
CM2303 - One Semester Individual Project

40 Credits

Initial Plan

A sprite-based video game engine and

editor for creating component-based games

Jack Edwards

Supervised by
Yukun Lai

Moderated by
Paul Rosin

January 30, 2017

Contents

1 Project Description 3

2 Aims & Objectives 4
2.1 Software Development Methodology . 4
2.2 Software Architecture . 4
2.3 Game Engine . 5
2.4 Game Editor . 5
2.5 Example Game . 6
2.6 Software . 6

3 Work Plan 8

1

List of Figures

2.1 Onion architecture diagram . 4

3.1 Time plan . 8
3.2 User stories assigned to each feature . 9
3.3 The description of the 'Switch between scenes' user story 10

2

1. Project Description

Modern technology has made the creation of video games a much more accessible task to
individuals without the funds for expensive computer hardware and software, causing a
huge increase in the number of independent games on the market. A contributing factor
to this is the wide availability of high-powered game engines and editors such as Unity and
Unreal Engine, which abstract a lot of the low-level details of a game to allow the user to
focus on high-level development. Unity in particular features an entity-component system,
allowing users to add functionality to a game by creating custom, modular components.
This leads to a very e�cient work�ow by obscuring the complex details that allow the
engine to function (e.g. rendering, memory management) and allowing the user to focus
on implementing functionality speci�c to their game. Although there are many engines
to choose from these days, the majority of the most popular engines focus on 3D game
development and either feature no support for developing 2D games or very limited support,
usually considering it an afterthought. Regardless of this, 2D video games are still popular
and very much in demand.

This project aims to allow the creation of 2D games, utilising an entity-component
system to allow users to easily add functionality to their games by creating modular com-
ponents, without the need to consider every aspect of the underlying architecture of the
game engine. There are three main features that the project aims to deliver - a game en-
gine, a game editor and an example game. The game engine will be the underlying engine
that users will use as a base for their games and will include low-level features that allow
the engine to function and several high-level features that users are able to take advantage
of. The game editor will be a Windows desktop application that will integrate with the
game engine and allow users to create games using a graphical interface as opposed to
creating them entirely by writing code. The example game will be a clone of the popular
game `Brick Breaker' and will showcase the capabilities of the game engine.

3

2. Aims & Objectives

This project can be divided into several aims and objectives that must be achieved to
produce a high quality, �nished product.

2.1 Software Development Methodology

To ensure that the development process proceeds as smoothly as possible and the prod-
uct meets a high standard, I must follow a software development methodology. For this
project, I will use a subset of the Agile[1] methodology called Scrum[2]. Using the Scrum
methodology, work is completed in sprints. A list of all the desired features of the prod-
uct is created at the beginning of the development process, and when each sprint begins
a subset of those features will be added to the sprint to be completed before the end of
the sprint. Using the Scrum methodology allows for a �exible development process by
utilising minimal planning, because if any changes need to be made it will not cause too
much disruption to the development process. Another advantage of using Scrum is that
the product is constantly kept in a shippable state, because testing is performed at the
end of each sprint to ensure that the software works correctly at all times.

In this project, I will be working in 12 1-week long sprints dated from 30/01/17 -
23/04/17. Each sprint will begin with the implementation of any features in the current
sprint, followed by �xing any outstanding bugs and ending with testing the features im-
plemented in the sprint. If bugs are found in features implemented in any given sprint,
the task of �xing those bugs will be added to the next sprint - due to this, I should be
conservative when deciding which features to implement in each sprint to ensure that there
will always be enough time to complete all of the tasks in a sprint. If a sprint is completed
early (i.e. there are no remaining tasks), development can continue by working on tasks
from the next sprint.

2.2 Software Architecture

Due to the large scope of the project, the architecture of the software must be considered
carefully. In this project I will use the Onion architecture[3] for the development of the
engine and the editor. The Onion architecture describes a layered architecture that helps
to keep code clean and reusable by only allowing layers to reference inner layers in the
project. The 3 layers that I will use in my projects are Core, Data and UI where the core
is at the centre, the data layer is outside and can reference the core, and the UI layer is
the outer-most layer and can reference both the core and data layers. This architecture
allows the core of the project to be separated from the data and the presentation of the
software. This type of architecture also makes for better maintainability and testability.

Figure 2.1: Onion architecture diagram

4

2.3 Game Engine

The game engine will be the underlying engine that users will use as a base for their games
and will include a number of low-level features that allow the engine to function correctly as
well as a selection of high-level features that the user can take advantage of. For example,
the engine will feature built-in support for detecting collisions between entities and reacting
to them within any component. The main features of the engine are as follows:

• Entity-component system - A system that allows functionality to be added to a
game by creating generic entities, creating custom components and attaching com-
ponents to entities.

• Scenes - Entities, components and resources will belong to a scene, and a game can
contain multiple scenes. Scenes can be used to separate levels, areas of a game etc.

• Rendering - The engine will feature sprite rendering and text rendering. Image �les
can be used as textures for sprites, and fonts can be used when rendering text.

• Game Loading - The engine will be able to launch a game from a .crunch �le - an
XML �le that describes the scenes, entities, components and resources in a game.
This is the �le that will be output by the game editor.

• Resource saving/loading - The engine will be able to load and save resources.
For example, an image can be loaded to be used as a texture, or a text �le could be
saved to track the players score.

• UI Controls - The engine will contain several prede�ned controls to allow the user
to create their own user interfaces. These controls will include labels, text boxes and
check boxes.

• Audio - The engine will support audio clips that can be be used for sound e�ects
and background music. The user will be able to control the audio volume and decide
whether an audio clip should loop.

• Animation - The engine will allow animated sprites to be used within games. Users
will be able to use looping animations that play continuously and animations that
will begin when they are triggered.

