
1 
 

 

 

 

Analysis and Visualisation of Access Attempts on an SSH 
Honeypot Server 

 

 

 

 

Author: Sam Ruff (C1315885) 

Supervisor: Michael Daley 

Moderator: Dave Marshall 

 

 

 

 

 

 

 

 

Cardiff University 

School of Computer Science and Informatics 



2 
 

Abstract 
This project aims to highlight the real-world threats facing SSH servers connected to the 

internet. This has been achieved through the creation of a honeypot server that logs 

incoming connection activity. These logs include information such as the location of the 

connection, IP address and any passwords entered. The results I collected for this part of the 

project showed that thousands of malicious connection attempts were made to my 

honeypot server over the course of one month, likely as part of a brute force attack. These 

results can be used to aid in the creation of stronger passwords, as a list of the most 

common passwords used in these attacks has been produced. 

My honeypot server also detects exploitation attempts using methods specific to each 

exploit. The exploits chosen and analysed were CVE-2016-6515 and CVE-2015-5600, a denial 

of service and brute force exploit respectively. The results for this part of the project were 

inconclusive, as no exploitation attempts of this type were detected. However, throughout 

the course of this study other potential malicious activity was logged, suggesting that other 

forms of exploitation may be used as an access vector.  

I created a graphical user interface in order to make the results of this project accessible to a 

wider audience. The GUI visualised my results in an atheistically pleasing manner in real-

time. It displayed statistics from password, location and exploitation analysis, including 

dynamic maps showing the location of each connection attempt, in the form of both a 

heatmap and a distribution of clusters.  

  



3 
 

Acknowledgements 
Thank you to my supervisor Mike Daley for his continued support throughout this project 

and to Cardiff University to providing me with the skills and the means to achieve the goals 

of this project.   



4 
 

Contents 
Abstract ...................................................................................................................................... 2 

Acknowledgements .................................................................................................................... 3 

Contents ..................................................................................................................................... 4 

Table of Figures .......................................................................................................................... 7 

Introduction ............................................................................................................................... 9 

Background .............................................................................................................................. 10 

SSH ....................................................................................................................................... 10 

Common Attacks .................................................................................................................. 10 

Exploits and CVE numbers ................................................................................................... 10 

OpenSSH............................................................................................................................... 11 

MongoDB ............................................................................................................................. 12 

Flask and Jinja ...................................................................................................................... 12 

Other Relevant Work ........................................................................................................... 12 

Approach .................................................................................................................................. 14 

Requirements ....................................................................................................................... 14 

Overview and System Design ............................................................................................... 15 

User Interface Design ........................................................................................................... 16 

SSH Server Design ................................................................................................................ 20 

API Design ............................................................................................................................ 21 

Hardware and Software Environment ................................................................................. 24 

Implementation ....................................................................................................................... 26 

Overview .............................................................................................................................. 26 

OpenSSH Server ................................................................................................................... 27 

Overview .......................................................................................................................... 27 

HTTP POST requests ......................................................................................................... 27 

Connection Detection ...................................................................................................... 28 

Brute Force Detection ...................................................................................................... 29 

Exploitation Detection ..................................................................................................... 30 

Notable Features.............................................................................................................. 32 

Problems Encountered .................................................................................................... 32 

Logging and Storage ............................................................................................................. 34 

Database and Setup ......................................................................................................... 34 



5 
 

Connection and Password Logging .................................................................................. 35 

Exploitation Logging ......................................................................................................... 36 

Notable Features.............................................................................................................. 37 

Problems Encountered .................................................................................................... 38 

GUI and Front-End ............................................................................................................... 39 

Overview .......................................................................................................................... 39 

Location Analysis .............................................................................................................. 40 

Password Analysis ............................................................................................................ 42 

Exploit Analysis ................................................................................................................ 43 

Notable Features.............................................................................................................. 43 

Problems Encountered .................................................................................................... 44 

Administration ..................................................................................................................... 45 

Overview .......................................................................................................................... 45 

Hosting and Port forwarding ........................................................................................... 45 

Ensuring Portability .......................................................................................................... 46 

Problems Encountered .................................................................................................... 46 

Results and Evaluation ............................................................................................................. 47 

Testing .................................................................................................................................. 47 

