

	
	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	
	
	
	

	
	

	
	

Student:	Deborah	Khoo	(C1461872)	
Supervisor:	Professor	David	W	Walker	
Moderator:	Professor	Paul	L	Rosin	

	

	
	

Final	Report	
	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 2	

Table	of	Contents	

Acknowledgement	..	4	

Abstract	...	5	

1.	 Introduction	..	6	
1.1	 Blockchain	Technology	..	6	
1.2	 Research	Business	Impact	of	Blockchain	Technology	in	Trade	Finance	7	

2.	 Background	...	8	
2.1	 Trade	Credit	and	Factoring	..	8	
2.2	 Credit	and	Risk	Factors	..	8	
2.3	 Existing	System	..	9	
2.4	 Use	of	Blockchain	Technology	and	Smart	Contracts	Prototype	..	9	
2.5	 Aim	..	9	

3.	 Design	&	Specification	..	11	
3.1	 Hyperledger	Fabric	..	11	
3.2	 System	Architecture	..	11	
3.3	 Trade	Finance	System	...	13	
3.4	 Trade	Finance	System	Design	and	Specification	...	13	

3.4.1	 Home	Page	..	13	
3.4.2	 Home	Page	for	Business	Users	..	13	
3.4.2.1	 Add	Customer	...	14	
3.4.2.2	 Add	Invoice	...	15	
3.4.2.3	 Sales	Invoices	..	15	
3.4.3	 Home	Page	for	Customer	Users	..	16	
3.4.3.1	 Verify	Invoice	..	17	
3.4.3.2	 Pay	Invoice	..	17	
3.4.3.3	 Invoices	History	...	18	
3.4.4	 Home	Page	for	Bank	User	...	19	
3.4.4.1	 Finance	Business	...	19	
3.4.4.2	 View	All	Invoices	...	20	
3.4.5	 Invoice	Status	..	21	

4.	 Implementation	..	22	
4.1	 Setting	Up	Network	for	Development	...	22	
4.2	 Writing	Chaincode	...	22	

4.2.1	 Dependencies	..	23	
4.2.2	 Chaincode	Interface	..	23	
4.2.2.1	 Init	Function	..	23	
4.2.2.2	 Invoke	Function	...	24	
4.2.2.3	 Query	Function	...	24	
4.2.2.4	 Main	Function	...	24	
4.2.2.5	 v0.6	to	v1.0	Hyperledger	Fabric	..	24	

4.3	 HFC	SDK	...	25	
4.4	 NodeJS	Application	..	26	

5.	 Results	and	Evaluation	...	28	

6.	 Future	Work	..	32	

7.	 Conclusion	..	32	

8.	 Reflection	on	Learning	..	34	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 3	

9.	 Appendix	...	36	
9.1	 Code	..	36	

9.1.1	 Docker-Compose.yaml	..	36	
9.1.2	 Chaincode	Query()	...	38	
9.1.3	 Chaincode	Init()	...	39	
9.1.4	 Chaincode	Invoke()	..	40	
9.1.5	 Main()	...	40	
9.1.6	 SDK	Init	..	40	
9.1.7	 SDK	Query	...	42	
9.1.8	 SDK	Invoke	...	43	

9.2	 Feedback	from	Equiniti	...	46	

Glossary	...	47	

Table	of	Abbreviations	..	47	

Works	Cited	..	48	
	
	
Figure	1.1	Blockchain.	A	blockchain	is	a	linked	list	that	is	built	from	hash	pointers	6	
Figure	1.2	Tamper-evident	log.	If	an	adversary	modifies	data	anywhere	in	the	blockchain,	it	

will	result	in	the	hash	pointer	in	the	following	block	being	incorrect	7	
Figure	3.1	Web	Application	Interacting	with	Hyperledger	Fabric		[14]	11	
Figure	3.2	Hyperledger	Network	System	Architecture	..	12	
Figure	5.1	State	of	the	blockchain	when	first	initialised.	Each	doc	represents	a	block	in	the	

blockchain	..	28	
Figure	5.2	Blocks	in	the	blockchain	represented	by	CouchDB	...	28	
Figure	5.3	Version	update	of	transactions	in	blockchain	...	29	
Figure	5.4	Message	returned	by	chaincode	when	the	same	customer	is	added	twice	29	
Figure	5.5	Message	returned	by	chaincode	when	adding	the	same	invoice	twice	30	
	
	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 4	

Acknowledgement	
	
This	 project	 may	 not	 have	 been	 possible	 without	 the	 kind	 support	 and	 help	 of	 many	
individuals	and	Equiniti.		I	would	like	to	extend	my	sincere	gratitude	to	them.	
	
Firstly,	I	would	like	to	express	my	deepest	gratitude	to	my	personal	tutor	and	supervisor	–	
Professor	David	Walker,	for	providing	guidance	and	valuable	advice	throughout	the	year	and	
for	this	project.	
	
Secondly,	 I	would	 like	to	express	my	gratitude	to	Equiniti,	 for	 their	guidance	and	constant	
supervision	as	well	as	for	providing	necessary	information	to	complete	the	project.	
	
Last	and	not	least,	I	would	like	to	express	my	special	gratitude	towards	my	friends	and	family,	
for	providing	the	best	kind	of	support,	especially	my	dad	and	sister	Tabitha.	
	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 5	

Abstract	
	
Since	 the	 introduction	 of	 blockchain	 technology	 in	 Bitcoin,	 the	 application	 of	 distributed	
ledger	has	been	a	topic	of	discussion	for	commercialisation.	Organisations	are	interested	in	
demonstrating	 how	 blockchain	 technology	 could	 potentially	 improve	 existing	 systems	
without	the	need	of	an	intermediary	or	centralised	party.	
	
This	paper	will	 discuss	 the	basis	of	blockchains	and	distributed	 ledger.	 The	objective	 is	 to	
provide	 a	 solution	 to	 the	 problem	 for	 the	 existing	 system	 in	 trade	 finance,	 and	 more	
specifically,	in	credit	factoring.	The	original	use	case	for	the	proof	of	concept	in	trade	finance	
was	by	Equiniti,	Risk	Factor	Solutions.	
	
The	use	of	smart	contracts	in	blockchain	technology	can	automatically	enforce	protocols	on	
transactions	 to	 the	 distributed	 ledger	 without	 the	 need	 of	 an	 intermediary.	 The	
implementation	of	the	trade	finance	system	uses	Hyperledger	Fabric,	an	open	source	private	
blockchain	by	IBM.	
	
The	results	of	the	prototype	show	how	blockchain	technology	in	smart	contracts	can	improve	
the	existing	 system	 in	 trade	 finance	 to	prevent	 fraud	and	error.	The	 trade	 finance	system	
demonstrates	 the	 immutable	 and	 traceability	 of	 transactions	 in	 a	 distributed	 ledger.	
Additionally,	this	research	examines	the	use	of	how	blockchain	technology	could	potentially	
change	a	business	model	or	process	with	a	distributed	commerce.	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 6	

1. Introduction	
1.1 Blockchain	Technology	
Blockchain	 technology	 has	 gained	 considerable	 interest	 since	 the	 introduction	 of	 the	
decentralised	cryptocurrency,	Bitcoin	 in	2009	[1].	Aside	from	being	a	payment	mechanism	
"native	 to	 the	 internet",	 the	 underlying	 blockchain	 technology	 solves	 the	 problem	 of	 the	
transfer	of	value	between	users,	without	relying	on	a	third	party.	The	basis	of	a	blockchain	is	
a	shared	ledger,	secured	and	maintained	between	a	set	of	peer-to-peer	network	operators	
(or	miners)	running	a	consensus	protocol	[2].		Through	a	consensus	network,	the	ledger	may	
guarantee	 more	 consistency	 and	 maintain	 a	 continuous	 growing	 list	 of	 transactions.	
Blockchain	 technology	 is	 essentially	 a	 distributed	 database,	 touted	 as	 a	way	 to	 store	 and	
transact	everything	from	property	records	to	certificates	for	arts	and	jewellery	[3].	
	
Transactions	recorded	in	a	blockchain	exist	in	a	state	of	both	anonymity	and	traceability.	Real	
identities	are	not	required	to	use	the	system	and	transactions	on	the	blockchain	are	on	an	
immutable	open	 ledger	 [3].	 Transactions	 in	 blockchains	 are	 a	 link-list	 of	 blocks	built	 from	
hash-pointers	to	provide	a	tamper-evident	log	as	shown	in	Figure	1.1.	These	blocks	create	an	
open	 ledger	 of	 transactions	 that	 are	 shared	 and	 transparent	 to	 all	 participants	 in	 the	
blockchain	 network.	 A	 hash-pointer	 is	 a	 pointer	 to	 where	 data	 is	 stored	 together	 with	 a	
cryptographic	hash	of	the	value	[2].	This	design	makes	it	resistant	to	alteration	of	transactions	
retroactively.	
	

	
Figure	1.1	Blockchain.	A	blockchain	is	a	linked	list	that	is	built	from	hash	pointers	

	
By	comparing	the	hash-pointer	of	the	next	block,	changes	made	to	the	data	of	a	block	can	be	
detected.	If	an	adversary	modifies	a	data	anywhere	in	the	blockchain,	it	will	result	in	the	hash-
pointer	in	the	following	block	being	incorrect	(refer	to	Figure	1.2).	It	would	be	necessary	to	
change	all	the	hash-pointers	in	the	subsequent	blocks	to	cover	up	tampering.	Storing	the	head	
of	the	list	to	make	sure	it	is	tamper-free	ensures	the	list	is	tamper-evident	[2].	
	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 7	

	
Figure	1.2	Tamper-evident	log.	If	an	adversary	modifies	data	anywhere	in	the	blockchain,	it	will	result	in	the	hash	pointer	in	
the	following	block	being	incorrect	

A	prominent	use	of	blockchains	is	to	enable	smart	contracts.	A	smart	contract	is	a	program	
that	runs	on	a	blockchain	and	is	automatically	executed	by	the	consensus	protocol.	A	contract	
can	encode	any	set	of	rules,	such	as	executing	payments	when	payment	is	due	[4].	
	
The	 aim	 of	 this	 project	 is	 to	 implement	 a	 blockchain	 prototype	 in	 smart	 contracts	 and	
understand	its	business	impact.	A	wide	range	of	applications	can	implement	smart	contracts.	
Keeping	files	synced	with	a	traditional	database	can	be	a	highly	complex	problem,	particularly	
when	many	users	and	systems	are	simultaneously	performing	updates.	By	using	blockchain	
technology,	the	means	of	managing	files	could	be	simplified	by	providing	a	consensus	across	
a	peer-to-peer	network	and	keeping	files	in	sync	in	real	time.	Physical	asset	management	is	
one	of	 the	most	prevalent	uses	of	blockchain	 to	date,	with	several	 industries	 (namely	 the	
diamond	industry)	already	using	it	[5].	
	
If	properly	utilised,	aside	from	its	immutable	records	of	transactions	and	consensus	protocol,	
smart	contract	 technology	could	enable	decentralised	commerce.	The	blockchain	network	
could	potentially	create	various	sorts	of	markets	without	intermediaries	controlling	them	[6].	
	
1.2 Research	Business	Impact	of	Blockchain	Technology	in	Trade	Finance	
Equiniti	 is	 a	 financial	 service	 company	 that	 has	 an	 interest	 in	 commercially	 exploiting	
blockchain	technology.	Trade	finance	was	a	use	case	chosen	from	a	list	of	proposals	given	by	
Equiniti.	
	
With	80%	to	90%	of	world	trade	relying	on	trade	finance,	mostly	of	a	short-term	nature	[7],	a	
system	that	 involves	paper	trails	 for	 transactions	 leave	businesses	vulnerable	to	error	and	
fraud.	
	
If	smart	contracts	are	successfully	carried	out,	it	could	provide	transparency	between	parties	
involved	 in	 trade	 finance	 as	 well	 as	 real-time	 verification	 of	 transactions.	 The	 use	 of	
blockchain	technology	will	also	potentially	reduce	cost	as	records	of	transactions	will	not	need	
to	be	maintained	manually.	To	fully	understand	the	process	workflow	and	problems	of	the	
existing	 system,	meetings	 with	 Equiniti	 were	 arranged,	 throughout	 the	 project.	 Doing	 so	
allowed	flexibility	and	space	for	modification	during	the	process	of	implementing	the	smart	
contract	prototype.	In	completing	the	project,	the	design	specification	of	the	prototype	was	
sent	and	validated	by	Equiniti.	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 8	

2. Background	
When	 putting	 blockchain	 technology	 into	 practice,	 it	 is	 important	 to	 understand	 the	
difference	 between	 public	 and	 private	 blockchains.	 Consensus	 in	 a	 blockchain	 network	 is	
carried	out	by	nodes	in	the	network	confirming	the	record	of	previously	verified	transactions,	
and	by	which	verifies	new	transactions.	In	a	public	blockchain,	such	as	bitcoin,	anyone	is	able	
to	 read	 or	 write	 transactions,	 and	 no	 user	 is	 implicitly	 trusted	 to	 verify	 transactions.	
Participants	verify	transactions	by	committing	software	and	hardware	resources	to	solving	
problems.	The	user	who	reaches	the	solution	first	is	rewarded	[8].		
	
