
	
	

Modelling Cyberattacks in Internet of
Things Environments

Thomas Jack Stevens

Cardiff University

School of Computer Science and Informatics

May 2017

	
	

Acknowledgements

Firstly, I would like to thank my supervisor, Prof. Omer Rana, for his support and guidance while I
undertook this project.

I would also like to thank Laurence Semmens, the school of Computer Science and Informatics Facilities
and Technical Services Officer, for his assistance with the hardware used for this project.

	
	

Abstract	

In this report, the security of using the Libelium Waspmote as part of a sensor network is
investigated. The wireless technologies used are XBee 802.15.4 and WiFi.

An overview is given of the technologies being used as well as there being an overview of potential
security threats to these technologies. Following that there is an investigation into the security features of
using XBee with the Waspmote to perform over-the-air programming. This is followed by explanations
and demonstrations of gaining authorised access to a WiFi access point without knowing the security key.
There are then explanations and demonstrations of two types of man-in-the-middle attack, one which is
performed when network access can be achieved, and one when network access is not possible. Finally,
there is a discussion of possible further work that could be done and a conclusion to sum up the results.

Overall, the findings show that the Waspmote is a well-secured device which has support for many
modern security features. The things most likely to compromise the security of the Internet of Things and
sensor networks are the wireless technologies they rely on.

	
	

Table of Contents
Chapter 1: Introduction .. 1

Project Aims ... 1

Project Scope .. 1

Project Outcomes .. 1

Chapter 2: Background ... 2

Chapter 3: Approach ... 3

Introduction ... 3

Waspmote ... 3

Waspmote Data Frame ... 5

Wireless Technologies .. 6

Network Security ... 8

Security Mechanisms ... 9

Types of Attack .. 10

Examples of Attacks ... 11

Man-In-The-Middle .. 11

Denial of Service ... 11

Software Environment ... 5

Kali Linux ... 5

Chapter 4: Implementation .. 13

Programming .. 13

Investigation ... 14

OTAP Investigation ... 14

WiFi Investigation ... 18

Gaining Access to a WEP Protected Network ... 19

Gaining Access to a WPA-Protected Network .. 24

Man-in-the-Middle with Network Access ... 26

Man-in-the-Middle Attack without Network Access .. 29

Chapter 5: Conclusion ... 33

Chapter 6: Further Work .. 34

Chapter 7: Reflection on Learning .. 35

References ... 35

	
	

Figure 1. Putting wireless interface into monitor mode ... 20
Figure 2. Collecting information about nearby access points ... 21
Figure 3. Capturing packets from the target access point ... 22
Figure 4. Performing an ARP replay attack ... 23
Figure 5. Demonstrating how many IVs have been captured .. 23
Figure 6. Showing WEP key discovery ... 24
Figure 7. Demonstrating reaver command .. 25
Figure 8. Showing Reaver failure ... 26
Figure 9. Nmap scanning the network for connected devices .. 27
Figure 10. Demonstration of ARP spoofing failure ... 28
Figure 11. Demonstrating creation of evil twin with airbase-ng .. 30
Figure 12. Commands used to provide evil twin internet access ... 31
Figure 13. Packet capture demonstrating Waspmote accessing internet through evil twin 32
	

1	
	

Chapter 1: Introduction
Project Aims
	

The aim of this project is to better understand the types of cyberattacks which take place on the
Internet of Things (IoT), investigating both attacks which can be performed on sensor devices, as well as
sensor networks. This involves researching the wireless technologies used within sensor networks, the
network architecture of sensor networks, the types of security used within these networks, and the types of
attacks which can be performed within these networks. The second part of the project involves
demonstrating some of these attacks using an IoT device, to show how these attacks can actually be
executed and the effects that these attacks can have. The final aim of this project is to then discuss the
implications of these attacks, as well as things that can be done to mitigate the chances of an attack occurring
on a sensor device/network.

Project Scope
	

For this project, I will be using a Libelium Waspmote v12 device. Along with this device, I will be
using XBee 802.15.4 and WiFi modules to provide the Waspmote with wireless capabilities. As a result, I
will be focussing on networks which use these two technologies to operate. On top of this, any
demonstrations of an attack on the Waspmote cannot be guaranteed to work on any device other than the
Waspmote v12, as there may be differences in hardware or software. These issues will be addressed in the
appropriate part of the report. Finally, encryption will mostly be ignored for this project. In most cases,
symmetric encryption is available as a security measure, but circumventing symmetric encryption is generally
outside the scope of this project. This decision will be addressed in greater detail further in the report.

Project Outcomes
	

The desired outcome of this project is to have a better idea of the state of security in the field of
the Internet of Things. To be able to identify where potential security issues could arise and to have the
ability to prevent issues as best as possible. The other desired outcome for this project would be to see how
these things apply specifically the Waspmote.

2	
	

Chapter 2: Background
	

Over the past few years, the Internet of Things (IoT) has started to have a large effect on the
public’s connected lives. From wearables which can record and send health data to mobile phones and
washing machines which send texts when washing is done, to home automation systems which can be
controlled from anywhere in the globe, more and more devices are attached to the internet. Even if it
appears an individual's life has not been touched directly by this widespread interconnectedness, it is
unlikely that this is the case. Not only has IoT become popular within consumer products, there has been
widespread uptake by businesses as well. IoT has allowed the agriculture industry to track temperature,
light, moisture, and tens of other environmental characteristics with the aim of increasing efficiency.
Retailers have also been able to use the Internet of Things to keep better track of stock and automatically
order more product when the stock is running low. Here we can see that IoT is affecting people's lives
without them necessarily knowing about it. There is no doubt that the Internet of Things is having a large
effect on the modern world. At the time of writing, the amount and range of devices seem to be increasing
rapidly year on year with no sign of slowing down.

In a time where the number of devices connected to the internet, as well as the hardware and
software systems that comprise them, is increasing so rapidly, it is important to take the time to consider
the security involved. There are many new systems which are connected to the internet, send private and
personal data, which have not been thoroughly tested. Whenever there is a connection between two devices,
there is almost always the potential for there to be unauthorised access to this connection, at least to some
degree. As a result, there is a lot of testing which can be done.

A study conducted by Ponemon Institute LLC confirms the potential security concerns in the area
of the Internet of Things (Ponemon Institute LLC, 2017). The study found that 48% of companies do not
test the IoT applications they develop. The study also surveyed companies on their attitudes towards the
security of IoT applications. The surveys suggested that companies are fairly apathetic towards increasing
security. In the survey, the event most likely to cause a company to increase its budget for security was “A
serious hacking incident affecting your organisation”. Even as the most likely cause for increasing the
security budget, this would still only cause 54% of the companies surveyed to increase their budget for
security.

This study shows just how important it is for security to be considered for in the Internet of Things.
As the Internet of Things continues to grow rapidly and companies continue to ignore security concerns
we will see more and more instances of security breaches. It is important for new IoT devices to be security
tested, by the company who produces them or by a third party. This will allow consumers to make more
educated decisions about the devices they chose to use in their lives. With consumers being more educated
about the security concerns with IoT devices, it might result in improved security across the board as
consumers choose to take their purchasing power to companies providing better security.

3	
	

Chapter 3: Approach
Introduction
	

This section of the report discusses the that approach has been taken for this project. It discusses
what technologies were used and why they were chosen. It also includes discussion of some research which
has been done into relevant topics.

Waspmote
	

As previously mentioned, the device being used for this project is a Libelium Waspmote. On
Libelium’s web page for the Waspmote (Libelium, 2017), they describe it as an “Open Source Sensor Node
for the Internet of Things”. That succinct description accurately portrays precisely what the Waspmote is.
The Waspmote consists of a circuit board containing an ATmega1281 microcontroller, interfaces for
peripherals, an accelerometer, LEDs, switches, and buttons. There are connectors for solar panels, a battery,
and for a mini USB connection (Libelium, 2017).

There are two main interfaces for the peripherals, the sockets for the radio modules, and the
sockets for the sensor modules. The Waspmote does not have any on board wireless capabilities and
therefore uses removable modules to provide wireless capabilities. The advantage to using this technique is
that it opens the Waspmote up to using a variable of wireless technologies, allowing it to integrate into
many different physical and technological environments. The socket for the wireless modules uses a
common 20 pin through-hole design. Using this common socket design, along with the open source nature
of the Waspmote also allows new types of wireless modules to be compatible with the Waspmote without
them being specifically designed for it.

The other interface on the Waspmote board is the sockets for sensors. These sockets can be used
in one of two ways. It is possible, especially with more simple systems, to plug the sensors directly into the
Waspmote board. The second method for using the sensor socket is to plug in one of the sensor boards
which are also provided by Libelium. The sensor boards are boards specifically designed to plug into the
sensor sockets on the Waspmote board. Libelium tends to provide sensors in groups designed for specific
circumstances, for example, they offer a kit called “Smart Cities” (Cooking Hacks, 2017). This kit comes
with sensors designed to gather information from within a city environment. This includes temperature,
humidity, and ultrasound. Along with this kit, the Smart Cities board is also provided. Each sensor that
comes as part of this kit has a specific part of the Smart Cities board that it is meant to be plugged into.
The advantage of using the sensor boards with their specifically designated sockets is that developers can
use programs which have already been written to work specifically with each board as a base for their own
programs. Doing this means that as long as the sensors are plugged into the correct socket, the developer
can guarantee that the sensors will be set up correctly.

The Waspmote itself is programmed in C++, although the C++ standard library is not provided.
Instead, the Waspmote uses a collection of open source libraries in the form of the Waspmote API.
Programming the Waspmote is done in a Processing (Processing, 2017) environment. In this environment,
programs are referred to as sketches and are saved into a “sketchbook” directory. The traditional Processing
Development Environment (PDE) consists of a simple text editor with the ability to compile and run the
written sketch. As programs written for the Waspmote are not run on the machine they have been written
on, the PDE is modified for use with the Waspmote. The text editor and compile functionality of the PDE
remain the same, but the run functionality is replaced with the ability to upload the compiled program to
the Waspmote. Once the Waspmote has been connected to the computer, the modified PDE allows the
user to select the version of the Waspmote board which is being used, as well as the USB port which the
board is attached to. Once these two options have been selected, the PDE is able to upload the compiled

4	
	

program to be run on the Waspmote. As well as the run functionality being replaced with the upload
functionality, the libraries which are provided with the PDE are also different. Processing is normally used
to write graphical programs which would not be compatible with the Waspmote, therefore the Waspmote
PDE has the Waspmote libraries included, instead of the normal Processing libraries.