SSH Server ........................................................................................................................ 47 

Web Server ....................................................................................................................... 50 

Further Testing ................................................................................................................. 50 

Evaluation against Requirements ........................................................................................ 51 

Results .................................................................................................................................. 52 

Password Analysis ............................................................................................................ 53 

Location Analysis .............................................................................................................. 54 

Exploit Analysis ................................................................................................................ 56 

Results Summary.................................................................................................................. 57 

Evaluation of Results/Methods ........................................................................................... 58 

Password/Connection Analysis ........................................................................................ 58 

Exploitation Analysis ........................................................................................................ 58 

SSH Server ........................................................................................................................ 59 

Future work .............................................................................................................................. 60 

Conclusion ................................................................................................................................ 61 



6 
 

Reflection on Learning ............................................................................................................. 62 

Bibliography ............................................................................................................................. 63 

 

  



7 
 

Table of Figures 
Figure 1. System Overview....................................................................................................... 15 

Figure 2. About Screen ............................................................................................................. 16 

Figure 3. Location Analysis Screen ........................................................................................... 17 

Figure 4. Password Analysis Screen ......................................................................................... 18 

Figure 5. Exploitation Analysis Screen ..................................................................................... 19 

Figure 6. Connection Attempt Use Case .................................................................................. 20 

Figure 7. Exploitation Attempt Use Case ................................................................................. 21 

Figure 8. System Information .................................................................................................. 24 

Figure 9. Virtual Machine System Information ........................................................................ 25 

Figure 10 Final System Overview ............................................................................................. 26 

Figure 11. HTTP request method ............................................................................................. 27 

Figure 12. process_http function ............................................................................................. 28 

Figure 13. HTTP request in the connection loop ..................................................................... 28 

Figure 14. Static Variables in sshd.c ......................................................................................... 29 

Figure 15. sys_auth_passwd function before modification .................................................... 29 

Figure 16. sys_auth_passwd function after the addition of logging ....................................... 30 

Figure 17. static variables added to auth-passwd.c ................................................................ 30 

Figure 18. CVE-2016-6515 ....................................................................................................... 31 

Figure 19. CVE-2015-5600 ....................................................................................................... 32 

Figure 20. Git commit for CVE-2015-5600 ............................................................................... 33 

Figure 21. PyMongo example .................................................................................................. 34 

Figure 22. Exploitation Logging ................................................................................................ 36 

Figure 23. Counting the total number of exploits ................................................................... 36 

Figure 24. Expression as percentage of total connections ...................................................... 36 

Figure 25. Top password caching ............................................................................................. 37 

Figure 26. Time-based retrieval of geographic data ................................................................ 38 

Figure 27. About Screen ........................................................................................................... 39 

Figure 28. Location Analysis Page ............................................................................................ 40 

Figure 29. Loading geographic data with AJAX ........................................................................ 40 

Figure 30. Populating the maps ............................................................................................... 41 

Figure 31. Loading the API key with Jinja ................................................................................ 41 

Figure 32. Embedding API key into the template at runtime .................................................. 41 

Figure 33. Password Analysis Page .......................................................................................... 42 

Figure 34. Populating the top ten passwords table ................................................................. 43 

Figure 35. Exploitation Analysis Page ...................................................................................... 43 

Figure 36. Zoomed in connections graph ................................................................................ 44 

Figure 37. Heatmap Rendering Issue ....................................................................................... 44 

Figure 38. Heatmap after modification ................................................................................... 45 

Figure 39. Port forwarding options .......................................................................................... 46 

Figure 40. Requestb.in headers ............................................................................................... 47 

Figure 41. Requestb.in example .............................................................................................. 47 

Figure 42. Password dump output........................................................................................... 48 

file:///C:/Users/Sam/Google%20Drive/Uni/Final%20Year/Project/Dissertation.docx%23_Toc481499363


8 
 

Figure 43. Top Ten Passwords ................................................................................................. 53 

Figure 44. Heatmap of Connections ........................................................................................ 54 

Figure 45. Cluster representations .......................................................................................... 55 

Figure 46. Breakdown of Connections by Location ................................................................. 55 

Figure 47. Large numbers of connections coming from single IP ranges ................................ 56 

Figure 48. Potential Shell Code from HTTP 0.9 Request to web server .................................. 57 