In	private	blockchains,	operators	have	control	over	who	can	read	the	state	of	the	ledger,	who	
can	add	transactions,	and	who	can	verify	transactions.	Consensus	in	private	blockchains	are	
achieved	by	communication	between	nodes.	Each	node	maintains	a	copy	of	the	ledger	and	
informs	 the	other	nodes	of	 the	new	 information.	 The	applications	 for	private	blockchains	
allow	multiple	 parties	 who	 wish	 to	 participate	 simultaneously	 but	 do	 not	 fully	 trust	 one	
another	[8].	
	
2.1 Trade	Credit	and	Factoring	
In	 trade	 finance,	 a	 company	may	 issue	 invoices	 to	 customers	 on	 credit	 terms.	 For	many	
businesses,	trade	credit	is	an	essential	tool	for	financial	growth	as	it	attracts	more	customers	
through	its	credit	offer	of	‘buy	now,	pay	later’	[9].	A	business	may	trade	its	invoice	with	a	bank	
or	financial	institution	for	quick	cash	to	facilitate	other	transactions;	this	is	known	as	credit	
factoring.	The	factor,	a	bank	or	financial	institution,	is	the	funding	source	that	agrees	to	pay	
the	business	the	value	of	the	invoice	less	a	discount	for	commission	and	fees.	Factoring	allows	
a	business	to	receive	immediate	capital	based	on	the	future	income	attributed	to	a	particular	
amount	due	on	an	account	receivable	or	business	invoice	[10].	The	factor	advances	most	of	
the	invoiced	amount	to	the	company	immediately	as	well	as	the	balance	upon	receipt	of	funds	
from	the	invoiced	party	[10].		
	
2.2 Credit	and	Risk	Factors	
There	 are	 a	 few	 credit	 and	 risk	 factors	 that	 need	 to	 be	 taken	 into	 consideration	when	 a	
factoring	company	lends	money	to	a	business	through	credit	factoring.	In	factoring,	instead	
of	 lending	against	a	 tangible	asset,	an	order	book	 is	given.	The	 risk	associated	with	credit	
factoring	scales	as	the	business	scales.	The	interest	rate	is	dependent	on	the	risks	associated	
with	the	trading	as	well	as	the	trustworthiness	and	reliability	of	the	customer	involved	in	the	
business	transaction.	On	condition	that	there	are	no	unnecessary	complications	in	the	order	
and	that	the	quality	of	the	goods	is	satisfactory,	the	business	would	be	able	to	obtain	funding.	
	
A	risk	that	factoring	companies	may	face	is	receiving	fraudulent	data	from	businesses	that	are	
trying	to	obtain	funds.	Businesses	could	be	producing	invoices	without	distributing	goods.	As	
such,	 unless	 a	 careful	 follow-up	 is	 carried	 out,	 the	 factoring	 company	 may	 not	 receive	
accurate	 information	 regarding	 the	 transactions.	 An	 analysis	 of	 the	 data	 is,	 therefore,	
necessary	to	look	for	patterns	indicating	that	a	business	is	behaving	fraudulently.	Based	on	
such	analysis,	the	factoring	company	can	limit	any	risk	involved	by	advancing	only	a	certain	
amount	of	the	invoiced	amount	to	the	business.	This,	however,	does	not	eliminate	all	risks	
since	the	customer	may	never	make	payment	[11].	
	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 9	

2.3 Existing	System	
The	existing	system	involves	paper	trails	and	emails	moving	between	different	parties	in	trade	
finance,	that	 is	 the	business,	customer	and	factoring	company.	 It	begins	when	a	customer	
raises	an	order.	The	business	would	then	send	a	generated	invoice	and	dispatch	the	goods	to	
the	customer.	Besides	that,	the	business	will	have	to	manually	notify	the	factoring	company,	
the	invoices	for	credit	factoring,	for	the	factor	to	release	the	fund.	For	example,	a	business	
may	issue	1000	invoices	to	its	customer	and	send	a	copy	of	the	invoices	as	well	as	the	sum	of	
all	the	invoices	to	the	factoring	company.	The	factoring	company	will	then	release	the	funds	
upon	receiving	the	invoices	and	often	within	24-48	hours.	As	notifications	usually	occur	daily	
and	are	done	in	bulk	figure,	many	of	the	invoices	would	be	left	unverified.	Releasing	the	funds	
as	 soon	 as	 possible	 is	 nevertheless	 necessary.	 Otherwise,	 the	 business	 might	 go	 out	 of	
business	if	it	does	not	receive	the	necessary	money	for	production	and	sales	at	the	right	time.	
	
2.4 Use	of	Blockchain	Technology	and	Smart	Contracts	Prototype	
A	 blockchain	 could	 allow	 for	 real-time	 settlement	 between	 the	 business,	 customer,	 and	
factoring	company.	When	a	customer	raises	a	purchase	order,	the	business	despatches	the	
goods,	and	an	invoice	will	be	issued,	just	like	in	the	existing	system.	The	improvement	is	that	
the	 invoice	 transaction	 is	 added	 to	 the	 blockchain	 and	 can	 be	 tracked	 by	 all	 parties	
immediately.	This	real-time	settlement	can	therefore	help	to	reduce	the	risk	of	fraud	data.	As	
and	when	the	business	has	created	the	invoice	and	sent	it	to	the	customer,	the	customer	can	
both	receive	and	verify	the	invoice	in	the	blockchain.	In	doing	so,	the	factoring	company	that	
is	funding	the	working	capital	of	the	business	and	acting	as	a	third	party	will	receive	visibility	
of	the	transaction	and	verification.	
	
In	the	existing	system,	when	a	business	produces	an	invoice,	the	factoring	company	may	have	
a	difficult	time	determining	if	the	invoice	is	part	of	a	real	transaction	or	if	it	is	double	financed.	
Through	 the	 system,	 as	 and	 when	 the	 customer	 validates	 that	 the	 product	 or	 service	 is	
received,	 the	 factoring	 company	 may	 obtain	 immediate	 recognition	 that	 the	 invoice	 is	
genuine.	Furthermore,	if	all	factoring	companies	use	the	blockchain,	the	factoring	company	
will	 be	 able	 to	 check	 that	 an	 invoice	 is	 not	 double	 financed	 by	 another	 lender.	Once	 the	
customer	validates	an	invoice,	the	factoring	company	may	approve	and	release	the	funds	to	
the	business	automatically.	
	
When	a	payment	is	due,	the	customer	will	be	required	to	make	the	payment	to	the	factoring	
company.	When	payment	has	been	made,	the	customer	may	update	the	transaction	to	notify	
the	business	and	factoring	company.	While	the	factoring	company	does	not	put	in	any	data	
into	the	blockchain,	the	factoring	company	will	be	able	to	monitor	the	transactions	through	
the	blockchain	asset	and	obtain	affirmation.	
	
2.5 Aim	
The	aim	of	the	project	is	to	develop	a	system	prototype	that	uses	blockchain	technology	in	
smart	contracts	to	improve	the	existing	system	of	credit	factoring	problem	in	a	real	business.	

	
The	 prototype	 will	 demonstrate	 the	 concept	 of	 how	 blockchain	 technology	 and	 smart	
contracts	can	improve	the	existing	system	in	the	business	and	reduce	error/fraud.	The	main	
functionalities	of	the	prototype	include	adding	and	verifying	transactions	to	the	blockchain;	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 10	

viewing	 and	 tracking	 real-time	 verification	 on	 transactions;	 and	 providing	 transparency	
between	businesses.		

	
	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 11	

3. Design	&	Specification	
The	goal	for	this	project’s	prototype	is	to	provide	a	solution	to	the	problem	of	fraud	and	error	
that	exists	in	the	current	system	for	credit	factoring.	The	prototype	system	will	allow	banks	
and	finance	institution	to	have	real-time	tracking	of	businesses,	customers	and	invoices	using	
blockchain	 technology	 while	 maintaining	 and	 automating	 protocols	 on	 transactions	 with	
smart	contracts.	
	
A	blockchain	network	consists	of	different	nodes,	specifically	client	and	peer	nodes.	The	client	
node	is	a	system	that	allows	different	functionalities	to	be	available	to	end	users.	End	users	
will	be	able	to	interact	with	the	peer	nodes	using	the	system	and	add	transactions.	A	state,	
which	is	a	sequence	record	of	all	transactions	made	in	the	open	ledger,	is	kept	by	each	peer	
node.	When	updates	are	made	 to	 the	 state	using	 the	client	node,	 the	 smart	 contract	will	
enforce	predefined	rules	on	the	transactions.	
	
3.1 Hyperledger	Fabric	
Existing	blockchain	technologies	that	are	popular	include	Bitcoin,	Ethereum,	and	Hyperledger	
Fabric.	Open	source	blockchains,	such	as	Bitcoin	and	Ethereum,	focus	on	public	chains.	With	
public	chains,	implementing	cryptocurrency	is	necessary	to	fund	mining	and	participation	in	
consensus	 [12].	 Hyperledger	 creates	 a	 private	 network	 that	 allows	 users	 to	 define	
membership	role	and	access	rights	to	users	within	the	business	network	[13].	
	
In	Hyperledger,	smart	contracts	are	called	chaincode	and	this	is	used	to	enforce	protocols	on	
transactions.	A	web	application	for	the	trade	finance	system	written	in	NodeJS	is	then	able	to	
interact	with	the	blockchain	network	using	the	Hyperledger	Fabric	Client	(HFC)	SDK.		
	
3.2 System	Architecture	
Blockchain	technology	is	a	distributed	system	consisting	of	many	nodes	communicating	with	
each	 other.	 There	 can	 be	 multiple	 types	 of	 nodes	 that	 run	 on	 the	 same	 physical	 server	
depending	on	how	the	nodes	are	grouped	into	trust	domains	and	associated	to	the	logical	
entities	that	control	them.	
	
	

	
Figure	3.1	Web	Application	Interacting	with	Hyperledger	Fabric		[14]	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 12	

The	figure	above	represents	the	interaction	in	Hyperledger	v0.6,	before	a	much	more	stable	
version,	Alpha	v1.0,	was	released.	The	standalone	app	is	the	client	node	that	represents	the	
entity	that	acts	on	behalf	of	an	end	user.	The	client	node	is	a	NodeJS	web	application	and	
which	 uses	 the	 HFC	 SDK	 to	 enrol	 and	 register	 users	 using	 membership	 services.	 The	
membership	services	will	allow	registered	users	to	connect	to	the	Hyperledger	network	and	
invoke	 transactions	 to	peer	nodes.	 The	membership	 services	 can	also	 issuance	enrolment	
(ECerts)	and	transaction	(TCerts)	certificates.	This	is	important	as	it	provides	both	anonymity	
and	non-repudiation	when	transacting	on	a	Hyperledger	Fabric	blockchain.	
	
In	Hyperledger	v1.0,	 there	 is	 the	additional	orderer	node.	The	orderers	 form	the	ordering	
service,	a	service	that	provides	consensus.	The	client	node	communicates	with	both	the	peers	
and	 ordering	 service.	 The	 peer	 node	 commits	 transactions	 from	 the	 ordering	 service	 and	
maintains	 the	 state	 and	 a	 copy	 of	 the	 ledger.	 The	 ordering	 service	 provides	 a	 shared	
communication	 channel	 to	 clients	 and	 peers	 and	 offers	 a	 broadcast	 service	 for	messages	
containing	transactions	[15].	
	

	
Figure	3.2	Hyperledger	Network	System	Architecture	

In	the	diagram	above,	each	peer	holds	a	copy	of	the	state	and	ledger	data	after	the	chaincode	
“mycc”	is	instantiated.	The	chaincode	is	the	central	element	as	transactions	are	operations	
invoked	 on	 the	 chaincode.	 Transactions	 have	 to	 be	 “endorsed”,	 and	 only	 endorsed	
transactions	may	be	committed	and	have	an	effect	on	the	state.		The	ledger’s	state	data	are	
represented	as	key	values.	In	addition,	Peer0	in	Org1	uses	CouchDB	as	the	state	database.	
CouchDB	allows	the	same	chaincode	functions;	however,	there	is	the	added	ability	to	perform	
rich	and	complex	queries	against	the	state	database	[16].	
	
The	client	is	a	NodeJS	web	application	which	uses	the	HFC	SDK	to	connect	to	the	Orderer,	CA	
and	 Peer0.	 In	 v1.0	 the	membership	 service	 is	 known	 as	 CA,	 which	 stands	 for	 Certificate	
Authority.	The	CA	registers	identities	or	connects	to	the	LDAP	as	user	registers.		
	