The main feature of a Processing program is the program structure. Instead of having a main
function as the entry point for the program, Processing defines two functions which must be included in
the sketch. These two functions are “setup” and “loop”. The setup function is run once upon the start of
the program and then the loop function is run continually until the program is stopped. In the context of
the Waspmote, this means that the setup function is run once upon the Waspmote being turned on/reset
and then the loop function is run continuously until the Waspmote is turned off/reset. This program
structure is perfect for sensor nodes as their general purpose is to continually detect sensor information
and send that information to somewhere else. This allows the sensors and wireless modules to be initialised
in the setup function and information to collected, processed, and sent during the loop function.

One of the biggest features of the Waspmote is its API. Combined with the Waspmotes plug-and-
play interface for its sensors and wireless modules, the API makes the Waspmote an easy piece of hardware
to work with. The API includes simple libraries to work with all the different supported wireless modules
and sensors. To go along with these libraries, there is also an API for Waspmote data frame. This is a data
frame specifically designed for sending sensor data from a Waspmote. The libraries for the wireless modules
have specific functions for sending these frames. These libraries are extremely well documented on the
Libelium website, making them very approachable for developers. As well as these libraries, the Waspmote
PDE comes with many different sketches giving examples of different Waspmote functionalities with
different combinations of sensors and wireless modules. This allows developers to essentially create their
own programs by using parts of already written programs, instead of writing their own programs from
scratch. All of this contributes to the ease of use of the Waspmote. The Waspmote also provides low-level
functions as part of the API allowing you to reference specific sockets on the board. Having all the
functionality of C++ as well as the Waspmote libraries means that developers are able to write their own
libraries if they wish to use sensors or wireless modules which are not already covered by the Waspmote.
The fact that the Waspmote API is open source makes it simple for developers to look at the libraries for
wireless modules and sensors which are already supporting, helping them to develop their own libraries.

Finally, there are two features of the Waspmote which are often touted across the Libelium website.
These two features are over-the-air programming (OTAP) and encryption libraries. Over the air
programming is an interesting feature as it allows the firmware being run on the Waspmote to be changed
wirelessly over the network. With version V12 of the Waspmote, OTAP can be done using WiFi, XBee,
3/4G, and GPRS. This feature has many benefits for sensor networks as it means that all the nodes in the
network can be updated within a relatively short period of time. It means that an engineer doesn’t have to
go around updating the firmware on all the devices one by one using a wired connection. It also allows the
Waspmotes to be updated easily in environments where it would be difficult for humans to get out into the
field. This feature also provides interesting security concerns as it has the potential to allow an attacker to
reprogram the Waspmote without having physical access to it.

The other feature of the Waspmote which Libelium likes to draw attention to is its encryption
libraries. Also part of the Waspmote API, the Waspmote has a variety of encryption libraries at its disposal.
The encryption capabilities of the Waspmote will discussed in great detail later on in this section.

5	
	

Waspmote Data Frame
	

Something which was briefly mentioned in the previous section is the Waspmote Data Frame. As
sending information wirelessly is one of the primary features of the Waspmote it seems appropriate to go
into greater detail about the Waspmote Date Frame. The Waspmote Data Frame is the recommended
format for sending sensor data using the Waspmote (Libelium, 2017). The data frame can take two forms,
ASCII, and binary. ASCII is seen as the preferred form as it is easier to comprehend. Both forms are split
into a header and a payload. The start of an ASCII frame is indicated by <=>. The next byte of the frame
defines the type of frame. The most significant bit signifies whether the frame is an ASCII or binary frame.
The other 7 bits hold extra information, like the purpose of the frame and whether the frame is encrypted
or not. The next specifies the number of fields that are being sent in the payload. The next value in the
header is a 16 byte serial ID for the Waspmote. The serial ID is unique to each Waspmote and cannot be
overwritten. The next 0 to 16 bytes is the Waspmote ID. This can be set by the developer and can be used
to identify each Waspmote on the network. The next byte is a frame sequence counter. This counter is used
to detect whether frames have been lost. The counter is the last piece of information which is in the header
and the payload follows. The data from the ASCII Waspmote Data Frame is sent in the format “sensor
label”:”value”. Values in the header and in the payload are separated by the hash symbol.

The main purpose of the binary frame is to reduce the frame size. The only time when it is
suggested to use binary frames is when bandwidth might be an issue and frames need to be as small as
possible. The binary frame varies in a couple ways. In the header, the space that was occupied by the number
of fields in the payload in the ASCII frame instead shows the number of bytes in the payload in the binary
frame. There are also fewer hash separators in the header. The most interesting difference is in the payload
of the binary frame. The sensor label-value pair format in the ASCII frame uses much more data than is
necessary as all the information is sent in ASCII format. This means that each character sent is one byte.
The binary frame uses a different technique to reduce the amount of data sent across the network. Libelium
have a table (Libelium, 2017) which lists all of the sensors which are compatible with the Waspmote. In
this table they give each sensor a 1 byte unique ID as well as storing how many bytes the data from each
sensor needs. This means that much more information can be sent using fewer data. For example, using
the ASCII frame temperature would be sent in the frame as “TCA:xx.xx#” which means 10 bytes are being
sent to convey the temperature information. When using binary frames, you only need 5 bytes to send
temperature information. Here, they payload has essentially been halved. The downside is that the program
receiving the frame needs to have access to all the information in the table. It also means you cannot send
data from sensors which are not listed in this table unless you can modify the program which is receiving
the frame. For this project, ASCII frames will be used as they are much easier to process.

Software Environment
Kali Linux
	

Many of the attacks in this report require a device with a WiFi network interface to perform them.
I am using a laptop running Kali Linux to do this. Kali Linux is a Linux distribution which comes with
many programs used for offensive security preinstalled. This seemed like the obvious choice of setup for
this project as it comes packaged with much of the software required to perform the attacks later in the
project.

6	
	

Wireless Technologies
	

One of the first things to consider when working with an IoT device is how the device is going to
achieve network connectivity. In real life sensor networks, it is essentially a given that network connectivity
will be achieved through wireless technology. Although it may be possible to create a sensor network using
wired connection, in most scenarios it is impractical to try and wire a network together due to circumstances
such as the number of sensors, the location of the sensors, the distance between sensors, and the network
topology.

At this point, the first meaningful decision to be made is which wireless technology to use.
Although separated in this report for ease of reading, the question of which wireless technology to use is
heavily interconnected with the question of what type of network architecture to use. Different wireless
technologies lend themselves to different network architectures. The next section on the types of network
will go into further detail of this.

The Waspmote Student Kit and the Waspmote Evaluator Kit comes with a variety of wireless
modules which can be used with the Waspmote (Libelium, 2017). The decision was made to use the WiFi
module and the XBee 802.15.4 module. The decision to limit the selection of modules to two was made to
allow adequate time to be spent working with each module. As for the two modules, themselves, they were
chosen together for their differences.

The Waspmote API has classes written for each wireless module. The class for the WiFi module
has functions which support TCP/IP networks. This has the obvious advantage of TCP/IP networks being
extremely commonplace, as well as being the core of the internet. This allows the Waspmote to easily
communicate with already established network infrastructure. This means the Waspmote can communicate
using common application layer protocols, such as HTTP and FTP, without the programmer having to
worry about the specifics of how the data is sent.

On the other hand, the XBee 802.15.4 has very little of its behaviour already defined. The IEEE
802.15.4 only specifies the physical layer, and the media access control section of the data link layer. The
Waspmote API doesn’t provide any extra functionality. This essentially provides the physical mechanism
to send data and a method of identifying each unique device. Everything beyond those two things is for the
programmer to decide. The advantage to using a technology like this is that the programmer may not want
all the features of the higher levels in the OSI model, such as reliability and routeing. My choosing not to
use these features there will be less overhead in sending data.

It can be seen from the previous two paragraphs how these two wireless modules differ. The WiFi
module provides compatibility with most modern networking infrastructure, including the internet. It
allows the user to ignore the specifics of how data is sent and focus on what data to send with the guarantee
that all data sent will be received. The downside of this method is that providing all the features of a TCP/IP
network creates a large amount of overhead when sending data. The XBee 802.15.4, however, is not
inherently compatible with common networks, but the reduced overhead in sending data means that more
data can be sent faster.

Having decided to use WiFi and XBee for this project, the next step is to look at the types of
network available. The two different technologies used in this project allow for different types of network
as they are fundamentally designed for different purposes.

The XBee 802.15.4 implements IEEE 802.15.4 with limited extra functionality added by XBee.
This extra functionality is covered in Libelium’s documentation for 802.15.4 programming (Libelium,
2016). As a result, the XBee module only fully implements the physical and MAC layer of the OSI model.
This means that the Waspmote is very limited in its communication capabilities while using XBee 802.15.4.

7	
	

XBee have implemented part of the network layer for their IEEE 802.15.4 module. Each module is allowed
to set its own 16-bit network address, giving the possibility of 65535 devices on one network (0xFFFF is
reserved as a broadcast address). XBee has also allowed each XBee module to set a panID. The panID is a
16-bit value. Every XBee module considered to be on the same network should have the same panID.
Finally, each XBee module can have a node identifier. The node identifier is an ASCII string with a
maximum length of 20 characters. The node identifier is used to identify a node in the application layer.
The XBee module can send data in unicast or broadcast mode. The data sent can be a string, a Waspmote
frame, or an array of bytes. The MAC address of the destination module is required to send data, whether
it be the 64-bit manufacturer address of the 16-bit network address. No matter what format the data was
sent in, when receiving data, the data is stored in an array of bytes. The source MAC address is not needed
to receive data. XBee also provides node discovery capabilities which are not inherently a part of IEEE
802.15.4. Node discovery can be used to discover all nodes on the same network by scanning for nodes
with the same panID, the Waspmote can scan for specific nodes using desired nodes network identifier.
Both methods return the network address for the discovered nodes. The final feature added by XBee is
duplicate packet detection. This means that when duplicate packets are sent, for example when sending
using broadcast, if more than one of the packets is received only one is handed to the application layer and
the rest are discarded by the XBee module.