The engine will also include several ready-made components for users to take advan-
tage of that will handle various commonly included functionality such as collision detec-
tion/reaction, transformable game cameras and user interface controls (buttons, text boxes
etc.).

2.4 Game Editor

The game editor will be a Windows desktop application created using WPF (Windows
Presentation Framework) that will integrate with the game engine and allow users to
create games using a graphical interface by adding and transforming entities, attaching
components to entities, adjusting the values a components properties and handling game
resources. The main areas of the editor are as follows:

• Entity hierarchy - A tree view that allows users to see the hierarchy of entities
within their game and add new entities.

5

• Entity properties view - A pane that allows users to edit values related to a single
entity, such as its name and its enabled status. Each component attached to the
speci�ed entity is also displayed along with the properties of each component, also
allowing the user to edit these properties using an appropriate control (a text box
for string values, e.g. a slider for integer values).

• Resources view - A list of all of the resources included in the current game (images,
sounds etc.). This area allows the user to add resources that already exist on their
computer, remove resources that already exist in the project and create new resources
for the game to use.

• Scene viewer - A Monogame instance that allows the user to transform entities
in a graphically interactive manner. For example, if the user adds an entity with
a Sprite component the sprite will be displayed at the speci�ed coordinates in the
scene viewer. The user is then able to select an entity and translate, rotate and scale
it by manipulating on-screen handles using the mouse cursor.

• Game view - Allows the user to test the game they are creating by running it
directly within the editor.

2.5 Example Game

After the completion of the engine and editor I will produce an example game - a clone of
the popular `Brick Breaker' game, to showcase all of the capabilities of the engine. This
game will contain the following features:

• Sprite rendering

• Text rendering

• User input detection/reaction

• Multiple scenes and navigating between scenes

• Resource loading/saving

• Collision detection/reaction

• Sprite animation

• Sound e�ects

• Background music

• An adjustable game camera

• Various user interface controls

2.6 Software

Throughout the development process I will use a range of di�erent software and libraries
to allow me to work e�ciently and e�ectively.

• Visual Studio 2015 - I will be writing all of my code within Visual Studio[4] due
to its superb support of my language of choice, C#. As well as allowing me to
write code, it features built-in support for checking code into source control, building
& deploying projects, visually creating WPF interfaces and integration with Visual
Studio Team Services[5].

6

• Visual Studio Team Services - This is the software I will be using to handle source
control because of its superior integration with Visual Studio. As well as managing
source control, it has fantastic features for managing projects - speci�cally projects
that use the Scrum architecture. I will use the software to manage sprints, create
user stories and assign tasks to certain sprints. It also supports the ability to mark
tasks as 'Complete' when the associated code is checked into source control, allowing
me to always have an up-to-date overview of what is left to complete in each sprint.

• Monogame - I will be using Monogame[6], an open-source implementation of Mi-
crosoft's deprecated XNA framework, to create the game engine. Due to the scope of
the project I decided that using Monogame would be the best choice because it will
allow me to focus on the higher-level details of the engine. For example, if I were to
create the engine from the ground up using DirectX I would not be able to �t all of
the desired features of the project into my time plan.

7

3. Work Plan

Due to the fact I will be working in sprints and I have decided to use Visual Studio Team
Services to manage those sprints, I decided that the most reliable way to create a work
plan would be using the software. Using VSST, I have outlined all of the features that
need to implemented in the engine, the editor and the example game and assigned each
feature to a speci�c sprint. I have made sure to leave spare time in each sprint to account
for any bugs that need to be �xed, di�erent features that need to be added or if the project
is otherwise delayed for some reason. Each sprint in �gure 2 lasts one week, from Monday
to Sunday, beginning on 30/01/17.

Figure 3.1: Time plan

To help to determine how long a feature may take to implement, as well as helping with
the actual development of a feature, I have assigned user stories to each feature, as shown
in �gure 3. These user stories describe exactly what the software should be able to do
from a users perspective. For example, the engine has a 'Scenes' feature that contains the
user story 'Switch between scenes'. The description of this user story describes how a user
should be able to switch between di�erent scenes, as shown in �gure 4. At the beginning
of each sprint I will add more speci�c tasks to each user story (e.g. 'Create Scene class')
to help with the development process.

8

Figure 3.2: User stories assigned to each feature

9

Figure 3.3: The description of the 'Switch between scenes' user story

Alongside development, I will be meeting with my project supervisor to review my
progress every two weeks on a Friday, beginning on 03/02/17.

10

Bibliography

[1] Agilemethodology.org The Agile Movement. http://agilemethodology.org/.

[2] Scrummethodology.com An Empirical Framework For Learning (Not a Methodology).
http://scrummethodology.com/.

[3] Chetan Vihite's Blog Understanding Onion Architecture - Chetan Vihite's
Blog. http://blog.thedigitalgroup.com/chetanv/2015/07/06/understanding-onion-
architecture/.

[4] Visual Studio Visual Studio | Developer Tools and Services | Microsoft IDE.
https://www.visualstudio.com/.

[5] Visual Studio Agile, Git, CI | Visual Studio Team Services.
https://www.visualstudio.com/team-services/.

[6] Monogame.net MonoGame | Write Once, Play Everywhere.
http://www.monogame.net/.

11

http://agilemethodology.org/
http://scrummethodology.com/
http://blog.thedigitalgroup.com/chetanv/2015/07/06/understanding-onion-architecture/
http://blog.thedigitalgroup.com/chetanv/2015/07/06/understanding-onion-architecture/
https://www.visualstudio.com/
https://www.visualstudio.com/team-services/
http://www.monogame.net/

	Project Description
	Aims & Objectives
	Software Development Methodology
	Software Architecture
	Game Engine
	Game Editor
	Example Game
	Software

	Work Plan