Org1	represents	the	peer	and	CA	that	are	associated	with	it	and	is	connected	to	the	channel	
“mych”	 that	 is	 created	 by	 the	 orderer.	 Clients	 connected	 to	 the	 channel	 may	 broadcast	
messages	on	the	channel.	The	broadcast	messages	are	delivered	to	all	peers	connected,	in	
this	case,	only	Peer0.	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 13	

3.3 Trade	Finance	System	
The	prototype	of	the	trade	finance	system	will	be	developed	using	NodeJS	[17].	The	system	
will	support	different	user	roles	such	as	a	bank,	business	and	customer	users.	Not	all	functions,	
however,	will	be	made	available	for	every	user.	
	
A	bank	user	will	be	able	to	register	and	enrol	business	users.	The	process	of	the	prototype	
would	consider	that	the	bank	and	business	users	have	negotiated	the	terms	of	the	advance	
on	payments	and	fees	of	the	factoring	facility	on	invoices,	as	would	normally	happen	with	the	
existing	system.	
	
Business	 users	 are	 able	 to	 add	 customer	 users	 as	 well	 as	 an	 invoice	 transaction	 to	 the	
blockchain	for	credit	factoring	in	the	system.	When	adding	an	invoice,	the	business	will	be	
able	to	select	the	customer	receiving	the	invoice.	The	system	will	be	able	to	perform	checks	
using	smart	contracts	to	ensure	that	the	invoice	has	not	been	added	before	so	that	there	are	
no	duplicate	copies.	At	the	same	time,	the	customer	will	receive	a	digital	copy	and	will	able	
to	make	immediate	verification	of	the	invoices.	The	customers	will	have	a	list	of	invoices	that	
need	verification	and	a	history	record	of	received	invoices.	
	
Since	customers	may	receive	invoices	and	make	verification	through	the	system,	it	eliminates	
the	need	for	banks	to	approach	and	contact	customers	to	ensure	that	invoices	are	valid	and	
to	 confirm	 payments.	 The	 bank	 user	 may	 also	 approve	 invoices	 for	 the	 financing	 of	 the	
verified	invoices.	During	the	lifecycle	of	an	invoice,	as	the	invoice	passes	between	users,	the	
bank	user	will	have	a	real-time	tracking	and	history	record	of	both	paid	and	unpaid	invoices	
by	customers.	
	
The	status	of	an	invoice	will	differ	at	different	times	during	its	lifecycle	as	it	is	passed	between	
users	and	is	updated.	At	the	start,	when	an	invoice	is	added	to	the	system,	its	status	will	be	
set	as	“Pending”.	While	waiting	for	the	customer,	the	status	will	be	updated	to	“Verify”,	then	
to	be	“Approved”	by	the	bank,	before	being	confirmed	“Paid”	by	the	customer.	
	
The	full	design	specification	that	was	sent	to	Equiniti,	to	make	sure	the	functionalities	of	the	
system	fit	the	use	case,	is	provided	in	section	3.4.	
	
3.4 Trade	Finance	System	Design	and	Specification	
3.4.1 Home	Page	
When	users	log	into	the	system,	the	“Home	Page”	will	be	the	first	page	that	will	be	displayed.	
The	name	of	the	currently	logged	in	user	will	be	shown	up	the	top	on	all	pages	of	the	system.	
Depending	on	the	user	roles,	different	navigation	buttons	will	be	displayed.		

	
3.4.2 Home	Page	for	Business	Users	
Business	users	will	be	able	to	navigate	to	the	“Add	Customer”,	“Add	Invoice”	and	“Customer	
Invoices”	page	from	the	“Home	Page”.	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 14	

Wireframe	

	
3.4.2.1 Add	Customer	
When	business	users	navigate	to	the	“Add	Customer”	page,	business	users	will	be	able	to	
view	a	list	of	customers	that	the	business	may	send	invoices	to.	
Wireframe	

	
Behaviour	
The	following	behaviour	will	be	observed:	

• A	table	of	existing	list	of	customers	will	be	displayed	at	the	side.	
• Business	users	may	search	for	a	customer	by	typing	in	the	customer’s	name.	
• The	results	of	the	customer’s	name	and	details	of	the	company	will	be	displayed	below	

in	a	table.	
• An	“Add	Customer”	button	will	be	displayed	beside	the	results.	
• When	 “Add	 Customer”	 is	 selected,	 the	 customer	 will	 be	 added	 to	 the	 business’	

customers	list.	
	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 15	

3.4.2.2 Add	Invoice	
When	business	users	navigate	to	the	“Add	Invoice”	page,	business	users	will	be	able	to	add	
a	new	invoice	transaction	to	the	blockchain	for	credit	factoring.	
Wireframe	

	
	

Behaviour	
The	following	behaviour	will	be	observed:	

• Business	users	will	be	able	 to	send	an	 invoice	 to	a	customer	by	selecting	 from	the	
dropdown	list.	

• The	display	will	allow	users	to	enter	the	details	to	create	an	invoice	transaction.	
• All	fields	are	mandatory	to	make	a	valid	transaction.	

o A	copy	of	the	pdf	version	of	the	invoice	generated	from	the	user’s	accounting	
software	should	be	included.	

o 	Details	entered	should	match	the	amount	on	the	pdf	copy.		
• Clicking	on	the	“Back”	button	will	navigate	user	back	to	the	Home	page.	
• Clicking	the	“Send	Invoice”	button	will	send	a	copy	of	the	invoice	transaction	to	the	

intended	recipient.	
• When	an	invoice	has	been	added	successfully,	the	timestamp	of	the	invoice	is	created	

and	it	will	navigate	into	the	“Sales	Invoices”	page	(See	section	3.4.2.3).	
	

3.4.2.3 Sales	Invoices	
When	business	users	navigate	to	the	“Sales	Invoice”	page,	a	history	record	that	the	business	
user	had	previously	added	will	be	displayed.		

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 16	

Wireframe	

	
Behaviour	
The	following	behaviour	will	be	observed:	

• A	table	displaying	a	record	of	all	invoices	in	the	order	that	invoices	were	added.	
• A	record	that	shows	the	name	of	the	customers	that	received	the	invoice,	details	of	

the	invoice	and	the	status	of	the	invoice	(See	section	3.4.5).	
	
3.4.3 Home	Page	for	Customer	Users	
Customer	users	may	navigate	to	the	“Verify	Invoice”,	“Pay	Invoice”	and	“View	All	Invoices”	
page	from	the	“Home	Page”.	
Wireframe	

	
	
	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 17	

Behaviour	
The	following	behaviour	will	be	observed:	

• The	number	of	pending	invoices	waiting	for	verification	will	be	displayed	next	to	the	
“Verify	Invoice”	navigation	button.	

• The	number	of	invoices	with	due	payment	will	be	displayed	next	to	the	“Pay	Invoice”	
navigation	button.	

• For	“Invoice	Status”	see	section	3.4.5.	
	
3.4.3.1 Verify	Invoice	
When	customer	users	navigate	to	the	“Verify	Invoice”	page,	invoices	that	are	waiting	for	the	
user	to	verify	will	be	displayed.	
Wireframe	

	
Behaviour	
The	following	behaviour	will	be	observed:	

• A	table	record	of	invoices	received	and	waiting	for	verification.	
• A	record	with	the	name	of	business	that	sent	the	invoice,	details	of	the	invoice	and	a	

“Verify”	button	to	verify	the	invoice.	
• When	the	“Verify”	button	is	selected,	the	invoice	status	will	be	updated	from	“Pending”	

to	“Awaiting”.	
• For	“Invoice	Status”	see	section	3.4.5.	

	
3.4.3.2 Pay	Invoice	
When	customer	users	navigate	to	the	“Pay	Invoice”	page”,	the	invoices	that	are	waiting	for	
the	user	to	confirm	payment	will	be	displayed.	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 18	

Wireframe	

	
Behaviour	
The	following	behaviour	will	be	observed:	

• A	table	record	of	invoices	received	and	waiting	for	payment.	
• A	record	with	the	name	of	the	business	that	sent	the	invoice,	details	of	the	invoice	

and	a	“Pay”	button	to	confirm	that	the	payment	for	the	invoice	has	been	made.	
• When	the	“Pay”	button	is	selected,	the	invoice	status	will	be	updated	from	“Approved”	

to	“Paid”.	
• For	“Invoice	Status”	see	section	3.4.5.	

	
3.4.3.3 Invoices	History	
When	customer	users	navigate	to	the	“Invoices	History”	page,	a	history	of	invoices	that	the	
user	has	received	will	be	displayed.	
Wireframe	

	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 19	

Behaviour	
The	following	behaviour	will	be	observed:	

• A	table	record	of	invoices	that	have	been	received	and	paid.	
• A	record	that	displays	the	name	of	business	that	sent	the	invoice	and	details	of	the	

invoice.	
	
3.4.4 Home	Page	for	Bank	User	
The	bank	user	will	be	able	to	navigate	to	the	“Finance	Business”	and	“View	All	Invoices”	page	
from	the	“Home	Page”.	
Wireframe	

	
Behaviour	
The	following	behaviour	will	be	observed:	

• The	number	of	verified	invoices	waiting	for	credit	factoring	approval	will	be	displayed	
next	to	the	“Finance	Business”	navigation	button.	

• For	“Invoice	Status”	see	section	3.4.5.	
	
3.4.4.1 Finance	Business	
The	bank	user	will	have	a	“Finance	Business”	page.	The	“Finance	Business”	will	display	a	list	
of	invoices	by	businesses	waiting	for	credit	factoring	approval.	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 20	

Wireframe	

	
Behaviour	
The	following	behaviour	will	be	observed:	

• A	table	record	of	invoices	that	have	been	verified	and	waiting	for	approval	by	the	bank	
for	credit	factoring.	

• A	record	with	the	name	of	the	business	that	sent	the	invoice,	name	of	customer	that	
the	invoice	was	sent	to,	details	of	the	invoice	and	a	“Credit”	button.	

• When	the	“Credit”	button	is	selected,	the	invoice	status	will	be	updated	from	“Verified”	
to	“Approved”.	

	
3.4.4.2 View	All	Invoices	
The	bank	user	will	have	a	“View	All	Invoices”	page	that	will	display	a	list	of	invoices	that	the	
bank	has	approved.	
Wireframe	

	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 21	

Behaviour	
The	following	behaviour	will	be	observed:	

• A	table	with	a	record	of	all	approved	and	paid	invoices.	
• Users	can	search	for	a	business	based	on	the	business	name.		

o A	possible	functionality	is	to	include	having	an	“ageing”/ages	of	invoice,	that	is,	
the	days	that	an	invoice	has	been	overdue.	

	
3.4.5 Invoice	Status	
An	invoice	transaction	will	undergo	several	changes	of	statuses	through	its	lifecycle:	

• Pending	–	An	invoice	has	been	added	and	sent	but	is	not	yet	verified	by	the	intended	
recipient.	

• Verified/Awaiting	 –	 The	 customer	 has	 received	 their	 goods	 and	 verified	 that	 the	
invoice	is	genuine.	Verified	invoices	will	be	displayed	to	the	Bank	user	as	“Awaiting”	
approval.	

• Approved	–	Invoice	that	the	bank	has	approved	for	credit	factoring.	
• Paid	–	The	customer	has	made	payment	for	the	invoice.	

	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 22	

4. Implementation	
Hyperledger	 Fabric	 is	 an	open-source,	modular,	multi-channel	 transaction	network	 that	 is	
built	and	maintained	by	the	Hyperledger	community	[13].	The	source	for	Hyperledger	Fabric	
can	be	found	on	the	Hyperledger	Fabric’s	GitHub	repository.	Before	the	Alpha	version	was	
released,	version	0.6	branch	was	a	more	stable	version	compared	to	the	master	branch.	The	
version	0.6	branch	was	thus	used	at	the	 inception	of	this	project's	 implementation	before	
switching	to	the	Alpha	version.	As	Hyperledger	is	an	open	source,	support	can	be	found	using	
the	forums	and	chat	groups	in	the	community	for	discussions	[13].	
	
Even	though	version	0.6	was	the	most	stable	version	at	the	time,	there	would	be	errors	such	
as	"Error:	sql:	no	rows	in	result	set".	Such	errors	occurred	when	trying	to	obtain	transaction	
certificates	from	the	membership	service.	Since	all	of	the	validating	peers	are	registered	and	
enrolled	with	the	membership	servicer,	the	only	way	to	fix	it	was	to	restart	the	entire	network	
by	restarting	or	resetting	Docker.	
	
In	the	middle	of	February	2017,	the	Alpha	version	(V1.0)	was	released.	V1.0	consists	of	a	few	
additional	features	such	as	having	orderers,	creating	channels	and	using	CouchDB	as	its	state	
database.	 Even	 though	 upgrading	 meant	 that	 a	 few	 changes	 would	 be	 required	 in	 the	
chaincode,	the	more	important	thing	is	that	V1.0	is	the	most	stable	version	to	date.	V1.0	is	
also	highly	recommended	as	 it	has	better	support	 for	debugging	by	providing	well-written	
and	 effective	 error	 messages.	 The	 documentations	 in	 V1.0	 have	 also	 vastly	 improved	
compared	to	the	documentations	available	in	v0.6.	
	