When using XBee in a sensor network, there isn’t an obvious topology that the sensor network
will fall into. The overall layout will be a combination of a star and point to point topology. Part of this is
because, unlike wired networks, there is no physical reason why all devices within physical range of each
other couldn’t communicate with each other. The XBee module has the ability to detect nodes within range
which are part of the same network. However, within a sensor network, it is most likely that all of the data
will be sent to a central device, just like a star topology. It is possible that some nodes could be outside of
the range of the central device and that traffic could be relayed through nodes, but this is rarely a reasonable
decision to make. Part of this is because XBee doesn’t implement any sort of routeing algorithm, so all
routeing will have to be anticipated by the network administrator and written into the Waspmote
programming. This adds a significant amount of complexity to the system. By having all the nodes send
their data to the central node without any intermediate steps allows all the Waspmotes to be deployed with
the same program, only requiring different programs when different sensors are used. It also means that
there doesn’t need to be any code written to enable the relaying of packets, this will almost definitely result
in a significant reduction in program size.

As mentioned in the previous section, whereas the XBee module operates relatively low on the
seven layer OSI model, the WiFi module essentially only allows developers access to the transport layer and
above. The WiFi module comes with many of the capabilities you would expect from a modern WiFi
connected device. As a result, the WiFi module can, and should, be used in a very different way to the XBee
module. Just like the XBee module, Libelium provides comprehensive documentation for how to use the
WiFi module (Libelium, 2016). The WiFi module uses IP addresses to address devices on the same network.
The WiFi module has the ability to join access points (APs) and has DHCP capabilities. This gives the WiFi
module the ability to join networks which haven’t previously been configured for the specific module. As
well as this, it is also possible to configure the network configuration manually and not use DHCP if that
is preferred. It is possible to use the WiFi module’s transport layer functionality to send TCP and UDP
packets. The Waspmote API also provides support for several application layer protocols, such as HTTP,
FTP, and Telnet. This makes it simple for the Waspmote to interact with parts of the internet. Specifically,
the ability to use HTTP allows for data to be easily sent to a web server, which is a common method for
collating sensor data.

When looking at the types of sensor network where WiFi would be used, it’s important to look at
what extra features the WiFi module can provide. As previously mentioned, XBee is probably a better
option for sending sensor data within a network as there is less overhead, allowing for more data to be sent.
It is the extra features provided by WiFi that result in its use. A big reason someone may want to use WiFi
within a sensor network is that it allows for internet connectivity. Raw sensor data passing through the

8	
	

network has little value of its own. Much of the value gained from the sensor information is from collating
and processing the information. Only through processing the data does it become usable information. A
common method for collating data for processing is sending it to a web server. There it can either be
processed, or other devices can have access to it so they can process it. Technique for using WiFi within a
sensor network is to have many nodes sending data via XBee to a node which supports both XBee and
WiFi. This node can then receive XBee information and forward it to a web server using WiFi. The
Waspmote supports a board which allows for a secondary radio module to be installed which allows for
this setup to be used. XBee has the benefit of not overcrowding the network with unnecessarily large WiFi
packets, while still being able to send the data to a web server. Another benefit of WiFi over XBee is that
it has support for routeing. As a result, WiFi can support much larger, hierarchical networks. If a sensor
network is required to span large distances and/or requires many networks or a hierarchal design, WiFi
would be a good option, especially over something like XBee 802.15.4.

As was touched upon in the last paragraph, when working with a sensor network, it would not be
uncommon to find a variety of wireless technologies in use. Different wireless technologies have different
strengths and weaknesses. The greatest benefit can be gained by combining technologies in an attempt to
amplify each technology’s strengths and mitigate their weaknesses.

Network Security
	

The Internet Engineering Task Force (IETF) define a security service as “a processing or
communication service that is provided by a system to give a specific kind of protection to system
resources.” (Shirey, 2007). Security is an important part of a network and there are often many things to
consider. The International Telecommunications Union divides security services into five categories:

• Authentication
• Access Control
• Data Confidentiality
• Data Integrity
• Nonrepudiation

Each of these five security services should be considered when designing a network.

Authentication is concerned with the authenticity of the activity within the network. It is important
that within a network to guarantee that everything happening within the network is authentic and that there
aren’t any devices or messages masquerading as something they are not. There are two types of
authentication, peer entity authentication, and data origin authentication. Peer entity authentication is
concerned with the authenticity of devices. When two devices make a connection, it is important to
guarantee that each device is who they say they are. Data origin authentication comes into play once a
connection is already established. It is necessary that it can be proved that a message has been sent from
the location it claims to have been sent by. This service is data origin authentication.

Access control is concerned with being able to limit access to a network. It should be possible to allow
and deny access to the network for individual devices. Before a device can be allowed access to a network,
it should have to be authenticated.

Data confidentiality is guaranteeing that messages being sent across the network cannot be viewed by
anyone who isn’t authorised to view them. As well as the messages themselves, it is also important to
prevent anyone from discovering information about the messages being sent, such as the source and
destination of messages. This is especially relevant in wireless networks as data is broadcast via radio waves.

9	
	

This means that anyone with a receiver within range can theoretically receive network activity, as opposed
to having to be physically plugged into a network.

Data integrity is preventing messages from being modified, reordered, or replayed once they’ve sent.
Data integrity also covers making sure that all data that is sent is received and that none of it is destroyed.
Just like with data confidentiality, this can be of particular importance with wireless networks due to the
availability of network traffic.

Nonrepudiation is concerned with preventing the sender or receiver of a message from denying it was
sent or received. It should allow either party to prove it was both sent and received.

Each of these services is important in making sure that everything occurring on a network is legitimate
and that there is no unauthorised use of the network. The book “Network Security Essentials - Applications
and Standards” by William Stalling goes into further detail of each of these security services (Stallings, 2017).

Security Mechanisms
	

Security mechanisms are the mechanisms by which security services are implemented within a
network. There are a variety of different mechanisms in use.

One such mechanism used to help ensure data confidentiality and integrity are met is encryption.
It should be addressed why encryption was ignored during this project. As previously mentioned, symmetric
encryption is readily available within the Waspmote system. All the wireless modules can implement
symmetric encryption, as well as the Waspmote API possessing its own encryption libraries. The main issue
when dealing with modern encryption is that it is essentially impossible to decrypt without the key. As the
Waspmote API is open source, it’s possible to look over the source code for all the functions used with the
Waspmote, including the encryption functions. It is, therefore, possible that you could analyse the sources
for the encryption libraries and find that an algorithm is improperly implemented, leading to a potential
vulnerability. This technique is far from guaranteed to get results and out of scope for this project.

At this point, with encryption being so readily available, as well as effective, it might sound strange
to completely ignore it in a report about the security of IoT devices. However, this isn’t entirely the case.
There are still plenty of reasons why encryption may prove to be irrelevant even if it is perfectly functional
in theory. Before looking at why this is the case, it is important to look at how encryption might be used at
the device level within a sensor network. Libelium has an infographic on their website which outlines the
typical security of a Waspmote sensor network (Gascón, 2015).The network shown in the infographic uses
a mesh topology to send data from sensor nodes, through the network, to a gateway. There are three parts
of this infographic which are of relevance:

• encryption level 1
• encryption level 2/3
• encryption level 5

Encryption level 1 is implemented in the radio modules involves having every Waspmote on the
network store a pre-shared key, which is the same across all the devices on the network. This key serves
two purposes. The first of which is guaranteeing privacy through authentication. If a device without this
key tries to send data to the network, the data will be ignored. The second purpose is to ensure
confidentiality by encrypting data sent between nodes. This prevents anyone from gaining access to data
through sniffing the network.

Encryption level 2/3 is implemented in the network or application layer and involves each node in
the network to have its own unique key. The keys are distributed and stored using a central node. When
using encryption level 2, this node is the gateway, and when using encryption level 3, this node is a device

10	
	

in the cloud. In terms of security, this level also serves two purposes. Authenticity can be achieved because
the central node has a list of all the sensor nodes with their corresponding keys, allowing it to identify that
a packet has come from a valid node, as well as which specific node it came from. Extra confidentiality can
also be achieved as intermediate nodes can no longer gain access to data passing through them. This is
especially helpful if level one has been compromised.

Encryption level 5 is also implemented in the network or application layer and is concerned with
key renewal. This layer is used to provide new keys to each node for the level 2 encryption. This involves
generating and encrypting new keys on the central node and distributing them among the sensor nodes.

After looking at the way that Libelium show encryption being used within a standard sensor
network, it is possible to explain why it is not completely necessary to cover encryption when analysing the
security of the Waspmote. There are two main reasons which come to mind after looking over the previous
information.

The first reason is that it is possible that a network might not implement encryption. It might seem
obvious to implement encryption when Libelium makes it simple with their API and when it offers such a
large increase in security. However, implementing encryption comes with overhead. This level of encryption
can significantly increase the amount of time it takes to process and send data around the network. With
every node in the network having to dedicate extra processing time to encrypting data multiple times, and
the network having to deal with the increased load of the encrypted packet sizes, it is quite possible the
encryption would be infeasible in larger networks, or networks which require data be sent in real time.

The second reason is that encryption has the problem of key management. If encryption algorithms
are properly used in a scenario such as a sensor network, the encryption cannot be broken, as far as we are
aware. The only way to decrypt a message is to use the correct key. Herein lies a new problem. There is
little doubt that the problem of key management is an easier problem to handle than the problems which
encryption solves, but it is a problem nonetheless. Looking at Libelium’s example network, there appears
to be a weak point in the network. A point, which if an attacker could gain access to, could compromise
the whole network. It appears that is an attacker could gain access to the central node, to which all the data
is sent, they would have access to all the encryption keys. Depending on the type of access they gain, they
may also be able to control the system used for key renewal. If this was to occur, the encryption employed
by the network is obsolete, as far as the attacker is concerned. Exactly how this access might be gained is
outside the scope of this project. For this project, it is just important for it to be stated that this sort of
access is possible and implementing encryption does not always guarantee that the data being encrypted is
completely safe.