4.1 Setting	Up	Network	for	Development	
For	development	purposes,	the	entire	Hyperledger	network	for	chaincode	development	can	
be	set	up	on	a	local	machine	by	using	Docker.	Docker	provides	a	software	container	platform,	
which	does	not	bundle	a	full	operating	system	like	virtual	machines.	Instead,	the	containers	
use	 libraries	 and	 settings	 required	 for	 the	 software	 to	work	 [18].	 The	Hyperledger	 Fabric	
project	publishes	Docker	images	that	can	be	used	by	pulling	the	images	from	Dockerhub	[19].	
The	Hyperledger	blockchain	network	can	also	be	set	up	on	Bluemix,	a	web	service	provided	
by	IBM.	The	only	version	available	by	Bluemix	is	v0.6	and	with	only	a	30-day	trial.	
	
After	pulling	the	right	images	and	version,	the	entire	network	environment	as	represented	in	
Figure	 3.2,	 is	 configured	 in	 the	 docker-compose.yaml	 file.	 Running	 the	 command	docker-
compose	 up	 in	 the	 folder	 containing	 the	 docker-compose.yaml	 file	 will	 bring	 up	 the	
Hyperledger	network.	Docker	will	create	the	containers	for	the	CA,	Orderer,	CouchDB	and	
Peer0.		
	
There	are	two	ways	to	interact	with	the	Hyperledger	network,	using	the	SDK	or	command	line	
interface	(CLI).	In	the	docker-compose	file,	there	is	the	additional	container	for	CLI.	The	CLI	
will	run	the	init.sh	file	in	the	container	for	the	orderer	bootstrap	and	channel	creation,	and	is	
known	as	end-to-end	verification	[20].	The	CA	CLI	consumes	the	init.sh	file	which	will	set	the	
environment	of	the	orderer	and	create	the	channel	“mych”.	It	then	sets	the	environment	for	
the	Peer0	as	Org1	and	joins	the	channel.	It	is	also	able	to	install	and	instantiate	the	chaincode	
“mycc”.	All	peers	in	the	network	will	receive	and	hold	a	copy	of	the	state.	Once	the	chaincode	
has	been	initiated,	the	web	application	will	handle	the	query	and	invoke	functions	using	the	
SDK.	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 23	

Setting	up	the	network	can	be	tricky	because	everything	could	be	running	even	though	the	
settings	might	not	be	right.	When	using	v0.6,	there	was	a	problem	with	enrolling	members	
and	it	was	automatically	assumed	that	the	problem	was	a	missing	step	using	the	SDK.	It	took	
a	long	time	before	realising	that	the	problem	lied	with	the	docker	files.		Inspecting	the	settings	
of	containers	can	be	done	by	running	the	command	docker	inspect	membersrvc	in	terminal.	
It	turns	out	that	the	IP	of	the	membersrvc	container	was	7054/tcp	because	in	the	docker	file	
it	was	–	“7054”.	The	NodeJS	application	was	unable	to	connect	to	the	membersrvc	because	
there	was	no	port	forward.	Port	forward	can	be	done	by	setting	the	ports	to	–	“7054:7054”,	
then	the	IP	for	the	membersrvc	will	be	0.0.0.0:7054	->	7054/tcp.	

	
4.2 Writing	Chaincode	
Chaincode	in	Hyperledger	is	the	smart	contract	that	defines	the	business	logic	of	an	asset	or	
assets	and	the	transaction	instructions	for	modifying	asset(s).	Chaincode	enforces	the	rules	
for	 reading	 or	 altering	 key	 value	 pairs	 or	 other	 state	 database	 information.	 Chaincode	
functions	 execute	 against	 the	 ledger	 current	 state	 database	 and	 are	 initiated	 through	 a	
transaction	proposal.	Chaincode	execution	results	in	a	set	of	key	value	writes	(write	set)	that	
can	be	submitted	to	the	network	and	applied	to	the	ledger	on	all	peers	[21].	
	
Chaincode	is	usually	written	in	Golang	or	alternatively,	in	Java.	To	turn	a	piece	of	Go	code	into	
a	chaincode,	all	that	is	needed	is	to	implement	the	chaincode	shim	interface	[22].			
	
4.2.1 Dependencies	
There	are	a	few	dependencies	that	need	to	be	included	in	the	import	statement	list	in	order	
for	the	go	code	to	build	successfully.	
	

- fmt	–	contains	Println	for	debugging/logging	
- errors	–	standard	Go	error	format	
- github.com/hyperledger/fabric/core/chaincode/shim	–	to	implement	the	shim	

interface.	It	contains	the	definition	for	the	chaincode	interface	and	the	chaincode	
stub.	This	is	needed	to	interact	with	the	ledger.	
	

4.2.2 Chaincode	Interface	
In	v0.6,	the	three	functions	to	be	implemented	are	Init,	Invoke	and	Query.	All	three	functions	
take	in	a	‘stub’,	which	is	used	to	read	and	write	to	the	ledger,	the	function	name	and	an	array	
of	strings.	The	main	difference	between	the	functions	is	when	they	are	called.	
	
4.2.2.1 Init	Function	
When	 the	chaincode	 is	deployed,	 the	 Init	 function	 is	 called	 to	 instantiate	 the	 state	of	 the	
ledger.	This	function	is	used	to	do	any	initialization	the	chaincode	needs,	such	as	to	configure	
the	initial	state	of	a	key/value	pair	on	the	ledger.	
	
For	the	prototype,	there	is	only	one	bank	user.	The	initial	state	for	the	bank	user	is	configured	
to	hold	the	secondary	keys	of	businesses	and	trading.	The	bank	user	is,	therefore,	able	to	view	
the	business	users	that	have	sent	invoice	transactions	to	the	customer	users.	The	values	for	
businesses	and	trading	act	as	a	key	for	indexing	related	invoice	transactions.	The	businesses	
key	holds	values	of	business	users	that	have	invoices	for	credit	factoring.	The	key	for	trading	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 24	

holds	values	of	invoices	that	has	been	verified	by	customer	users	and	added	to	the	list	for	the	
bank	user	to	index.	
	
Setting	 the	 key/value	 pair	 can	 be	 done	 by	 using	 the	 stub	 function	 stub.PutState().	 The	
stub.PutState()	function	takes	two	arguments:	the	first	is	the	key	and	the	second	is	the	value	
in	bytes.		
	
4.2.2.2 Invoke	Function	
The	 invoke	 function	 is	 called	 to	 add	 transactions	 to	 the	 blockchain.	 Invocations	 will	 be	
captured	as	transactions,	which	get	grouped	into	blocks	on	the	chain.	To	update	the	ledger	
requires	invoking	the	chaincode.	The	structure	of	the	invoke	function	is	simple.	The	invoke	
function	receives	a	function	name	and	an	array	of	arguments.	Based	on	the	name	that	was	
passed	 in	 through	 the	 function	 parameter	 in	 the	 invoke	 request,	 invoke	will	 either	 call	 a	
helper	function	or	return	an	error.	
	
4.2.2.3 Query	Function	
As	the	name	implies,	Query	 is	used	to	querying	the	chaincode’s	state.	Queries	do	not	add	
blocks	to	the	chain	nor	use	functions	like	PutState	inside	of	Query	and	helper	functions.	Query	
is	used	to	read	the	value	of	the	chaincode	state’s	key/value	pairs	using	the	function	GetState.	
	
The	code	demonstrating	the	query	function	is	as	attached	in	Appendix	9.1.2.		
	
4.2.2.4 Main	Function	
Finally,	there	is	the	Main	function	which	needs	to	be	included.	The	Main	function	is	executed	
when	each	peer	deploys	an	instance	of	the	chaincode	and	runs	the	shim.Start	function.	This	
sets	up	the	communication	between	the	chaincode	and	the	peer	that	deployed	it.	The	Main	
function	must	be	included	in	any	chaincode,	without	the	need	for	alteration.	
	
The	Main	function	can	be	referred	to	in	Appendix	9.1.5.	
	
4.2.2.5 v0.6	to	v1.0	Hyperledger	Fabric	
A	few	alterations	were	required	for	the	chaincode	when	upgrading	from	v0.6	to	v1.0.	In	v1.0	
the	chaincode	shim	supports	two	functions,	Init	and	Invoke	[23].	Both	updating	or	querying	
the	ledger	are	done	by	invoking	the	chaincode.	

	
When	 the	 Init	 or	 Invoke	 function	 of	 a	 chaincode	 is	 called,	 the	 fabric	 passes	 the	 stub	
shim.ChaincodeStubInterface	parameter	and	the	chaincode	returns	a	pb.Response.	This	stub	
can	be	used	to	call	APIs	to	access	the	ledger	services,	transaction	context	or	to	invoke	other	
chaincodes.	 The	 chaincode	 response	 comes	 in	 the	 form	of	 a	protocol	buffer	 and	will	 also	
return	message	events	as	well	as	chaincode	events.	
	
The	code	demonstrating	the	Init	and	Invoke	functions	is	as	attached	in	Appendix	9.1.3	and	
Appendix	9.1.4.		
	
After	deploying	the	chaincode,	the	SDK	and	CLI	can	be	used	to	test	the	functions	and	interact	
with	the	chaincode	[23].		
	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 25	

4.3 HFC	SDK	
NodeJS	web	applications	are	able	to	use	the	HFC	SDK,	which	is	an	API,	to	interact	with	the	
Hyperledger	Fabric	blockchain	network.	The	NodeJS	application	is	the	client	that	takes	care	
of	all	the	query	and	invokes	transactions	by	the	end	user.	
	
The	best	way	to	learn	how	to	use	the	SDK	is	by	looking	at	the	examples	on	GitHub,	provided	
by	IBM	and	Hyperledger.	In	order	for	the	application	to	interact	with	the	blockchain	network,	
the	HFC	dependencies	need	to	be	included	in	the	package.json	files.	Dependencies	can	then	
be	included	in	the	app	by	using	the	require()	function	which	will	load	libraries	and	modules.	
	
var hfc = require('fabric-client');

	
The	line	above	is	included	in	the	application	to	create	the	client	object	and	chain	object.	The	
chain	adds	the	client	by	connecting	to	the	ports	of	the	Peer,	Orderer,	and	CA.	Apart	from	the	
CA	that	uses	a	http	protocol,	the	rest	uses	gRPC,	a	remote	procedure	call	developed	by	google	
[24].	GRPC	can	use	protocol	buffers	as	both	its	interactive	data	language	and	its	underlying	
interchange	format	[24].	Once	connected,	it	will	enrol	the	application	as	the	admin	user	with	
the	CA.	One	of	the	roles	of	the	admin	is	to	register	a	new	identity.			
	
The	hardest	part	of	using	the	SDK	is	successfully	connecting	and	enrolling	members.	There	is	
a	lot	of	code	involved	when	using	the	SDK	to	connect	and	it	is	easy	to	miss	a	step.	It	is	also	
worth	noting	how	port	forward	works	and	how	to	use	the	right	ports.	The	app	will	need	to	
connect	to	the	Peer,	Orderer	and	CA	nodes.	The	ports	are	set	 in	the	docker	file	are	 in	the	
format	 of	 ports:	 -	 <host:container>,	where	 host	 is	 the	 external	 port	 and	 container	 is	 the	
internal	port.	 Since	 the	app	 itself	 is	not	on	 the	docker	network,	 it	 can	only	 connect	 to	 its	
external	port.	
	
The	code	demonstrating	how	to	use	the	SDK	to	connect	to	the	Hyperledger	network	and	to	
enrol	the	admin	can	be	referred	to	in	Appendix	9.1.6.	
	
After	enrolling	the	admin,	the	web	application	will	be	able	to	invoke	and	query	transactions	
in	the	blockchain.	To	invoke	or	query	a	transaction,	the	function	will	take	in	two	arguments:	
a	string	which	is	the	name	of	the	function	to	call	and	an	array	which	defines	the	key/value.	
	
exports.query = (func, args) => {
	
exports.invoke = (func, args) => {
	
To	make	a	request,	it	is	necessary	to	include	the	chaincode	ID	and	channel	ID.	In	this	case,	
“mycc”	and	“mych”,	a	nonce	and	transaction	ID.	The	transaction	ID	is	created	from	the	nonce	
and	user.		
	

var nonce = utils.getNonce();

 tx_id = hfc.buildTransactionID(nonce, admin);

 var request = {
 chaincodeId: config.app.chaincodeId, // mycc

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 26	

 chainId: config.app.channelId, // mych
 txId: tx_id,
 nonce: nonce,
 fcn: func,
 args: args
 };

Querying	a	transaction	can	be	done	simply	by	making	a	request	using	the	queryByChaincode()	
function,	and	including	the	function	name	and	arguments	of	the	key/value	in	the	request.	
	
 return chain.queryByChaincode(request)
	
The	code	demonstrating	a	query	using	the	SDK	is	as	attached	in	Appendix	9.1.7.	
	