Types of Attack
	

Attacks on a network can come in many different shapes and sizes. All kinds of attack can be
broadly placed into one of two categories. In the IETF’s RFC 4949 they define two types of attack, these
are passive and active.

A passive attack is an attack where the attacker doesn’t attempt to influence the network activity,
they only intending on observing the network. Because an attacker isn’t making any changes to the
information flowing through a network when performing a passive attack, it can be more difficult to detect
a passive attack than an active attack. As a result, there is more of an emphasis on preventing passive attacks
than detecting them (Stallings, 2017). Due to the nature of passive attacks, they are limited in variety. There
are essentially only two types of information that can be gathered from passive attacks, the contents of the
messages, and information about the messages. Often, extra information can be inferred from information
about messages, like source and destination address and message frequency.

11	
	

An active attack is an attack where the attacker attempts to influence network activity, often by
adding, deleting, or modifying messages being sent. In his book, Network Security Essentials, William
Stallings separates active attacks into 4 separate categories:

• Masquerade
o One entity pretending to be a different entity within the network.

• Replay
o Capturing information from within the networking and retransmitting it at a later time.

• Modification of Message
o Modifying a message which has been sent legitimately to have a different effect than was

originally intended.
• Denial of Service

o Inhibiting, or entirely preventing, the normal operation of the network.

Examples of Attacks
Man-In-The-Middle
	

Further into this project, an attack is used that is referred to as a man-in-the-middle attack. In the
case of the man-in-the-middle attack, the name refers to the fact that the attacker places themselves between
entities communicating with each other. As a result, there are many different variations on the man-in-the-
middle attack. It is possible that an attacker could intercept a connection between two entities, or an attacker
could convince an entire network to route all its traffic through their device. If information is being directed
through the attacker before it arrives at its destination, it’s a man in the middle attack.

Looking at the definitions in the previous section, a man in the middle attack can be both a passive
and an active attack. The most basic kind of man-in-the-middle attack is one where an attacker intercepts
communications between two entities and only monitors the traffic. When performed like this, the man-
in-the-middle attack is a simple passive attack. The attacker is doing nothing to the data besides monitoring
it. Once the data has been observed/recorded, it is sent forward to its destination. However, much more
can be done with the man-in-the-middle attack. As all the data is being routed through the attacker's
machine, the attacker also has the ability to manipulate the data, then performing an active attack. The
attacker has the option to modify, remove, and potentially even create data in the network. It is because of
this that man-in-the-middle attacks are so powerful.

There are, however, security measure which can be taken to limit the damage that can be caused
by a man-in-the-middle attack. The main defence against such an attack is point to point encryption. If all
data on a network is encrypted before it leaves a machine and doesn’t get decrypted until it reaches its
destination, an attacker is very limited as to what they can do. If the data is encrypted then the attacker can
no longer observe the data. If done correctly, encryption can also make it essentially impossible for an
attacker to meaningfully manipulate the data. Encryption can also be used to prevent the possibility of an
attacker performing a replay attack.

Denial of Service
	

An attack not implemented as part of this project, but would be interesting to look at would be a
denial of service (DoS) attack on an XBee network. As previously defined, a denial of service attack doesn’t
involve observing or manipulating the information flowing across a network. The purpose of the denial of
service attack to render the network useless. This is usually done by targeting a specific device on the

12	
	

network. Looking at previous types of DoS attack (McClure, et al., 2012) there seem to be two main
techniques for accomplishing a denial of service attack. The first technique is exploiting a bug in the
networking software on the target machine. Sending a carefully crafted packet to exploit a problem in the
programming of the target machine can have significant effects, such as causing a system restart or stop
responding. Another technique is to simply flood the target device with traffic. Any network connected
device will only be able to process a certain amount of data within a certain timeframe. The more traffic
sent to a device, the longer it will take to respond to requests, whether it be because the processor has to
deal with more threads, or because requests have to be added to a queue to be processed. By sending many
more illegitimate requests than legitimate requests, an attacker can seriously inhibit a network's ability to
respond to legitimate requests to the point where legitimate requests don’t get a response.

A sensor network is a prime candidate for a denial of service attack. With sensor data constantly
being processed and sent through the network, disabling the network has the potential to cause issues. This
is especially true for systems where an environment is finely tuned by a network of sensors and actuators.
Unfortunately, a DoS on an XBee network was not achieved as part of this project. The first technique
described in the previous paragraph for a denial of service attack isn’t beyond the scope of this project.
Identifying a bug in the implementation of the XBee protocol would require an intimate understanding its
inner workings. It is also possible that such a bug does not exist. As XBee 802.15.4 does not implement
many features, there is less room for a bug to have made its way into the implementation. A large amount
of time could have been spent learning the specifics of the XBee protocol’s workings and trying to find a
bug to end up with no usable result. It’s because of this that this technique isn’t within the scope of the
project.

The second technique for performing a denial of service attack is a more viable option for this
project. Within a sensor network using XBee, it is likely that all the nodes would be sending all their data
to a central device within the network. This would be the obvious target to try and overwhelm with packets
to disable the network. To perform this kind of attack it would probably require that there be many XBee
modules all sending data at once. This method is simpler, in theory, it would likely require very many XBee
modules. This amount of XBee modules was not available as part of this project.

	 	

13	
	

Chapter 4: Implementation
Programming
	

A significant part of this project involved sending data from the Waspmote using the XBee
802.15.4 module. For this project, that involved two XBee 802.15.4 modules. One of these modules is
plugged into the Waspmote, the other module is plugged into the USB gateway. The USB gateway has an
interface which allows different wireless modules to be connected. The gateway then forwards the
information received from the wireless module to the device the gateway is connected to, through the USB
connection. As the gateway forwards the raw information it receives, it was necessary to write a program
which would read and process the forwarded information from the USB port. The goal was to write a
simple program which would read the information from the gateway and parse it as a Waspmote data frame.
Once the data had been parsed, the program would have the ability to show the parsed data to the user in
real time or to store all incoming data to a file.

For this task, Python was chosen as the programming language of choice. A big part of this decision
was the fact that there was a simple third party Python library called PySerial (Liechti, 2016) which allows
the programmer access to the USB ports on a machine. This library was simple, well documented, and easy
to setup. This made Python a prime candidate for this program as this meant I could spend as little time as
possible learning a new API while getting the results I needed. As well as this, Python appeared to be a
good choice because the aims of the program were simple. The program seemed unlikely to be more than
a couple hundred lines of code, the actions the program had to take were basic and would not require
complicated programming constructs, and performance was not a big concern. Combining all that with
Python’s ease of use meant that Python would be the chosen language for this program.

Once the aims of the program and the programming language to be used had been decided, the
program could start to be designed and written. To try and keep things simple, it was decided that the
program would be written to run in a continuous loop until it was explicitly quit. The program would
connect to the USB port and enter a continuous loop where it would read data until the program was
closed. Once the program’s main loop was entered there were three main things it needed to do. It needed
to read in data from the USB port, parse the data which had been read, and output the parsed data, whether
it be to the terminal or a file.

The first element of the main loop is where I used the third party library PySerial. Using a read
command, which allows the user to specify how many bytes they wish to read from the serial port, it was
possible to gather all the information from the USB port. The second part element of the main loop is
intertwined with this first element. As the program is specifically written with the aim of reading data in the
format of a Waspmote frame, the assumption can be made that data entering this program is arriving in
this format. As a result, it is possible to process the frame byte-by-byte, parsing it along the way. For the
reading and parsing of the information, a class called “Reader” was written. The purpose of this class is to
be handed an object from the PySerial library, which allows reading from the USB port, and to return a
representation of a Waspmote frame. The fact that this class needed to return a representation of a
Waspmote frame meant that such a representation needed to be created for this program. The solution that
was used was to create a class called “Frame”. This class’ constructor could be handed all of the appropriate
components of a Waspmote frame and return them in the form of a class. The result was a Reader class
which would parse information from the Waspmote frame, storing values in appropriate variables as it went
along, finally returning an instance of the Frame class, using the data it had gathered, once the end of the
frame had been reached.

The final element of the main loop required that something is done with the resulting Frame class,
the data should be displayed to the user in the terminal, or it should be saved to a file. To display the data
in the terminal a function was added to the Frame class which prints out all the information from the frame
in a human readable format. For writing to file, a new class called “Writer” was created. This class is handed

14	
	

a filename and offers persistent access to that file. The Writer class contains a function which takes a Frame
object and writes the contents to a file. This function writes the contents of the frame to the file in CSV
format. The reasoning for this decision is that CSV is more computer readable, therefore it would be easier
to analyse the data, if that functionality was ever required.

While doing tests with the XBee module, this program allows two things to be done. It allows the
data being sent to the gateway to be looked at quickly and easily. Keeping this program simple means that
only the information which needs to be seen is seen, in a format which is easy to read. The second important
functionality is that it allows the recording of all the data sent to the gateway over a period of time. This
will allow any changes which occur in the data sent to the gateway to be seen.

Investigation
OTAP Investigation
	

The first feature of the Waspmote which was investigated was the over-the-air programming
(OTAP). This feature poses some quite interesting security issues for the Waspmote. OTAP offers the
ability to update the Waspmote firmware wirelessly over the sensor network. Naturally, the security concern
with a feature such as this is that a malicious entity could reprogram a Waspmote to run their own program.
Naturally, this is undesirable behaviour in a sensor node.

Libelium provides good documentation on how to perform OTAP with the Waspmote (Libelium,
2013). There are two techniques for performing OTAP with the Waspmote. It is possible to perform OTAP
using XBee modules, such as the XBee 802.15.4. Libelium have provided a set of command line tools to
do this. The other technique involves using WiFi/3G/4G/GPRS to perform OTAP using FTP. OTAP
was performed using the XBee method in this project.

To perform OTAP using XBee modules there are hardware and software elements required for
both the sending (host) and receiving (client) devices. The host needs to consist of a computer and a USB
gateway which has an XBee module plugged into it. Along with this, the host also needs to have Libelium’s
OTAP shell installed. This shell provides the host with all the abilities it needs to perform OTAP. On the
client side of this process, there needs to be a Waspmote with an XBee module plugged into it. It is also
important that the battery is attached to the Waspmote to allow the Waspmote to draw enough power while
performing OTAP. The Waspmote also needs to have a microSD card installed so it has somewhere to
store programs it has been sent over OTAP. If OTAP wants to be performed on the Waspmote, then the
Waspmote needs to be running a programming which was specifically written to allow for OTAP.

If a developer wants to allow a Waspmote to be programmed using OTAP they need to make sure
that their Waspmote is running certain code beforehand. As well as the code which has been written for
the Waspmote to perform its primary functionality, there also needs to be some extra code included in both
the setup and loop functions. Much of the additional code is required in the loop function. The code
required is there to check whether the Waspmote has received any packets to indicate that the host is trying
to invoke OTAP. If it finds that it has received one of these packets, the Waspmote will wait to receive the
OTAP command and then process it. This is relevant from a security standpoint as a Waspmote must be
specifically programmed to process any sort of OTAP command. This means that anyone trying to use
OTAP on a Waspmote that has not explicitly been set up to work with OTAP won’t even be able to make
a connection to the Waspmote, let alone reprogram it. This means that if security is a major concern for a
sensor network, then a programmer can completely disable OTAP capabilities to prevent any potential
threat from making its way into the system.

Once all the hardware and software elements have been acquired, OTAP can occur. Before the
OTAP shell can be used to start reprogramming the Waspmote, there are two steps of configuration which

15	
	

need to be performed. The Baud rate and the API mode of the XBee module attached to the USB gateway
need to be configured to 38400 and 1 respectively. Secondly, the configuration file for OTAP also needs
to be set up. The configuration file is part of the OTAP shell and specifies a variety of settings necessary
for OTAP to be successful. Some of the settings in this file are particularly relevant to security. The setting
which is probably most important for security, as it is the only setting which must be used, is the
authentication (auth) key. This essentially acts as an authentication key. All Waspmotes have this set as
“LIBELIUM” by default but it is recommended this is changed. Whenever the OTAP shell tries to
communicate with the Waspmote it sends the auth key. If they auth keys do not match then the Waspmote
will not reply. It is also possible to set a network ID, which is like the auth key as any Waspmotes which do
not have the same network ID won’t reply. The network ID, however, is a 16-bit integer, which poses
security concerns. The final security setting is the ability to turn on encryption and specify the encryption
key. As mentioned before, this project mostly ignores encryption and the pros and cons of encryption have
already been discussed earlier in the report.

Once everything has been configured OTAP shell is ready to be used to communicate with and
reprogram the Waspmote. The OTAP shell provides a variety of commands available to communicate with
Waspmotes, most of which can be used in unicast, multicast, and broadcast mode. Libelium describes the
different steps required for OTAP in their documentation. These steps are:

• Locate the node to upgrade.
• Check current software version.
• Send the new program.
• Reboot and start the new program.
• Restore the previous program if the process fails.

The OTAP shell provides commands to achieve these steps.

Initially, the scan_nodes command is used. This command is available in both unicast and
broadcast mode. The purpose of this command is to find nodes which are available to be reprogrammed
with OTAP. When running in unicast mode this command requires a mac address. The command is used
to try and find a specific Waspmote in the network. When running in broadcast mode this command will
attempt to find all Waspmotes within range which are available for OTAP. Both commands can be run
with an additional time parameter which defines how long the command will spend looking for available
Waspmotes.

The next step is to check the current software version. For this task, there is the get_boot_list
command. The boot list is a text file which the Waspmote stores on the microSD card. The boot list stores
a list of all the programs which are stored on the microSD card. Whenever a new program is sent to the
Waspmote using OTAP, it is added to the boot list. The boot list also stored the PID of each program, as
well as the date and time that each program was sent to the Waspmote. The PID or program ID is a seven-
character string used to identify each program which is sent to the Waspmote. The get_boot_list command
has two parameters. The first is the mode, which is always unicast, and the second is the mac address of
the Waspmote whose boot list you want to view.

The third step is the step which involves transferring a program to the Waspmote. First, whenever
a program is compiled using the Waspmote IDE, it creates a binary and a hex file from the compiled
program. When using OTAP the hex version of the compiled program is the file which is sent to the
Waspmote. Before sending the file to the Waspmote the info_program command can be used to get some
details about the file you want to send. The info_program command takes a filename as an argument. When
run, it will give you it will print the file information to the terminal. This file information contains the
filename, the date and time the program was compiled, the size of the file, the number of packets required
to send the file, and the estimated time it will take to send the file.

16	
	

If this information seems correct, the file can then be sent to the Waspmote. The command used
to send a file is simply called send. This command takes several arguments. Sending a file requires that the
filename of the program, the transmission mode of the program, the mac address(es) of the Waspmotes to
send the program to, and the desired PID of the program are specified in the send command. The send
command also allows the specifying of a new auth key, encryption key and channel to send the program
over. The use of a different channel means that OTAP does not interfere with the normal data sent across
the network. Finally, the send command also allows the specifying of how many times each packet should
be sent. The more times you send each packet, the longer the file takes to send, but you also increase the
chance of the file being sent successfully. Once the program has been sent, the command will print either
a confirmation or an error message to the terminal.

Once a new program has been sent, the program can be started with the start_new_program
command. This command takes three arguments, the transmission mode, the mac address of the Waspmote
if unicast mode was used or the name of the file containing a list of mac addresses if multicast was used,
and the PID of the program that you want to run. This command will start the program on the Waspmote
with the corresponding PID. Again, if the program starts successfully a confirmation will be printed to the
terminal, if there is an issue starting the program an error will be printed instead.

It is also possible to delete programs from the Waspmote. This is done using the delete_program
command. This command takes the same arguments as the start_new_program command but deletes the
given program instead of starting it.

The final step of the procedure is restoring the previous program if the procedure fails. Unlike all
the previous steps, this step is not done by using a command in the OTAP shell. This is related to how the
Waspmote programs are written. As previously mentioned, the Waspmote programs must be specifically
written to receive commands from the OTAP shell with a special section of code within the loop function.
Because of this setup, when something goes wrong with a command from the OTAP shell, the program
can return from processing the OTAP command and hand control back to the loop function, essentially
meaning the program can carry on running as intended.

Before continuing with a discussion about the security of OTAP, there is an important issue with
OTAP which should be discussed. When the previous section of the report was written, it was written
under the assumption that there would be screenshots to accompany it. When it came time to recreate the
steps and capture the screenshots the OTAP functionality would not work. The scan_nodes command
would not detect any other nodes around it. This demonstrates an issue which had been a problem as soon
as the testing for OTAP began for this report. OTAP is extremely temperamental. Following Libelium’s
documentation for OTAP would sometimes result in everything working perfectly, and sometimes it
wouldn’t work at all. OTAP using XBee has been discontinued for future releases of the Waspmote and I
suspect this is part of the reason why.

Now that an overview of OTAP has been given, it is possible to discuss the potential security
concerns with this feature of the Waspmote. The threat that OTAP poses is that a malicious user could
reprogram one or more Waspmotes in a sensor network to run code that they were not initially programmed
to run, whether that specific code be malicious or not. As a result, the security features involved with OTAP
are designed to mitigate unauthorised users from being able to find and access Waspmotes using the OTAP
shell. As mentioned in a previous paragraph, it is possible to completely disable OTAP capabilities within
a Waspmote by not including a section of code in a Waspmote program. If whoever is maintaining the
sensor network has no intention of using OTAP for legitimate purposes this is the best defence they can
use. At this point, it is essentially impossible to perform OTAP on the Waspmote.

People who intend on using the Waspmote’s OTAP features legitimately within their network need
to think a bit more about security. By enabling the OTAP features on the Waspmote, the Waspmote is now
open to the possibility of being reprogrammed by a malicious entity. As a result, extra measures must be
taken to prevent such a thing from happening. There are three settings which can limit an unauthorised

17	
	

user’s access to a Waspmote from the OTAP shell. From least to most effective, these settings are panID,
auth key, and encryption.

The first in the list, panID, can be used to limit access to the Waspmote but should not be used in
such a way. The panID is short for personal area network ID. Each XBee module will have a value set for
its panID. The purpose of the panID is to associate XBee modules into a logical network. For example,
you could have multiple networks operating in an area and panID could be used by the gateway to filter
certain networks. When using the OTAP shell you must configure it to use a certain panID, and, as a result,
only Waspmotes using XBee modules with the same panID will respond to any OTAP commands. In this
sense, the panID can be used to limit access to a Waspmote as the panID of the XBee module on the
Waspmote must be known if an attacker wants to communicate with it over OTAP. The problem with
using the panID as a method of preventing unauthorised access to a Waspmote is that the panID is only a
16-bit integer. The maximum number which can be stored in a 16-bit integer is 65535. As a result, there
are only 65536 possible panIDs. Although a big number, with only this many panIDs available, it would be
trivial to find out the panID used by a network. If the auth key of a network is known, it would take roughly
182 hours to scan all panIDs, thus giving you the panID of each Waspmote within range. The figure of 182
hours was calculated assuming the scan_nodes command was being used with its default setting of scanning
for 10 seconds (65536 panIDs * 10 seconds / 60 seconds / 60 minutes). By scanning using broadcast mode
for 10 seconds for each panID, the panID of every Waspmote within range of the gateway being used by
the OTAP shell should be found. It is also possible to reduce this time by using multiple gateways/OTAP
shells. Assuming the potential panIDs are distributed evenly between the gateways, you can divide the total
number of hours by the number of gateways/OTAP shells being used. As most sensor networks will be
set up to run over much longer periods than 182 hours, using this method poses a clear security issue.