The	steps	to	create	a	proposal	for	a	transaction	use	a	similar	request	as	a	query.	In	contrast	
to	 creating	 a	 proposal,	 sending	 a	 transaction	 is	 a	 bit	 more	 complex.	 A	 proposal	 for	 the	
transaction	can	be	made	using	the	request	as	shown	above.	
	
 return chain.sendTransactionProposal(request)
	
The	transaction	proposal,	as	shown	above,	will	return	a	response.	Frequent	checking	for	the	
response	is	required	to	ensure	that	the	status	of	the	proposal	and	header	are	both	valid.	Once	
all	checks	are	valid,	the	request	of	the	transaction	will	be	accepted.	
	
 var sendPromise = chain.sendTransaction(request);
	
The	 code	 demonstrating	 how	 to	 add	 a	 transaction	 using	 the	 SDK	 can	 be	 referred	 to	 in	
Appendix	9.1.8.	
	
4.4 NodeJS	Application	
NodeJS	 has	 the	 largest	 ecosystem	 of	 open	 source	 libraries	 available	 to	 develop	 web	
applications	 known	 as	 node	 modules	 [17].	 Initially,	 Swagger,	 to	 speed	 up	 RESTful	 API	
development,	was	 tried	and	 tested	 to	get	 forms	 to	add	an	 invoice.	 It	was,	however,	 soon	
recognised	that	Swagger	was	not	needed	as	the	HFC	SDK	had	already	provided	the	API	that	
the	system	needs.	Finally,	the	system	settled	with	Express,	a	minimalist	web	framework	for	
NodeJS.	
	
Express	does	the	HTTP	GET	and	POST	method	using	routers.	The	router	renders	a	page	from	
the	server	to	the	client	with	the	GET	method,	and	the	POST	method	will	send	requests	from	
the	client	 to	 the	server.	When	a	user,	 for	example,	wants	 to	add	a	user,	 it	 calls	 the	POST	
method	from	the	client's	side	and	sends	the	data	of	the	request.	On	the	server's	side,	the	
POST	router	receives	the	data	and	sends	the	request	to	query	or	invoke,	using	the	SDK.	Since	
these	can	all	be	done	in	AJAX,	the	web	application’s	page	does	not	need	refreshing	at	every	
request.	There	is	the	possibility	of	an	AJAX	POST	request	failing	from	the	client's	side	while	
sending	to	the	server.	It	is	important	to	note	that	in	order	for	the	HTTP	request	to	work,	it	will	
need	 the	 access-control-allow-origin	 included	 in	 the	 header	 of	 the	 application.	 Access-
control-allow-origin	 is	 a	 CORS	 header.	 The	 response	 header	 allows	 the	 content	 of	 an	
application	to	be	accessible	to	a	certain	origin.	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 27	

	
As	mentioned	in	section	4.2.2,	a	query	or	invoke	request	is	done	by	calling	the	method	and	
sending	a	 string	of	 the	 function	name	as	well	as	an	array	of	 the	arguments.	For	example,	
querying	the	list	of	businesses	that	are	trading	can	be	done	with	the	function	‘query’,	and	an	
array	of	one	argument	‘_businessIndex’.	
	
 queryResults('query', ["_businessIndex"]).then((results) => {
	
The	results	from	the	chaincode	are	returned	in	the	form	of	a	protocol	buffer.	The	protocol	
buffer	can	be	changed	to	a	human	readable	format	using	the	toString()	function.	
	
// buffer to string
 var businessUsers = bufferToString(results);
	
function bufferToString(bytes) {
 return bytes.toString("utf8");
}
	
When	 needed,	 the	 results	 can	 be	 formatted	 into	 a	 JSON	 object	 using	 the	 JSON.parse()	
function.	By	doing	so,	the	values	of	the	results	will	be	readable	and	easier	to	use.	
	
 var json = JSON.parse(businessUsers);
	
When	developing	the	NodeJS	system	that	interacts	with	the	Hyperledger	blockchain,	querying	
non-existing	transactions	will	return	a	null	value.	Consequently,	regular	checks	for	null	values	
should	 be	 made	 throughout	 the	 development	 to	 prevent	 errors	 from	 occurring,	 when	
querying	any	key/values	that	do	not	exist	in	the	ledger.	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 28	

5. Results	and	Evaluation	
The	results	of	the	main	functionalities	of	the	smart	contract	prototype	have	been	successful.	
The	prototype	implementation	demonstrates	how	a	blockchain	can	be	used	to	keep	a	digital	
trail	 of	 an	 invoice	 as	 it	 passes	 between	 users.	 In	 the	 existing	 system	 of	 trade	 finance,	 a	
business	 would	 often	 give	 the	 bank	 invoices	 in	 bulk	 for	 credit	 factoring,	 resulting	 many	
invoices	being	left	unverified,	and	leaving	space	for	error	and	fraud.	The	prototype	system	
will	 allow	 bank,	 customer	 and	 business	 users	 to	 keep	 track	 of	 invoices	 using	 blockchain	
technology	in	real-time.	By	using	the	system,	a	bank	user	may	keep	careful	track	of	business	
users	that	have	invoices	for	credit	factoring.	The	business	users	may	add	customer	users	and	
send	 invoices	using	 the	 system.	 Through	 the	blockchain,	 customer	users	may	 receive	 and	
verify	the	invoices	instantaneously.	When	a	customer	has	confirmed	an	invoice	to	be	true,	
the	bank	will	be	able	to	approve	the	verified	invoice	for	credit	factoring.	Using	smart	contracts,	
the	status	of	an	invoice	may	vary	as	it	passes	between	users	during	its	lifecycle.	All	invoices	
added	to	the	blockchain	are	tracked	in	real	time	and	include	history	records.	
	

	
Figure	5.1	State	of	the	blockchain	when	first	initialised.	Each	doc	represents	a	block	in	the	blockchain	

In	Hyperledger,	 smart	 contracts	 are	 called	 chaincode.	 The	businesses	 and	 trading	 key	 are	
initialised	 when	 the	 smart	 contract	 “mycc”	 is	 deployed.	 The	 state	 of	 the	 ledger	 and	
transactions	can	be	access	using	CouchDB.	CouchDB	allows	rich	and	complex	queries	against	
the	state	ledger	content	[16].	The	instantiate	state	of	the	ledger	for	the	channel	“mych”	is	as	
shown	 in	 Figure	 5.1	 above.	 The	 number	 of	 docs	 represents	 the	 data	 in	 the	 blocks	 of	 a	
blockchain.		
	

	
Figure	5.2	Blocks	in	the	blockchain	represented	by	CouchDB	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 29	

The	businessIndex	and	tradingIndex	are	keys	to	index	business	users	that	have	invoices	for	
trading	and	invoices	that	have	been	verified	by	customers.	A	bank	user,	Bank	A,	holds	the	
keys	 businessIndex	 and	 tradingIndex	 for	 indexing.	 The	 initial	 state	 of	 the	 blockchain	 is	
represented	in	figure	5.2,	as	mentioned	in	section	4.2.2.1	above.		
	

	
Figure	5.3	Version	update	of	transactions	in	blockchain	

At	any	time,	the	version	of	a	transaction	will	be	in	its	most	updated	value.	When	a	business	
user	is	first	initialised,	the	customers	and	invoices	list	that	the	business	user	holds	are	with	a	
null	value.	When	the	business	user	adds	a	new	customer,	the	customer's	name	will	be	added	
to	the	list	of	the	business'	customers.	New	invoices	are	added	to	the	invoices	list	similarly.	
The	version	of	the	customers	or	invoices	list	will	be	updated	as	shown	in	figure	5.3	above,	
demonstrating	the	way	transactions	are	immutable	in	a	blockchain.	
	
When	a	business	adds	a	customer,	the	smart	contract	will	perform	checks	to	ensure	that	the	
customer	has	not	already	been	added.	The	chaincode	will	loop	through	the	list	of	the	business’	
customers	to	check	if	there	is	a	match	with	the	customer	that	 is	being	added.	If	there	is	a	
match,	 the	 chaincode	will	 return	 an	 error	message	 to	 the	NodeJS	 client,	 stating	 that	 the	
customer	has	already	been	added.	If	there	is	no	match,	the	chaincode	will	invoke	the	request	
and	add	the	customer	to	the	business’	customers	list.	
	

	
Figure	5.4	Message	returned	by	chaincode	when	the	same	customer	is	added	twice	

The	smart	contract	is	also	able	to	successfully	perform	checks	when	adding	invoices	so	that	
the	same	invoice	is	not	added	twice	in	the	ledger.	If	business	A	adds	and	sends	invoice	A	to	
customer	A,	and	later	sends	the	same	invoice	to	business	B,	the	chaincode	will	reject	adding	
the	 invoice	 transaction.	 The	 same	will	 happen	 if	 business	 B	 adds	 and	 sends	 invoice	 A	 to	
customer	B.	Performing	these	checks	ensures	that	users	are	not	able	to	double	finance	an	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 30	

invoice	by	creating	multiple	business	accounts	and	sending	to	multiple	customer	accounts	for	
verification.	
	

	
Figure	5.5	Message	returned	by	chaincode	when	adding	the	same	invoice	twice	

In	 theory,	 no	 changes	 in	 the	 details	 of	 an	 invoice	 should	 be	 permitted	 once	 the	 invoice	
transaction	has	already	been	added.	All	the	same,	an	invoice	is	open	to	human	errors	as	the	
invoice	 details	 are	 entered	manually.	 Consequently,	 changes	 to	 an	 invoice	 are	 permitted	
before	the	invoice	is	verified.	When	the	ledger	receives	an	update	for	a	transaction,	the	new	
values	along	with	a	record	of	 the	previous	version	of	 the	transaction,	are	added	to	a	new	
block	for	the	changes.	This	means	that	the	ledger	will	provide	a	verifiable	history	of	all	changes	
to	the	state.		
	
As	and	when	a	user	updates	an	invoice,	other	users	associated	with	that	invoice	will	be	able	
to	track	the	updates.	When	a	business	adds	an	invoice	and	sends	it	to	a	customer,	the	status	
of	the	invoice	will	be	displayed	as	pending.	The	customer	receiving	the	invoice	will	see	that	a	
pending	invoice	is	sent	by	the	business	and	is	waiting	for	verification.	Verified	invoices	will	be	
made	available	 to	 the	bank	user.	Once	verified,	 the	bank	user	will	be	able	 to	confirm	and	
approve	the	invoices	for	credit	factoring.	When	payments	have	been	made	for	invoices	that	
are	due,	customer	users	may	confirm	payment.	Throughout	the	process,	businesses	will	able	
to	keep	track	of	invoices	as	it	is	being	verified,	approved	and	paid.	
	
The	trade	finance	system	is	also	able	to	present	an	invoice	in	different	tables	according	to	its	
status	and	at	different	stages	of	its	lifecycle.	For	example,	a	bank	user	may	view	all	invoices	
that	have	been	either	approved	or	paid,	but	not	the	verified	invoices,	displayed	in	the	same	
table.	 This	 example	 demonstrates	 the	 concept	 of	 how	 data	 can	 be	 extracted	 from	
transactions	and	used	for	analysis.	Carrying	out	an	analysis	of	data	is	useful	to	identify	when	
a	business	user	is	behaving	fraudulently,	as	mentioned	in	section	2.2.	
	
Transactions	 in	 a	 blockchain	 are	 immutable,	 and	 records	 are	 available	 to	 all	 peers	 [6].	
Factoring	 companies	 can	 choose	 to	 offer	 credit	 factoring	 based	 on	 the	 analysis	 of	 the	
reputation	 of	 the	 customers.	 Business	 could	 produce	 invoice	 transactions	 and	 create	 a	
separate	account	for	its	customer.	If	a	customer	has	little	to	no	records	of	payments	made	or	
is	not	deemed	reputable,	the	factoring	company	may	choose	not	to	factor	the	invoice.	
	
For	the	prototype,	there	is	no	login.	The	system	will	request	and	render	the	view	of	different	
details	and	functionalities	depending	on	the	user’s	name	and	user	type	of	the	selected	user	
from	a	select	option	list.	For	the	reason	that	NodeJS	is	a	relatively	new	territory	that	has	much	
to	be	explored,	it	felt	easier	to	include	all	the	functionalities	in	the	same	JavaScript	file.	The	
more	 functionalities	 there	were,	however,	 the	slower	 the	performance	of	 the	application.	
Different	users	have	access	to	different	pages	that	have	different	content	to	display	in	various	
tables.	The	same	JavaScript	function	has	to	perform	a	lot	of	checks	for	each	page,	whether	it	
is	for	the	bank,	business	or	customer	user.	By	refactoring	the	code	into	separate	JavaScript	
files,	it	improved	the	performance	of	the	application.	A	page	would	only	load	the	JavaScript	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 31	

file	associated	with	the	user	type.	By	doing	so	eliminates	the	need	to	perform	so	many	checks	
on	each	page	to	display	the	right	content.		
	
There	are	a	few	improvements,	mostly	on	the	NodeJS	client,	that	may	improve	the	system.	
From	debugging	and	testing,	the	system	displays	error	messages	on	the	NodeJS	server’s	side	
when	transactions	fail,	as	seen	in	figure	5.4	and	5.5.	These	error	messages	are,	however,	not	
properly	displayed	to	the	end	user.	When	the	message	from	the	shim	interface	is	returned,	
NodeJS	 does	 not	 catch	 it	 as	 an	 error.	 Instead,	 according	 to	 NodeJS,	 the	 transaction	 is	 a	
“success”.	When	a	customer	adds	an	invoice	that	already	exists	in	the	ledger,	the	system	will	
be	able	to	redirect	to	another	page	but	 is	unable	to	display	the	error	message.	These	are,	
nevertheless,	considered	minor	issues	as	it	does	not	affect	transactions	in	the	blockchain.	
	
	
	
	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 32	

6. Future	Work	
For	future	works,	it	will	be	good	to	have	validations	for	the	NodeJS	application.	When	end	
users	are	updating	the	status	of	an	invoice,	a	validation	message	will	appear	for	the	user	to	
confirm.	Validation	messages	can	prevent	mishaps	such	as	verifying	and	approving	the	wrong	
invoice.	It	will	also	be	beneficial	to	display	confirmation	or	error	messages	to	the	end	user.	
Confirmation	or	error	messages	will	allow	the	user	to	know	what	the	system	is	doing,	whether	
actions	are	successfully	carried	out.	
	
Additionally,	 the	 blockchain	 network	 can	 be	 enhanced	 by	 allowing	 the	 system	 to	 enrol	
different	users	to	the	blockchain	network.	As	of	now,	there	is	only	one	admin	user	for	the	
application	 performing	 all	 transactions,	 while	 the	 bank,	 customer	 and	 business	 users	 are	
attributes	in	the	ledger,	just	like	invoices.	By	enrolling	different	users,	transactions	will	have	
better	security	by	having	their	own	private	keys.	
	
Given	more	time,	there	are	countless	of	useful	functionalities	that	could	be	added	to	enhance	
the	 trade	 finance	system	 in	credit	 factoring.	 	 Instead	of	manually	adding	 the	details	of	an	
invoice	into	a	transaction,	if	the	system	allows	users	to	upload	an	invoice	and	obtain	the	data	
from	 an	 invoice	 pdf,	 it	 will	 eliminate	 human	 error.	 For	 instance,	 a	 business	 could	 enter	
£50,000	 instead	 of	 £5000	 inadvertently	 and	 the	 customer,	 having	 to	 verify	 a	 myriad	 of	
invoices,	fails	to	notice	the	difference	as	well.	When	an	invoice	is	due	for	payment,	the	error	
may	cause	a	loss	to	either	or	both	the	business	and	the	customer.	
	
In	credit	factoring,	the	advance	payment	of	an	 invoice	 is	agreed	on	between	the	factoring	
company	and	the	business.	The	current	system	only	approves	invoices	for	credit	factoring.	
Through	the	blockchain	system,	it	would	benefit	the	factor	to	additionally	set	the	advance	
payment	of	an	invoice	and	the	service	charge	when	initializing	the	business	user.	The	factoring	
facility	can	be	negotiated	on	the	system	and	can	set	a	limit	as	to	how	much	it	is	willing	to	lend	
to	 the	 business	 using	 smart	 contracts.	When	 an	 invoice	 is	 added	 for	 credit	 factoring,	 the	
amount	is	deducted	from	the	designated	amount,	and	payments	would	mean	a	refund.	If	the	
amount	for	a	business	reaches	its	limit,	the	system	would	automatically	reject	further	invoices	
for	factoring	from	that	business.	Live	data	of	the	amount	of	the	factoring	facility	used	and	the	
balance	 left	 for	a	user	 is	visible	 in	the	system.	This	 live	data	can	be	accessible	to	both	the	
business	user	and	the	bank	financing	the	invoice.	
	
If	 a	 business	 has	 an	 invoice	 for	 £100k,	 but	 only	 requires	 £20k	 or	 if	 the	 factoring	 limit	
agreement	has	only	a	£40k	balance	left	but	the	invoice	value	is	worth	£100k,	the	system	could	
allow	for	partial	factoring	of	an	invoice.	When	a	payment	is	made,	the	system	will	notify	both	
the	business	and	the	bank	and	refund	part	of	the	payment	to	the	business.	This	form	of	partial	
factoring	might	not	be	practised	in	the	existing	system	as	keeping	track	of	it	would	be	difficult.	
It	may,	 however,	 be	 a	 practical	 approach	when	 the	 value	 of	 an	 invoice	 is	more	 than	 the	
amount	needed.		
	
The	system	should	also	have	a	history	record	of	customers’	payment	data	and	a	feature	where	
banks	can	rate	customers	according	to	how	timely	payments	are	made.	The	data	from	the	
transactions	can	then	be	extracted	from	for	analysis.	If	a	customer	is	a	bad	paymaster,	the	
finance	company	should	consider	disapproving	the	invoice	for	factoring.		

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 33	

7. Conclusion	
A	private	key,	which	will	allow	a	user	to	have	control	over	one's	transaction	or	unique	digital	
asset,	will	be	given	when	the	user	is	enrolled.	The	deterrent	of	using	blockchain	technology	
lies	in	the	security	of	the	system	or	device	that	stores	the	private	keys.	In	a	public	blockchain,	
security	 vulnerabilities	 have	 led	 a	 system	 operating	 the	 DAO	 (Decentralised	 Autonomous	
Organization)	 that	 runs	on	Ethereum,	 to	 financial	 losses.	 In	private	blockchains,	operators	
must	decide	how	to	resolve	the	problem	of	 lost	 identification	credentials.	Overcoming	the	
issue	 of	 security	 will	 allow	 the	 enabling	 of	 decentralised	 commerce	 [6]	 which	 can	 be	 a	
fundamental	change	in	business	model	and	processes.	
	
A	distributed	ledger	may	be	considered	more	reliable	compared	to	a	traditional	database	as	
it	 is	 not	 controlled	 by	 a	 centralised	 party.	 Trust	 is	 established	 through	peer-to-peer	mass	
collaboration	and	sophisticated	computer	code	rather	than	through	a	centralised	powerful	
institution.	 Peer-to-peer	mass	 collaboration	makes	 transactions	 and	 interactions	 between	
people	and	businesses	much	more	efficient.	Records	of	transactions	can	still	be	available	if	a	
single	node	fails	as	all	peer	nodes	hold	a	copy	of	the	state	ledger.	
	
Smart	contracts	can	automatically	enforce	agreements	between	two	or	more	parties	without	
the	need	for	an	intermediary.	The	use	of	smart	contracts	is	to	initialize	or	perform	all	kinds	of	
checks	on	transactions.	Transactions	are	 immutable	and	traceable	 in	the	open	 ledger.	The	
ledger	 is	also	able	 to	provide	 transparency	among	participants	 in	 the	blockchain	network.	
Each	factoring	company	in	the	distributed	network	is	a	peer	of	its	own.		A	consensus	network	
removes	the	need	for	a	central	party	or	middle-person.	When	an	invoice	is	added,	it	may	be	
validated	by	all	peers.	As	each	peer	holds	a	state	and	a	copy	of	 the	 ledger,	 this	will	aid	 in	
preventing	 double	 financing	 and	 discourage	 fraud.	 The	 success	 of	 this	 is,	 therefore,	
dependent	on	a	community,	the	involvement	of	other	factoring	companies.	For	example,	in	
the	existing	credit	factoring	system,	a	business	can	double	finance	an	invoice	by	going	to	two	
different	 factoring	 companies.	With	 the	 involvement	of	multiple	 factoring	 companies	 in	 a	
blockchain	network,	added	invoices	on	the	ledger	shared	among	all	peers	can	be	checked.	
Invoice	 transactions	 can	 also	 be	 tracked	 in	 real	 time	 transactions	 to	 settle	 invoices	more	
efficiently.	
	
As	more	banks	and	finance	institution	get	involved,	the	trade	finance	system	will	become	its	
own	marketplace.	Verified	invoices	can	be	made	available	to	all	factors,	and	the	banks	and	
finance	institution	will	be	able	to	set	advance	rates	based	on	the	base,	size	and	reputation	of	
the	 business’	 customer.	 Based	 on	 the	 highest	 advance	 payment	 given	 or	 lowest	 charges,	
businesses	may	decide	which	proposals	are	to	be	accepted.	The	use	of	blockchain	technology	
in	smart	contracts	is	thus	able	to	change	the	entire	business	model	of	an	existing	system.	
	
	
	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 34	

8. Reflection	on	Learning	
While	working	on	this	project,	I	gained	skills	in	project	management	and	in	working	closely	
with	 clients.	 Before	 initiating	 the	 project,	 a	 client	 meeting	 was	 arranged	 to	 discuss	 the	
problem	of	credit	factoring	and	how	blockchain	technology	could	enhance	the	existing	system.	
From	then	onwards,	I	provided	Equiniti	with	the	design	and	specifications	of	the	prototype	as	
well	 as	 progress	 updates	 on	 the	 project.	 Throughout	 the	 project,	 I	 also	 worked	 on	 my	
communication	skills	by	updating	my	supervisor	on	my	progress	and	challenges	faced	during	
our	weekly	meetings.	I	was	able	to	discuss	problems	and	possible	solutions,	which	is	vital	in	
managing	the	project.	
	
During	the	project,	I	had	the	opportunity	to	meet	with	a	blockchain	developer	from	Equiniti.	
I	was	fortunate	to	be	able	to	seek	advice	on	which	software	and	technologies	to	use	for	the	
project.	I	made	sure	to	take	notes	so	that	I	could	always	refer	to	it	again.	Discussions	with	
someone	with	more	experience	are	valuable	as	it	enables	us	to	avoid	unnecessary	problems	
by	learning	from	their	mistakes	and	thus	save	time.	We	also	discussed	potential	solutions	on	
using	 the	Hyperledger.	As	Hyperledger	 is	 relatively	new,	 there	are	 few	 solutions	available	
online.	 The	 developer	was,	 however,	 able	 to	 provide	me	with	 useful	 tips	 such	 as	 how	 to	
inspect	 containers	 in	 Docker.	 The	 tips	 received	 helped	 me	 realised	 that	 the	 ports	 were	
incorrect	for	my	containers	and	allowed	me	to	fix	the	problem,	as	mentioned	in	section	4.1.	
	
As	Hyperledger,	GoLang	and	NodeJS	were	all	new	things	for	me	to	learn,	the	best	way	was	to	
go	through	the	examples	and	demos	provided	by	IBM	to	set	up	the	prototype.	At	times,	there	
were	unexpected	problems	during	the	project	and	at	times,	a	few	days	were	needed	to	work	
out	the	solution	for	just	a	single	problem.	Nevertheless,	while	finding	solutions	to	the	problem,	
I	found	myself	researching	and	learning	more	from	it.	With	Hyperledger	being	a	new	and	open	
source,	there	were	frequent	updates	and	therefore	a	lack	of	documentation.	I	spent	a	lot	of	
time	learning	how	to	enrol	members	with	the	SDK,	writing	the	query	and	invoke	functions	
using	the	SDK	and	writing	a	NodeJS	application.	Besides	meeting	with	technical	challenges,	
fracturing	my	ankle	two	weeks	before	the	dissertation	was	due,	slowed	me	down	quite	a	bit.	
Even	so,	with	proper	time	management	skills,	I	managed	to	stay	on	top	of	it.	I	knew	from	the	
start	that	working	on	this	project	can	be	a	lot	of	taking	on	as	all	the	technologies	and	tools	I	
would	be	using	will	be	new	to	me.	Therefore,	I	made	sure	to	follow	up	on	the	project	daily	
right	from	the	start,	so	I	will	not	fall	behind	schedule.	
	
It	was	definitely	a	steep	learning	curve	in	understanding	how	Hyperledger	works,	setting	the	
environment	of	the	network	and	for	Go,	writing	chaincodes	in	GoLang	and	developing	an	app	
in	NodeJS.	Compared	 to	when	 I	 first	 started,	 I	have	gained	 technical	 skills	 in	both	Go	and	
JavaScript	and	improved	my	programming	knowledge.	The	fundamental	of	programming	is	
logic	and	development	for	the	project	was	done	based	on	a	lot	of	basic	logic:	from	getting	a	
query,	printing	the	results,	formatting	the	results,	identifying	the	format	type	that	is	needed	
and	converting	the	results	to	the	suitable	format	type.	When	developing	a	program,	it	is	useful	
to	log	and	print	errors	to	debug	errors.	As	I	became	more	familiar	with	the	tools,	I	was	able	
to	pick	up	some	techniques	and	make	 improvements	 to	my	code,	such	as	 refactoring	and	
reusability.	Additionally,	improvements	were	made	to	the	performance	of	the	application	as	
mentioned	in	Section	5.	
	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 35	

While	taking	up	this	project,	I	learned	about	distributed	ledgers	and	how	the	smart	contracts	
can	be	used.		I	also	had	the	chance	to	work	on	a	range	of	technologies	and	develop	different	
technical	skills	despite	the	short	amount	of	time.	In	the	future	development	of	Hyperledger	
blockchain	network,	there	will	be	tools	such	as	Fabric	Composer	which	will	not	only	simplify	
the	 development	 of	 Hyperledger	 Fabric	 blockchain	 applications	 [25],	 but	 save	 a	 lot	 of	
development	time.	Still,	it	was	useful	to	understand	how	the	components	in	the	Hyperledger	
network	work	 and	 how	 to	 set	 things	 up	manually.	 Even	 though	 there	were	 changes	 that	
needed	to	be	done	to	the	existing	app	when	upgrading	from	v0.6	to	v1.0,	I	was	able	to	quickly	
grasp	an	understanding	compared	to	when	I	first	started	with	v0.6.	
	