The next setting which can be used for restricting access to a Waspmote from the OTAP shell is
the auth key. The auth key is an 8-byte key used to identify a Waspmote. Unlike the panID, the auth key is
associated with the Waspmote instead of the XBee module. The auth key is set to “LIBELIUM” by default
but can be changed within the Waspmote program. Just like with the panID, the auth key must be set within
the OTAP settings. A Waspmote will only respond to an OTAP command if the auth key sent along with
the command matches the auth key on the Waspmote. Also unlike the panID, the auth key is designed to
be used as a security measure. Whereas the panID offered 16 bits of security, the auth key offers 64 bits of
security. In these circumstances, 64 bits of security is essentially impossible to crack. Whereas the panID
would take just over a week to crack, the auth key would take 5.85x1012 years (264 auth keys * 10 seconds
/ (60 seconds * 60 minutes * 24 hours * 365.25 days)) to crack using the same method. Even if the OTAP
command only broadcast for 1 second instead of 10 AND if multiple gateways were used, it would still be
infeasible to use this technique. However, using just the auth key as a method of authentication still poses
some problems. When the OTAP shell sends commands to the Waspmotes, unless encryption has been
turned on, the messages are sent in plaintext. This means that if you could look at the web traffic of someone
sending legitimate OTAP commands to the target Waspmote, you would be able to see the correct auth
key in plaintext. This can be a problem for security because there are devices which can be used to sniff
networks using the same wireless specification (IEEE 802.15.4) as the XBee module. Although one of these
devices was not used during this project, in theory, they could be used to sniff auth key information. This
same technique could also be used to discover the correct panID for a Waspmote, but the technique used
in the previous paragraph would be easier if the auth key is already known. To discover the auth key this
way would involve using a sniffing device to read network traffic and using some software to process the
packets and extract the auth key. This technique has some potential issues. Firstly, the sniffing devices must
be within range of the sensor network to be able to pick up the network traffic. This is not too large of an
issue as the same criterion is needed to use the OTAP shell. The second issue is that it relies on there being
traffic to sniff. To be able to pull the auth key out of the OTAP commands, there need to be OTAP
commands within the network to sniff. If the Waspmotes are updated using OTAP infrequently then it
could be awhile before an auth key can be discovered. However, this technique is still possible and likely to
work within a reasonable timeframe, unlike the millions of years it would take to try and crack the auth key.

18	
	

The final security option open to the user of the OTAP is encryption. Encryption is not enabled
by default but can be enabled in the OTAP configuration file. The OTAP configuration file is also where
the encryption key can be specified. Like the panID, the encryption key is associated with the XBee module
and not the Waspmote. If the encryption key can be guaranteed to not be discovered by an attacker,
encryption essentially offers perfect security. If security is of importance to the network, encryption is a
must when using OTAP.

WiFi Investigation
	

The next area of investigation for the project was to consider the security of using WiFi with the
Waspmote. Specifically, investigating the possibility of a man-in-the-middle attack. This is because it is
common for all traffic within a sensor network to be sent to a central device, from this central device all
the data is sent on to somewhere else to be processed, like a web server. A man in the middle attack between
the central node and all the other nodes would allow all the data being sent to the central node to be
observed. Not only would it be possible to observe the data being sent, it would also make it possible for
the data to be manipulated. As a result, it would put an attacker in full control of the information leaving
the sensor network.

It is often easier to perform an attack on a network if you have already gained authorised access to
the network. As a result, the first area of investigation was in trying to gain unauthorised access to a WiFi
access point (AP). To gain this sort of access, it is necessary to bypass the security measures that have been
put in place for the access point. There are three main types of security setting used with APs. The first
security setting is to have the AP set to open. This essentially doesn’t provide any security at all. Setting an
APs security to open allows anyone to gain access to the network. As a result, if such a network is found,
no extra effort needs to be expended to gain access to the network. However, it is uncommon to find access
points with their security set to open. Open security is mostly used to provide public WiFi within public
areas, such as coffee shops and airports. Most personal and commercial access points will have one of the
other two security settings to try and restricted unauthorised access to their network.

The less secure of the two other security settings is called Wired Equivalent Privacy, commonly
referred to as WEP. WEP was designed in the late 1990s and is used as a method for authentication and
data encryption between an access point and host (Kurose & Keith, 2017). Authentication is achieved using
a pre-shared key. The authentication stage is done in four steps:

• A host will request that they are authenticated by the access point
• The access point will respond by sending a random string of 128-bits, referred to as a nonce as this

value will only be used once.
• The host will then encrypt the nonce using the key that has been pre-shared with it. The encrypted

nonce will then be sent back to the access point.
• The access point will decrypt the encrypted nonce with its own pre-shared key. If the decrypted

nonce is the same as the original nonce then both the access point and the host have the same key
and the host is authenticated on the network.

Encryption is performed using the same key. Each packet sent between the host and the access point
is encrypted using a new key composed of the key used as part of the authentication and an initialisation
vector (IV). The initialisation vector is different for every packet, which means that every packet is
encrypted with a different key. The use of IVs within encryption is very common and they can provide
large security benefits. Using IVs can prevent attacks such as replay attacks where an attacker could resend

19	
	

a previously captured packet. This is because the two packets will have been encrypted with different keys
due to use of IVs. However, in the case of WEP, IVs are also what allowed attackers the ability to
illegitimately discover the pre-shared authentication key, allowing attackers authorised access to the
network. This is because an important feature of IVs is that they should be used only once. In WEP the IV
is only 24 bits long meaning that there is a high chance of a key being repeated after only a few thousand
packets have been sent. Using a statistical analysis technique, known as the PTW technique (Tews, et al.,
2007), an attacker can gain access to a network if they have captured enough IVs from a network secured
with WEP. IVs can be captured from a WEP network as the IVs are transmitted in plaintext, so any wireless
traffic sniffer can capture them. As a result, software solutions have been developed to assist attackers in
performing this attack. A practical demonstration of this attack will be shown in the next section of this
report.

The most secure of the current WiFi security settings is called WiFi Protected Access, commonly
referred to as WPA. WPA was developed in the early 2000s with several goals in mind (Wang & Kissel,
2015). It had to

• Fix all the security issues that WEP suffered from.
• Be compatible with all the hardware currently using WEP
• Be compatible with the IEEE 802.11i which was in development at the time.

WPA has two different methods for device authentication. One of these methods is designed for small
networks, such as homes, and the other is designed for larger networks, such as large offices or entire
buildings. Although sensor networks can be large, the first option would likely be used in this case as the
second option is mostly designed for large amounts of human users. The second option involves using user
accounts and servers to manage these accounts. This would be an unnecessary complication for a sensor
network. The first method uses a pre-shared key in the same way that was previously described when
discussing WEP. The method used by WPA for encryption is much more in depth than WEP and fixes all
the security issues it has, as it set out to do. As of now, there are no perfect methods for gaining illegitimate
access to a WPA protected network, but there are some methods which have had limited success. One of
these methods will also be shown later in the report.

Gaining Access to a WEP Protected Network
	

As a method of wireless network security, WEP is known to be extremely vulnerable and it is
almost always recommended against as a method of preventing unauthorised access to an access point. It
is, however, provided as a security option for the majority of APs. As a result, it is always possible that an
AP might be set up to use WEP for security. This section will demonstrate how it is possible to gain access
to a WEP AP if the pre-shared key is not known. The process involves 5 steps

• Putting a wireless adapter into monitor mode.
• Identifying characteristics of the target AP.
• Capturing traffic from the AP.
• Injecting ARP packets into the network.
• Cracking the AP’s password

The first step involves switching the wireless adapter to be used for the attack into monitor mode.
Monitor mode is one of five different modes that wireless adapter can be placed into. Monitor mode allows
a wireless adapter to sniff all WiFi packets within range without connecting to any AP. To do this a tool

20	
	

called airmon-ng is used. This took is specifically built to put wireless adapters into monitor mode. It can
also stop any running processes which could interfere with putting an adapter into monitor mode. The two
commands to do this are:

• airmon-ng check kill
• airmon-ng start <wireless interface>

The first command will kill any processes and stop any services which it thinks could interfere with
switching an adapter to monitor mode. The second command will switch the specified wireless interface
into monitor mode. Below is an image of this happening with the wireless interface wlan1.

Figure 1. Putting wireless interface into monitor mode

The tool used for the next step is called airodump-ng. The command is run using the monitoring
interface as airodump-ng <monitoring interface>. This tool is capable of capturing WiFi frames. Using
these wireless frames airodump-ng attempts to build a list of the different AP within range of the wireless
adapter. It lists information about all the access points it can find to the terminal. Below is an image of this
command being run with wlan1mon as the monitoring interface.

21	
	

Figure 2. Collecting information about nearby access points

The picture above shows a wireless network called C1422962_TEST which is using WEP security. As
well as the ESSID of this network we can also see the BSSID and the channel it is operating on. This AP
will be the target for this attack. The next step is to capture traffic specifically for this AP. This can be done
using airodump-ng and uses a command of the following format:

• airodump-ng --bssid <bssid> -c <channel> -w <output file> <monitoring interface>

In the image below, the full command which was used was:

• airodump-ng --bssid C4:E9:84:6E:22:50 -c 10 -w WEPcapture wlan1mon

During this step, airodump-ng stores a variety of information about packets sent from the AP with
the specified BSSID. The information that is needed to crack the WEP key is the packet capture information
stored in the .cap file. This command also provides a list of the devices which are connected to the specified
AP. This information is important for the next step. The whole output of this command can be seen from
the image below.

22	
	

Figure 3. Capturing packets from the target access point

At this point, if left for long enough, it would be possible to gather enough packets from the network
to eventually be able to crack the network key. However, there is another program which can be used to
significantly increase the speed at which packets can be collected. Aireplay-ng has the option to perform an
ARP request replay attack. An ARP request replay attack involves listening to an AP for ARP requests and
replaying them when they have been found. By replaying them it forces responses from the network. Each
new response packet will have a new IV. By replaying ARP requests very quickly many IVs can be collected
in a short space of time. Depending on the normal traffic on the network, this can reduce the time necessary
to crack the password from hours to minutes. The command used to execute this program was

• aireplay-ng -3 -b C4:E9:84:6E:22:50 -h 18:65:90:62:72:99 wlan1mon

This command performs an ARP request replay attack, listening for packets between the AP and a
host. The -3 option is used to specify the type of attack, in this case, an ARP request replay attack. The -b
option is used to specify the BSSID of the AP and the -h option is used to specify the MAC address of the
host. We could find a host to use for this command by looking at the list of connected devices from the
output of airodump-ng in the last step.

23	
	

Figure 4. Performing an ARP replay attack

The next image shows the output of airodump-ng once the ARP request replay attack had been
running for 15 minutes. When monitoring a WEP protected AP, the data column in the airodump-ng
output represents the number of packets with unique IVs that have been captured. It can be seen from this
image that over 38000 packets had been collected over the 15 minute time period. Exactly how many IVs
will be required to crack a WEP password can vary so it is sometimes necessary to capture more packets if
the currently captured amount isn’t enough.

Figure 5. Demonstrating how many IVs have been captured

24	
	

The final step is to crack the key. The program used for this step is called aircrack-ng. This program
only takes one argument which is the capture file containing all the IVs. The specific command used in this
project was:

• aircrack-ng WEPcapture-01.cap

The output of this command is shown in the image below.

Figure 6. Showing WEP key discovery

It can be seen from this output that the key was found after the program had run for one second.
It is evident from this how insecure WEP is. This process will work on all WEP APs, the only varying
factor is how many IVs will have to be captured to crack the key. It is because of this that WEP is so heavily
recommended against as a method of securing an AP.

Gaining Access to a WPA Protected Network
	

One method for attempting to gain access to a WPA protected API is through using a program
called Reaver. The first two steps for using Reaver are the same as the first two steps used for cracking a
WEP key. To use Reaver the wireless interface needs to be put into monitor mode and the BSSID of the
target AP needs to be known. Once these two steps have been completed, Reaver can be run. The command
used to run Reaver in this example was:

• reaver -i wlan1mon -b C4:E9:84:6E:22:50 -vv

To run Reaver, all that is required is the BSSID of the AP to be attacked and the name of the interface
to be used to carry out the attack. Here the -vv option is also used. The -vv option is used to put the

25	
	

program into verbose mode, meaning it outputs extra information about the state of the program as it runs.
The image below shows this command.

Figure 7. Demonstrating reaver command

This attack was not successful. After only trying three different keys, Reaver detects rate limiting
on the AP and decides to wait for 60 seconds. This happens for every further attempt to guess the key to
the access point. The image below shows this happening.

26	
	

Figure 8. Showing Reaver failure

The problem here becomes evident after looking at the way that Reaver attempts to reveal WPA
keys. Reaver uses a flaw in a system called WiFi protected setup, commonly referred to as WPS. As a side
note, this means that Reaver can only be used by routers which have WPS capabilities. Reaver works by
attempting to guess the WSP pin for an AP. Through guessing the WSP pin it can deduce the WPA key.
Here, Reaver ran into trouble after making three guesses of the WSP pin. The AP was able to detect that
there was unusual behaviour on the network and temporarily blocked the accepting of WSP pin guesses.
Reaver advertises that it normally takes 4-10 hours to discover a WPA key using its methods. Reaver
normally makes several guesses every second, so waiting for blocks like this could result in it taking
hundreds, maybe thousands, of hours to complete. This starts to become unviable very quickly.

This demonstrates the difficulty of gaining access to an access point protected by WPA security.
There are no perfect techniques, as there are for WEP. When trying to gain access to a WPA protected
network there are multiple different methods which can and should be tried. Even with Reaver, there are
techniques to try and mitigate the effects of the problem which occurred in the previous paragraph. Even
trying multiple techniques, it is still possible that access cannot be gained to a WPA protected access point.
If access cannot be gained to a network, an attack which does not rely on network connectivity could be
used.

Man-in-the-Middle with Network Access
	

If network access has been achieved, it is then possible to attempt attacks within the network. As
mentioned earlier in the report, a man-in-the-middle attack seems like it would be particularly damaging in
the environment. Assuming all the data is being sent to a central node and the data is then being sent from
that central node to a web server to be processed, a man-in-the-middle attack between the central node and
the nodes connected to it could give the attacker full control of the data flowing in and out of the network.

27	
	

This attack assumes a sensor network where the nodes are connected to a central access point,
which is then connected to another network, i.e. the internet. As also mentioned, this attack assumes that
authorised access to the network has been achieved.

The attack demonstrated is called ARP spoofing. ARP stands for Address Resolution Protocol.
ARP is used to map IP address on a network to the MAC addresses of the devices on the network. When
data needs to be sent to a machine with a specific MAC address an ARP request will be broadcast across
the network asking that the device with that IP address respond with their MAC address. ARP spoofing
involves sending falsified ARP packets across a network causing networking traffic to be routed incorrectly.
In the case of a man-in-the-middle attack network traffic will be routed from a node to the attacker machine,
instead of the AP, and from the AP to the attacker machine instead of a node. To keep the network
operating while this is occurring, the attacker will forward the packets to the correct location once they
have been observed/modified.

The first step of the attack is to identify nodes which are on the network. To do this a tool called
Nmap can be used. Nmap has a variety of features which can be used to discover information about a
network. In this case, it will be used to identify machines connected to the network that has been infiltrated.
The command for this is:

• nmap -sn 192.168.1.0\24

This command will scan all the IP addresses on the network within the range 192.168.1.1-
192.168.1.254. If there is a device associated with the IP address, nmap will return information about that
device. The output of running the command on the network used for this project is shown in the image
below.

Figure 9. Nmap scanning the network for connected devices

There are three devices connected to the network. The first device has an IP address of 192.168.1.1,
which we know to be the access point. The next device has an IP address of 192.168.1.102, which we know
is the device nmap is being run on. The final devices we can see on the network has an IP address of

28	
	

192.168.1.103. This device is a Waspmote that has been set up to communicate with a web server through
the AP.

It is now known that it web traffic destined for 192.168.1.1 from 192.168.1.103 and web traffic
destined for 192.168.1.103 from 192.168.1.1 should be directed through the attacker’s machine. To do this
a tool called arpspoof is used. Arpspoof is a simple tool. To performing an ARP spoof attack arpspoof only
requires three arguments, the wireless interface to be used to carry out the attack, a destination IP address,
and a source IP address. The tool then uses ARP spoofing to direct packets coming from the source IP to
the destination IP address through the attacker’s wireless interface. The full command for the ARP spoof
attack can be seen below:

• arpspoof -i wlan1 -t 192.168.1.1 192.168.1.103

This command must be run twice, once like above and another with the IP addresses switched. This is
so traffic coming in both directions is directed through the attacker’s wireless interface. The output of this
command can be seen below.

Figure 10. Demonstration of ARP spoofing failure

It can be seen from the previous image that the previous attack was unsuccessful. The issue that
prevents this attack from working is due to the way that the Waspmote sends information across WiFi.
Every time that the loop function is run, the Waspmote connects to the AP, send the data it has obtained
from the sensors and closes the connection with the AP. For arpspoof to work properly it requires that a
constant connection is made with the destination machine. As the connection is currently being opened
and closed by the Waspmote, arpspoof cannot establish a constant connection. It is through this that the
Waspmote helps to protect itself against ARP spoofing, knowingly or not.

29	
	

Man-in-the-Middle Attack without Network Access
	

Although attacks are often easier once authorised access to a network has been gained, it is also
possible to undertake attacks when access has not been gained. This can be useful when a network is well
protected. As described in the previous section, a man-in-the-middle attack could be particularly devastating
for a sensor network. Fortunately, a man-in-the-middle attack can be performed without authorised access
to a network.

This attack also assumes that there is a network of nodes all connected to a central access point.
This attack doesn’t assume authorised network access, however.

The attack demonstrated is called an evil twin attack. The premise of the evil twin attack is simple.
The evil twin attack seeks to set up a new access point which imitates another access point. Once such an
access point has been set up, the attack then seeks to force devices which are connected to the access point
to connect to the “evil twin” instead. Once traffic is being directed through the evil twin controlled by the
attacker, the attacker has essentially created a new network where they have full control. They are then able
to observe and modify traffic passing through the evil twin.

The evil twin attack is slightly more involved than the ARP spoofing attack. The first step of the
evil twin attack is identifying an access point to imitate. This is done using the same airmon-ng and
airodump-ng method as used in both the WEP and WPA attacks. Once an access point has been identified,
it is time to set up the evil twin. There is a program which can be used called airbase-ng which makes this
process relatively simple. The program takes a BSSID, ESSID, channel, and a wireless interface as
arguments and sets up a new access point with these credentials using the specified wireless interface. The
full command used for this program was:

• airbase-ng -a C4:E9:84:6E:22:50 --essid C1422962_TEST -c 10 wlan1mon

When creating the evil twin, it is technically only the ESSID which is required to create an AP
considered identical to the original, as far as connected devices are concerned. Using the same BSSID and
channel makes the attack harder to detect, however. Once the command has been run, it adds a new
network interface to the system which is the interface that devices connecting to the evil twin connect to.
Below is an image of this command being used.

30	
	

Figure 11. Demonstrating creation of evil twin with airbase-ng

The next step is to get devices which are connected to the legitimate AP to connect to the newly
set up evil twin. Normally, the first part of this step is to get the devices to disconnect from the legitimate
AP. This is not necessary with the Waspmote. The same feature which previously protected the Waspmote
from ARP spoofing makes it easier to get a Waspmote to connect to an evil twin. As the Waspmote
repeatedly connects and disconnects from an AP there is no need to worry about disconnecting it from the
AP.

The second part of this step is getting the Waspmote to reconnect to the evil twin instead of
reconnecting to the old device. The general principle is that the AP whose signal is received the strongest
by the Waspmote is the one the Waspmote is connected to. There are simple methods for trying to achieve
this, like moving the evil twin closer to the Waspmote. A standard technique used by attacker would be to
increase the signal strength of the AP. To do this often involves raising the signal strength to a level which
is against the law. As a result, this was not done as part of this project. Instead, the legitimate AP was moved
far away from the Waspmote while the evil twin was moved very close.

The final step is to give devices connect to the evil twin internet access. This step is not strictly
necessary if the only goal is to observe the data being sent out of the network, but, even then, providing
the devices internet access makes it harder to detect that the devices are connected to an evil twin. If an
attacker wants to manipulate data being sent out of the network or interact with data being sent into the
network, then internet access is required.

Internet access is provided to the connected devices using a virtual bridge. As mentioned earlier,
when airbase-ng creates an AP, it creates a new network interface which the devices connect to. If this
interface is bridged to an interface that has internet access, then the devices connected to the evil twin can
access the internet. The bridge is created using a program called brctl. This is done using string of
commands which can be seen in the image below.