Even	though	the	project	went	well	according	to	the	initial	plan,	I	learned	that	I	could	set	better	
goals	 for	 future	projects	by	having	better-directed	goals.	At	 the	start	of	 the	project,	 I	was	
more	focused	on	trying	to	understand	what	Equiniti	wanted	from	the	project.	Towards	the	
end,	I	learned	the	importance	of	making	some	decisions	myself.	As	my	clients,	Equiniti	may	
have	the	ideas	on	what	blockchain	technology	and	what	a	smart	contract	can	do	and	how	it	
could	be	used	 to	 improve	problems.	Nevertheless,	 being	 the	one	managing	 the	project,	 I	
needed	to	decide	on	the	best	solutions	to	their	problem.	Sometimes,	the	clients	might	not	
know	what	they	want.	Alternatively,	they	might	be	able	to	come	up	with	an	idea	of	how	a	
certain	technology	could	be	used	to	solve	a	problem,	but	might	not	know	the	logic	behind	it	
and	how	to	make	it	happen.	Therefore,	my	role	would	be	to	explain	why	a	solution	would	
work	and	convince	 the	 clients	 to	accept	 it.	 It	 is	up	 to	 the	person	designing	 the	 system	 to	
understand	the	purpose	of	the	use	case	and	make	decisions	based	on	requirements.	

	
Towards	the	end	of	my	project,	I	had	the	chance	to	demonstrate	my	prototype	to	Equiniti	to	
gain	 some	 feedback.	During	 the	 demonstration,	 I	 realised	 that	 I	 still	 need	 to	 improve	my	
presentation	skills	by	gaining	more	confidence,	finding	ways	to	calm	my	nervousness	and	by	
learning	to	speak	at	a	slower	pace.	When	presenting	a	system,	 it	may	be	useful	 to	have	a	
storyline	for	the	demonstration,	especially	when	there	is	a	group	among	the	audiences	who	
have	little	to	no	knowledge	of	the	presentation	content.	I	also	realised	that	I	should	not	begin	
by	presenting	all	 the	 functionalities	of	a	 system	as	 it	might	be	confusing	 to	 the	audience.	
When	giving	a	presentation,	it	would	be	clearer	and	better	understood	by	beginning	with	the	
main	functionality	of	a	system.	For	example,	it	is	better	to	say,	'This	system	allows	businesses	
to	send	invoices	to	customers,'	instead	of,	'Businesses	are	able	to	add	customers	and	send	
invoices	using	this	system'.	
	
Overall,	I	am	thankful	for	having	received	good	feedback	from	my	demo	of	the	prototype	to	
Equiniti	 who	 seemed	 impressed	 with	 what	 I	 have	 produced	 and	 for	 covering	 all	 the	
requirements	 discussed.	 The	 feedback	 from	 Equiniti	 is	 as	 attached	 in	 Appendix	 9.2.	 The	
prototype	would	potentially	be	used	in	another	demo	to	the	Equiniti	Risk	Factor	Solutions	
who	were	originally	the	one	that	came	up	with	the	trade	finance	proof	of	concept.	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 36	

9. Appendix	
9.1 Code	
9.1.1 Docker-Compose.yaml	
	
version: '2'

services:

 # Certificate Authority
 ca:
 container_name: ca
 image: hyperledger/fabric-ca:latest
 environment:
 - FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server
 # NOTE: This line must be changed when new crypto material is generated
to match the new key file
 - FABRIC_CA_SERVER_CA_KEYFILE=/etc/hyperledger/fabric-ca-server-
config/99ceb551cc66cb166b712c634fd1efd88d905c0205cef06101a77b484b31830c_sk
 - FABRIC_CA_SERVER_CA_CERTFILE=/etc/hyperledger/fabric-ca-server-
config/peerOrg1-cert.pem
 ports:
 - 7040:7054
 volumes:
 - ../crypto/peerOrganizations/peerOrg1/ca/:/etc/hyperledger/fabric-ca-
server-config
 command: sh -c 'fabric-ca-server start -b admin:adminpw' -d

 # Orderer
 orderer:
 container_name: orderer
 image: hyperledger/fabric-orderer:latest
 environment:
 - ORDERER_GENERAL_LOGLEVEL=debug
 - ORDERER_GENERAL_LISTENADDRESS=0.0.0.0
 # Genesis
 - ORDERER_GENERAL_GENESISMETHOD=file
 - ORDERER_GENERAL_GENESISFILE=/opt/gopath/src/mnt/gen/orderer.block
 # TLS
 - ORDERER_GENERAL_TLS_ENABLED=false
 # MSP
 - ORDERER_GENERAL_LOCALMSPID=OrdererOrg
 - ORDERER_GENERAL_LOCALMSPDIR=/opt/gopath/src/mnt/msp/
 volumes:

- ../crypto/ordererOrganizations/ordererOrg1/orderers/ordererOrg1Orderer1:/opt/gopa
th/src/mnt/msp/
 - ../gen/:/opt/gopath/src/mnt/gen/
 ports:
 - 7050:7050
 working_dir: /opt/gopath/src/github.com/hyperledger/fabric

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 37	

 command: orderer

 # CouchDB for Peer0
 couchdb0:
 container_name: couchdb0
 image: hyperledger/fabric-couchdb:latest
 ports:
 - 7002:5984

 # Peer 0 (App)
 peer0:
 container_name: peer0
 image: hyperledger/fabric-peer:latest
 environment:
 - CORE_PEER_ID=peer0
 #- CORE_PEER_ADDRESS=peer0:7051
 - CORE_PEER_ADDRESS=172.18.0.5:7051
 - CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0:7051
 - CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
 - CORE_LOGGING_LEVEL=info # error | info | debug
 - CORE_NEXT=true
 - CORE_PEER_ENDORSER_ENABLED=true
 - CORE_PEER_PROFILE_ENABLED=true
 # MSP
 - CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/mnt/msp/
 - CORE_PEER_LOCALMSPID=Org1
 # Gossip
 - CORE_PEER_GOSSIP_ORGLEADER=false
 - CORE_PEER_GOSSIP_USELEADERELECTION=true
 # TLS
 - CORE_PEER_TLS_ENABLED=false
 # CouchDB
 - CORE_LEDGER_STATE_STATEDATABASE=CouchDB
 - CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS=couchdb0:5984
 volumes:
 - /var/run/:/host/var/run/

- ../crypto/peerOrganizations/peerOrg1/peers/peerOrg1Peer1/:/opt/gopath/src/mnt/msp
/
 ports:
 - 7000:7051
 - 7001:7053
 depends_on:
 - ca
 - orderer
 - couchdb0
 working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer
 command: peer node start --peer-defaultchain=false

 # Command Line Interface
 cli:

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 38	

 container_name: cli
 image: hyperledger/fabric-peer:latest
 tty: true
 environment:
 - GOPATH=/opt/gopath
 - CORE_PEER_ADDRESSAUTODETECT=true
 - CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
 - CORE_LOGGING_LEVEL=DEBUG
 - CORE_NEXT=true
 - CORE_PEER_ID=cli
 - CORE_PEER_ENDORSER_ENABLED=true
 - CORE_PEER_ADDRESS=peer0:7051
 - CORE_PEER_GOSSIP_IGNORESECURITY=true
 - CORE_PEER_LOCALMSPID=Org1
 - MNT=/opt/gopath/src/mnt
 volumes:
 # Docker socket
 - /var/run/:/host/var/run/
 # Chaincode
 - ../chaincode/:/opt/gopath/src/mnt/chaincode/
 # Scripts
 - ../scripts/container/:/opt/gopath/src/mnt/scripts/
 # Crypto Material
 - ../crypto/:/opt/gopath/src/mnt/crypto/
 # Generated Material
 - ../gen/:/opt/gopath/src/mnt/gen/
 # Logs
 - ../logs/:/opt/gopath/src/mnt/logs/
 # Data persistance
 #- ../data/:/var/hyperledger
 depends_on:
 - ca
 - orderer
 - peer0
 # Start in the scripts folder and run the init.sh script
 working_dir: /opt/gopath/src/mnt/scripts/
 #command: /bin/bash -c 'while true; do sleep 1000; done'
 command: /bin/bash -c 'sleep 2; source ./init.sh; while true; do sleep
1000; done'
	
9.1.2 Chaincode	Query()	
	
// Query - query chaincode
func (t *SimpleChaincode) Query(stub shim.ChaincodeStubInterface, function string,
args []string) ([]byte, error) {
 fmt.Println("query is running " + function)

 // Handle different functions
 if function == "read" { //read a variable
 return t.Read(stub, args)
 }

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 39	

 fmt.Println("query did not find func: " + function)

 return nil, errors.New("Received unknown function query: " + function)
}

	
9.1.3 Chaincode	Init()	
	
// Init - init function
func (t *SimpleChaincode) Init(stub shim.ChaincodeStubInterface) pb.Response {
 fmt.Println("Init")
 var err error

 // Initialize the chaincode
 // Set the business index
 var business KeyIndex
 business.ObjectType = "BusinessIndex"
 businessAsBytes, _ := json.Marshal(business)

 // Write business index to ledger
 err = stub.PutState(businessIndexStr, businessAsBytes)
 if err != nil {
 return shim.Error(err.Error())
 }

 // Set the trading index
 var trading KeyIndex
 trading.ObjectType = "TradingIndex"
 tradingAsBytes, _ := json.Marshal(trading)

 // Write trading index to ledger
 err = stub.PutState(invoicesTradeStr, tradingAsBytes)
 if err != nil {
 return shim.Error(err.Error())
 }

 // Add business index and trade index to bank user
 var bank Bank
 bank.Object = "Bank"
 bank.User = "BankA"
 bank.BusinessIndex = businessIndexStr
 bank.InvoiceIndex = invoicesTradeStr
 bankAsBytes, _ := json.Marshal(bank)
 err = stub.PutState(bank.User, bankAsBytes)
 if err != nil {
 return shim.Error(err.Error())
 }

 fmt.Println("Initialization done!")
 return shim.Success(nil)
}

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 40	

9.1.4 Chaincode	Invoke()	
	
// Invoke - Invoke functions
func (t *SimpleChaincode) Invoke(stub shim.ChaincodeStubInterface) pb.Response {
 function, args := stub.GetFunctionAndParameters()
 fmt.Println("invoke is running " + function)

 if function == "init" {
 return t.Init(stub)
 } else if function == "initUser" {
 return t.InitUser(stub, args)
 } else if function == "addCustomer" {
 return t.AddCustomer(stub, args)
 } else if function == "addInvoice" {
 return t.AddInvoice(stub, args)
 } else if function == "updateInvoice" {
 return t.UpdateInvoice(stub, args)
 } else if function == "query" {
 return t.query(stub, args)
 } else if function == "getInvoices" {
 return t.GetInvoices(stub, args)
 }

 return shim.Error("Invalid invoke function name. Expecting \"initUser\"
\"addCustomer\" \"addInvoice\" \"updateInvoice\" \"query\" \"getInvoices\"")
}
	
9.1.5 Main()	
	
func main() {
 err := shim.Start(new(SimpleChaincode))
 if err != nil {
 fmt.Printf("Error starting Simple chaincode: %s", err)
 }
}
	
9.1.6 SDK	Init	
	
// dependencies
var hfc = require('fabric-client');
var EventHub = require('fabric-client/lib/EventHub.js');
var ca = require('fabric-ca-client/lib/FabricCAClientImpl.js');
var utils = require('fabric-client/lib/utils.js');

var config = require("../config.json");
var user = require('fabric-client/lib/User.js');
var admin, chain, client;
var ca_client;
var setup = require("../setup.json");

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 41	

// Init function
exports.init = () => {
 return new Promise((resolve, reject) => {
 try {
 // Create client object
 client = new hfc();

 // Create chain object
 chain = client.newChain(config.app.channelId);

 // Add peer, orderer, ca and eventhub
 var peer = client.newPeer(config.peer.protocol + "://" +
config.peer.host + ":" + config.peer.port);
 chain.addPeer(peer);

 var orderer = client.newOrderer(config.orderer.protocol + "://" +
config.orderer.host + ":" + config.orderer.port);
 chain.addOrderer(orderer);

 var eventhub = new EventHub();
 eventhub.setPeerAddr(config.event.protocol + "://" + config.event.host
+ ":" + config.event.port);
 eventhub.connect();

 var caUrl = config.ca.protocol + "://" + config.ca.host + ":" +
config.ca.port;
 ca_client = new ca(caUrl);
 } catch (err) {
 console.log(err);
 }
 // Set Key/Val store
 return hfc.newDefaultKeyValueStore({
 path: config.app.kvsPath
 }).then((store) => {
 client.setStateStore(store);
 // Enroll admin
 return initAdmin();

 }).then((member) => {
 admin = member;

 // Initialise chain object
 return chain.initialize();

 }).then(() => {
 // get setup for users
 // test invoke
 /*
 var getUsers;
 var users = setup.initUser;
 for(user in users){

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 42	

 var setUser = getArgs(users[user]);

 exports.invoke("initUser", setUser);
 console.log("Added user: " + users[user].username);
 }
 */
 //return exports.invoke("updateInvoice", ["in1235"]);
 }).then(() => {
 // test query
 //return exports.query("query", ["businessuser"]);
 }).then((response_payloads) => {
 return resolve(response_payloads);
 }).catch((err) => {
 throw reject(err);
 });
 });
};

function initAdmin() {
 return new Promise((resolve, reject) => {
 console.log("Attempting to enroll: " + config.admin.usr);
 var member;
 // Enroll the client with the CA server
 return ca_client.enroll({
 enrollmentID: config.admin.usr,
 enrollmentSecret: config.admin.pwd
 }).then((enrollment) => {
 member = new user(config.admin.usr, client);
 return member.setEnrollment(enrollment.key, enrollment.certificate,
config.chain.org);
 }).then(() => {
 return client.setUserContext(member);
 }).then(() => {
 console.log("- Success!", true);
 return resolve(member);
 }).catch((err) => {
 console.log("- Failed", false);
 throw reject(err);
 });
 });
}
	
9.1.7 SDK	Query	
	
exports.query = (func, args) => {
 return new Promise((resolve, reject) => {

 var nonce = utils.getNonce();

 tx_id = hfc.buildTransactionID(nonce, admin);

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 43	

 var request = {
 chaincodeId: config.app.chaincodeId, // mycc
 chainId: config.app.channelId, // mych
 txId: tx_id,
 nonce: nonce,
 fcn: func,
 args: args
 };
 return chain.queryByChaincode(request)
 .then((query_result) => {
 return resolve(query_result);
 }).catch((err) => {
 throw reject("Error");

 });
 });
};
	
9.1.8 SDK	Invoke	
	
exports.invoke = (func, args) => {
 var eventhubs = [];

 return new Promise((resolve, reject) => {

 var nonce = utils.getNonce();

 tx_id = hfc.buildTransactionID(nonce, admin);
 utils.setConfigSetting('E2E_TX_ID', tx_id);

 var request = {
 chaincodeId: config.app.chaincodeId,
 chainId: config.app.channelId,
 txId: tx_id,
 nonce: nonce,
 fcn: func,
 args: args
 };
 return chain.sendTransactionProposal(request)
 .then((results) => {
 var proposalResponses = results[0];

 var proposal = results[1];
 var header = results[2];
 var allGood = true;
 // Verify proposal response from the chain
 for (var i in proposalResponses) {
 let oneGood = false;
 let proposalResponse = proposalResponses[i];
 if (proposalResponse.response &&
proposalResponse.response.status === 200) {

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 44	

 console.log("Transaction proposal has response status of
good");
 oneGood = chain.verifyProposalResponse(proposalResponse);
 if (oneGood) {
 console.log("Transaction proposal signature and
endorser are valid");
 }
 } else {
 console.log("Transaction proposal failed");
 }
 allGood = allGood & oneGood;
 }
 if (allGood) {
 // Check all the read/write sets to see if the same, verify
that each peer
 // got the same results on the proposal
 allGood =
chain.compareProposalResponseResults(proposalResponses);
 console.log("CompareProposalResponseResults exection did not
throw an error");
 if (allGood) {
 console.log("All proposals have a matching read/writes
sets");
 } else {
 console.log("All proposals do not have matching read/writes
sets");
 }
 }
 if (allGood) {
 // Check to see if all results match

 var request = {
 proposalResponses: proposalResponses,
 proposal: proposal,
 header: header
 };

 // Set the transaction listener and set a timeout of 30sec
 // if the transaction did not get committed within the timeout
period,
 // fail the test
 var deployId = tx_id.toString();

 var eventPromises = [];
 eventhubs.forEach((eh) => {
 console.log("deployId" + deployId.toString());

 var txPromise = new Promise((resolve, reject) => {
 var handle = setTimeout(reject, 30000);

 eh.registerTXEvent(deployId.toString(), (tx, code) => {

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 45	

 clearTimeout(handle);
 eh.unregisterTxEvent(deployId);
 if (code !== 'VALID') {
 console.log('The balance transfer transaction
was invalid, code = ' + code);
 } else {
 console.log('The balance transfer transaction
has been committed on peer ' + eh.ep._endpoint.addr);
 resolve();
 }
 });
 });
 eventPromises.push(txPromise);
 });

 var sendPromise = chain.sendTransaction(request);
 return Promise.all([sendPromise].concat(eventPromises))
 .then((result) => {
 console.log('Event promise all complete and testing
complete');
 return result[0];
 }).catch((err) => {
 console.log('Failed to send transaction and get
notifications within the timeout period.');
 });
 }

 }).then(() => {
 return resolve();
 })
 .catch((err) => {
 throw reject('Error');

 });
 });
};
	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 46	

9.2 Feedback	from	Equiniti	

	
	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 47	

Glossary	
	
Block	
A	set	of	transactions	that	is	cryptographically	linked	to	the	previous	block	in	a	blockchain.	
	
Consensus	
Agreement	and	verification	of	transactions	in	a	block.	
	
Factoring	
Short-term,	non-bank	financing	of	accounts	receivable.	
	
Factoring	Company	
A	finance	institution	in	which	a	business	sells	its	accounts	receivable	to	at	a	discount.	
	
Hyperledger	Fabric	
Open	source	private	blockchain	network.	
	
Ledger	
The	blockchain	and	current	state	data	maintained	by	each	peer	in	a	peer-to-peer	network.	
	
Node	
A	connection	point	in	a	network.	
	
Protocol	Buffers	
A	method	of	serialising	structured	data.	
	

Table	of	Abbreviations	
	
AJAX	
Asynchronous	JavaScript	and	XML	
	
API	
Application	Programming	Interface	
	
CA	
Certificate	Authority	
	
CORS	
Cross-Origin	Resource	Sharing	
	
GRPC	
Google	Remote	Procedure	Call	
	

HFC	
Hyperledger	Fabric	Client	
	
LDAP	
Lightweight	Directory	Access	Protocol	
	
REST	
Representational	State	Transfer	
	
SDK	
Software	Development	Kit	
	
	
	
	 	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 48	

Works	Cited	
	
[1]		 Bitcoin,	“Open	Source	P2P	money,”	Bitcoin,	2009.	[Online].	Available:	

https://bitcoin.org/en/.	[Accessed	20	3	2017].	
[2]		 A.	Narayanan,	“Cryptography	and	Cyptocurrencies,”	in	Bitcoin	and	Cryptocurrency	

Technologies:	A	Comprehensive	Introduction,	E.	F.	A.	M.	S.	G.	Joseph	Bonneau,	Ed.,	
Princeton,	Princeton	University	Press,	2016,	p.	11.	

[3]		 A.	Narayanan	and	A.	Miller,	“Cryptocurrencies,	Blockchains,	and	Smart	Contracts,”	
ACMQUEUE,	vol.	60,	no.	5,	p.	49,	2017.		

[4]		 L.	Luu,	Chu,	D-H.,	Olickel,	H.,	P.	Saxena	and	A.	Hobor,	“Making	Smart	Contracts	
Smarter,”	In	ACM	SIGSAC	Conference	on	Computer	and	Communications	Security,	p.	
254,	24-28	10	2016.		

[5]		 G.	Volpicelli,	“How	the	blockchain	is	helping	stop	the	spread	of	conflict	diamonds,”	
2017.	[Online].	Available:	http://www.wired.co.uk/article/blockchain-conflict-
diamonds-everledger.	[Accessed	20	4	2017].	

[6]		 A.	Narayana	and	A.	Miller,	“Cryptocurrencies,	Blockchains,	and	Smart	Contracts,”	
ACMQUEUE,	vol.	60,	no.	5,	p.	50,	2017.		

[7]		 World	Trade	Organization,	“WTO	|	Trade	Finance,”	2017.	[Online].	Available:	
https://www.wto.org/english/thewto_e/coher_e/tr_finance_e.htm.	[Accessed	1	5	
2017].	

[8]		 A.	Berke,	“How	Safe	Are	Blockchains?	It	Depends.,”	7	3	2017.	[Online].	Available:	
https://hbr.org/2017/03/how-safe-are-blockchains-it-depends.	[Accessed	2	5	2017].	

[9]		 Staff,	Entrepreneur,	“Trade	Credit,”	13	2	2017.	[Online].	Available:	
https://www.entrepreneur.com/encyclopedia/trade-credit.	

[10]		Investopedia,	“Factor,”	2017.	[Online].	Available:	
http://www.investopedia.com/terms/f/factor.asp.	[Accessed	15	2	2017].	

[11]		Investopedia,	“Invoice	Financing,”	2017.	[Online].	Available:	
http://www.investopedia.com/terms/i/invoice-financing.asp.	[Accessed	15	2	2017].	

[12]		Hyperledger,	“Meet	Hyperledger:	An	“Umbrella”	for	Open	Source	Blockchain	&	Smart	
Contract	Technologies,”	2016.	[Online].	Available:	
https://www.hyperledger.org/blog/2016/09/13/meet-hyperledger-an-umbrella-for-
open-source-blockchain-smart-contract-technologies.	[Accessed	20	3	2017].	

[13]		IBM	Blockchain,	“The	Hyperledger	Project,”	2016.	[Online].	Available:	
https://www.ibm.com/blockchain/hyperledger.html.	[Accessed	12	2	2017].	

[14]		Hyperledger	Fabric,	“Fabric-SDK-Node/web-app-developer.png,”	2016.	[Online].	
Available:	https://github.com/hyperledger/fabric-sdk-
node/blob/master/docs/images/web-app-developer.png.	[Accessed	20	2	2017].	

[15]		Hyperledger-fabricsdocs	,	“Architecture	Explained,”	2017.	[Online].	Available:	
http://hyperledger-fabric.readthedocs.io/en/latest/arch-deep-dive.html.	[Accessed	15	
3	2017].	

[16]		Hyperledger,	“Getting	Started,”	2017.	[Online].	Available:	http://hyperledger-
fabric.readthedocs.io/en/latest/getting_started.html.	[Accessed	26	3	2017].	

The	Use	of	Blockchain	Technology	in	Smart	Contracts	 Deborah	Khoo	(C1461872)	

	 49	

[17]		NodeJS,	“Node.js,”	2017.	[Online].	Available:	https://nodejs.org/en/.	[Accessed	20	3	
2017].	

[18]		Docker,	“What	is	Docker?,”	2017.	[Online].	Available:	https://www.docker.com/what-
docker.	[Accessed	20	3	2017].	

[19]		Hyperledger,	“Setting	Up	a	Network,”	2017.	[Online].	Available:	http://hyperledger-
fabric.readthedocs.io/en/v0.6/Setup/Network-setup.html.	[Accessed	20	2	2017].	

[20]		Hyperledger	Fabric,	“End-to-End	Flow,”	2017.	[Online].	Available:	
https://github.com/hyperledger/fabric/blob/master/examples/e2e_cli/end-to-end.rst.	
[Accessed	10	4	2017].	

[21]		Hyperledger-fabricdocs,	“The	Fabric	Model,”	2017.	[Online].	Available:	
http://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html#assets.	
[Accessed	5	4	2017].	

[22]		IBM-Blockchain,	“Learn	how	to	write	chaincode,”	2016.	[Online].	Available:	
https://github.com/IBM-Blockchain/learn-chaincode.	[Accessed	25	3	2017].	

[23]		Hyperledger-fabricdocs,	“What	is	chaincode?,”	2017.	[Online].	Available:	
http://hyperledger-fabric.readthedocs.io/en/latest/chaincode.html#chaincode-
interfaces.	[Accessed	26	3	2017].	

[24]		Google,	“GRPC,”	Google,	2015.	[Online].	Available:	http://www.grpc.io/about/.	
[Accessed	15	4	2017].	

[25]		Hyperledger,	“Hyperledger	Composer,”	Hyperledger,	2017.	[Online].	Available:	
https://github.com/hyperledger/composer.	[Accessed	25	4	2017].	

	
	
	
	