31	
	

Figure 12. Commands used to provide evil twin internet access

The first command is used to create a new bridge called “bridge”. The next two commands add an
interface with internet access and the evil twin interface to the bridge. The following three commands bring
up the two interfaces and then the bridge. After doing this, the devices connected to the evil twin will have
access to the internet.

Now that the evil twin has been set up and the Waspmote is connecting to the evil twin instead of
the legitimate AP, all traffic being sent through to the AP to the internet can be observed and manipulated.
The image below shows Wireshark capturing traffic from the bridge interface. It shows two HTTP frames.
One is a GET request and the other is an HTTP response. This demonstrates that the traffic is flowing
through the evil twin and has access to the internet.

32	
	

Figure 13. Packet capture demonstrating Waspmote accessing internet through evil twin

The evil twin attack is a relatively simple, but effective attack. It allows a man-in-the-middle attack
to be performed without having to gain authorised access to a network making it an extremely dangerous
attack. The level of control it provides an attacker with very little effort having been expended makes it an
obvious choice for an attack to use.

33	
	

Chapter 5: Conclusion
	

The purpose of this project was to investigate security and model cyberattacks in Internet of Things
environments. Having used the Libelium Waspmote for the project, it is mostly an investigation of the
Internet of Things security specifically using the Libelium Waspmote. It is hard to comment on the Internet
of Things as only one device has been tested. The security of the Waspmote proved to be of a reasonable
standard. It comes with many of the security features you would expect a modern internet connected device
to come with. It has the capability to connect to WPA secured networks and allows authentication keys to
be assigned to each device preventing unauthorised communication with the Waspmote. It proved, in the
end, that the biggest security concerns when using the Waspmote as part of a sensor network are the
technologies behind the wireless networks. Specifically, in this project, WiFi. The fact that many access
points still provide WEP as a security option leaves many wireless networks needlessly open to unauthorised
access. The fact that the current WiFi specification allows an attack such as an evil twin attack to exist with
little, if any, prevention features provide a worrying view of the wireless internet in its current state.

Although specifically avoided in this project, this project has been a testament to how important
encryption is to current network security, especially wireless network. Properly implemented encryption
would prevent or significantly reduce the threat of any of the attacks in the report. Using encryption would
make it impossible to use OTAP without the correct encryption key. Point-to-point encryption would
massively increase the security of sensor networks as it would render man-in-the-middle attacks useless.
Using encryption would mean that no meaning could be found in any observed packets. Properly
implemented encryption would make it impossible to manipulate any intercepted packets, as well as replay
packets. The only recourse open to attackers is to drop packets, but this will draw much attention very
quickly making it unviable as an attack. The fact that the Waspmote supports HTTPS in its API is another
sign of how the Waspmote is up to date with current security expectations.

All in all, I feel that the Waspmote is a well secured sensor device with many modern security
features. Used in a sensor network which implements modern security standards such as WPA2 and up to
date encryption there is very little chance of there being a security threat.

34	
	

Chapter 6: Further Work
	

There is still plenty of work that could be done in this area. Firstly, there are many of different
wireless modules for the Waspmote which have not been investigated as part of this project, such as
Bluetooth, 4G, and RFID. These modules implement different technologies, so each module has the
possibility for security issues.

As well as the fact that there are plenty of different wireless modules that could be tested, there are
still plenty of areas to investigate with the modules used during this project. It would be interesting to try
some of the other techniques for trying to gain authorised access to a WPA-protected access point. There
are also different types of attack which can be performed once access has been achieved. Finally, it would
be a good idea to try to perform a DoS attack on a sensor network using WiFi as DoS attacks would be
particularly devastating to any environment that relies on real-time sensor data.

While still using the Waspmote, it would be good to test a device developed by Libelium called
Meshlium. Meshlium works as a gateway. It has the capability to process data in any of the forms possible
with the different wireless modules provided for the Waspmote. It can then be used to send this data to
the Cloud for processing. This would be an interesting device to investigate as it is used in many
environments which use Waspmotes.

Finally, it would be good to investigate other IoT devices than just the Waspmote. It would help
to give a better idea of the overall security in the Internet of Things, as opposed to just looking at the
security of the Waspmote.

35	
	

Chapter 7: Reflection on Learning
	

I initially chose to do this project because the Internet of Things was an area that seemed interesting
to be, but I also didn’t have much experience in. I thought that doing a project on the subject would be a
good opportunity for me to be able to get an in-depth look at the topic. This project also caught my eye
because I had a strong interest around security and, although I had learned about and investigated security
before, I’d never put any of this knowledge into practice. I saw this project as an opportunity to merge my
interest in security with my curiosity about the Internet of Things.

The first challenge I faced with this project was doing research of the area beforehand. I think this
was the first time I’ve had to do technical research for writing a report and I initially had difficulty gathering
relevant information. It was hard to know where to start looking to begin the project. After looking in in
multiple books about networks and network security, the commonalities between them all gave me a good
idea of the things I would need to know. After having a good idea of the areas, I needed to research, it was
simply a matter of reading up on the books. There were also some areas where I found less formal sources
like websites useful. The main area where this was useful was learning about Kali Linux and learning about
how to perform the attacks used in the project.

Another challenge I had to overcome for this project was simply writing this project. This is the
first time that I have had to write a report anywhere near this big. Once again, it was very difficult to know
exactly where to start. One thing I found which really helped with this problem was to draw up a basic plan
for what I wanted to cover in the report, simply listing the titles of the sections I wanted to include. Once
I’d established roughly what I wanted to cover I found the next useful thing to do was to just start writing
for whichever title I felt most comfortable about. Over time the project began to take shape and it was
easier to fill in the gaps.

Overall, I am relatively happy with the way that this project has turned out. There are no parts of
this project which I am specifically unhappy about. There are, however, some areas which I feel like I could
have done better on. I would have liked to perform more successful attacks than I managed. For this
project, an unsuccessful attack is essentially as useful as a successful attack as they both show something
about security, but I think it would have been nice to show more security weaknesses which I think might
be there. I also would have liked to perform an attack on the XBee technology. Unfortunately, I struggled
to find many resources on the subject and I was reluctant to spend too much time on the topic with very
little to go on. Finally, I would have liked to test more wireless modules for the Waspmote. This simply
came down to a lack of time, but I feel as though I could have managed my time better in such a way that
could have allowed me to test at least one more module.

I think my research and writing skills are the skills which have benefitted most from doing this
project. This project has also shown that I would probably benefit from spending some time trying to
improve my time management skills.

	 	

36	
	

References
Cooking	Hacks,	2017.	Waspmote	Smart	Cities	PRO	Sensor	Kit.	[Online]		
Available	at:	https://www.cooking-hacks.com/waspmote-smart-cities-sensor-kit	
[Accessed	4	May	2017].	

Gascón,	D.,	2015.	IoT	Security	Infographic.	[Online]		
Available	at:	http://www.libelium.com/iot-security-infographic-privacy-authenticity-confidentiality-
and-integrity-of-the-sensor-data-the-invisible-asset/#!prettyPhoto	
[Accessed	26	April	2017].	

Kurose,	J.	F.	&	Keith,	R.	W.,	2017.	Computer	Networking	-	A	Top-Down	Approach.	7th	ed.	Harlow:	
Pearson.	

Libelium,	2013.	Waspmote	Over	The	Air	Programming	Documentation.	[Online]		
Available	at:	
http://www.libelium.com/downloads/documentation/v12/over_the_air_programming.pdf	
[Accessed	28	April	2017].	

Libelium,	2016.	Waspmote	WiFi	Documentation.	[Online]		
Available	at:	http://www.libelium.com/downloads/documentation/v12/wifi_networking_guide.pdf	
[Accessed	24	April	2017].	

Libelium,	2016.	Waspmote	XBee	802.15.4	Documentation.	[Online]		
Available	at:	http://www.libelium.com/downloads/documentation/v12/waspmote-802.15.4-
networking_guide.pdf	
[Accessed	23	April	2017].	

Libelium,	2017.	Waspmote	Data	Frame	Documentation.	[Online]		
Available	at:	http://www.libelium.com/downloads/documentation/data_frame_guide.pdf	
[Accessed	22	April	2017].	

Libelium,	2017.	Waspmote	Hardware.	[Online]		
Available	at:	http://www.libelium.com/products/waspmote/hardware/	
[Accessed	20	April	2017].	

Libelium,	2017.	Waspmote	Homepage.	[Online]		
Available	at:	http://www.libelium.com/products/waspmote	
[Accessed	20	April	2017].	

Libelium,	2017.	Waspmote	Interfaces.	[Online]		
Available	at:	http://www.libelium.com/products/waspmote/interfaces/	
[Accessed	23	April	2017].	

Liechti,	C.,	2016.	PySerial	Homepage.	[Online]		
Available	at:	https://pyserial.readthedocs.io/en/latest/pyserial.html	
[Accessed	28	April	2017].	

McClure,	S.,	Scambray,	J.	&	George	Kurtz,	2012.	Hacking	Exposed	-	Network	Security	Secrets	and	
Solutions.	7th	ed.	s.l.:McGraw	HIll.	

Ponemon	Institute	LLC,	2017.	2017	Study	on	Mobile	and	IoT	Application	Security,	s.l.:	ARXAN.	

37	
	

Processing,	2017.	Processing	Homepage.	[Online]		
Available	at:	https://processing.org	
[Accessed	20	April	2017].	

Shirey,	R.,	2007.	IETF	RFC	4949.	[Online]		
Available	at:	https://tools.ietf.org/html/rfc4949	
[Accessed	25	April	2017].	

Stallings,	W.,	2017.	Network	Security	Essentials	-	Applications	and	Standards.	6th	ed.	Harlow:	
Pearson.	

Tews,	E.,	Weinmann,	R.-P.	&	Pyshkin,	A.,	2007.	Breaking	104	bit	WEP	in	less	than	60	seconds.	
[Online]		
Available	at:	https://eprint.iacr.org/2007/120.pdf	
[Accessed	29	April	2017].	

Wang,	J.	&	Kissel,	Z.	A.,	2015.	Introduction	To	Network	Security	-	Theory	And	Practice.	1st	ed.	
Singapore:	Wiley.	