Figure 49. Directory Traversal intended for PHP myAdmin .................................................... 57 

Figure 50. Other Unusual HTTP requests ................................................................................. 57 

 

  



9 
 

Introduction 
According to a crime survey an estimated 3.1% of the UK’s adults experienced some form of 

computer misuse incident in 2015, with one third of these incidents relating to access of 

personal information and/or hacking [1][2]. With cybercrime on the increase and with the 

trends targeting individuals and large organisations, the analysis of cybercrime activities is 

as important as ever [3]. In many security-centric systems the most targeted vulnerability 

tends to be the human element of the system, with one of the methods used to exploit the 

user being the brute force of weak or insecure passwords [5][6]. This is an issue in the 

administration of remote servers, as the option is available for administrators to use 

password-protection as a means of authentication. The availability of these servers that are 

accessible publicly means that there is a substantial access vector for potential cyber-

criminals to gain control of insecurely setup servers. Whether this be through the leverage 

of weak brute-forcible passwords or temporary passwords used for testing purposes and 

not properly deleted. 

Therefore, the aim of this project to analyse and visualise such activities on a popular 

protocol for the administration of public-facing servers on the wider internet. The protocol 

in question is Secure Shell (SSH), specifically in this case the widely used open-source client-

server implementation of SSH, OpenSSH [4]. As part of this project I intend to analyse 

connection attempts made to a public SSH server running a modified version of OpenSSH 

by, providing logging functionality for such connections. I will also be writing detection 

methods to detect the use of certain exploits that leverage vulnerabilities in older versions 

of OpenSSH. The information gained by this analysis should be able to provide every-day 

users with such information as common passwords used in real-time through the use of a 

user-friendly graphical interface. It may also prove useful to members of law enforcement 

to provide further insight in the frequency and scale of attacks being leveraged against 

nodes on the internet. This project may also provide anecdotal evidence for the frequency 

of which exploits may be used to gain unauthorised access to un-patched OpenSSH servers.  

  



10 
 

Background 

SSH 
SSH (Secure Shell) is a protocol for the secure communication of information pertaining to 

network or system administration over an unsecured network [7]. It allows a systems 

administrator to login to a machine remotely and perform tasks as if they had physical 

access to the machine via a terminal interface. SSH includes all security features that would 

be expected such as full encryption and user separation. 

The reason I chose to look at the security considerations involved in hosting and maintaining 

a publicly available SSH server was that SSH is the one of the most prevalent remote 

administration protocols used around the world. Because of this ubiquity, it means that 

there would be a high availability of targets for an attacker looking for poorly protected 

servers on the internet. This coupled with the potential impact of such a server being 

compromised means that gauging and understanding the level of threat was important. 

Using weak passwords or unpatched versions of SSH implementations may lead to an 

attacker gaining root access to your machine, and potentially being able to propagate 

further within your local network [9].  

Common Attacks 
When designing a computer system where security is desired, it is important to understand 

the potential attacks that could face the system being created. Therefore, during this design 

of this project I made decisions ascertaining to the use of certain technologies with security 

in mind. Whereas these decisions are discussed further in this section and the rest of this 

report, below I have described the potential common attacks that may be faced by a public-

facing server:  

• SQL Injection: This attack is when SQL code is input into a system through 

unsanitized user inputs that can allow for the arbitrary execution of SQL code 

beyond the scope intended [17]. This in the worst cases can lead to entire databases 

being leaked or data being damaged or lost [18]. 

• XSS (Cross Site Scripting): This attack is similar to that of SQL injection in that it is an 

injection based attack, however it is generally regarded as the injection of unsafe 

HTML or JavaScript tags onto a webpage [19]. This means that arbitrary client-side 

code could be run on a page without the knowledge of the website administrator, or 

an unsuspecting user rendering the page.  

• Brute Force: This attack leverages the use of common or weak passwords to gain 

access to a target that is password protected. This is achieved by the repeated input 

of potential passwords until eventually the correct password is found [20]. This 

usually automated process can be prevented by limiting the number of retries from 

one specific user and by using strong passwords or other forms of authentication 

where necessary. 

Exploits and CVE numbers 
An exploit in the field of Computer Science refers to a process in which a flaw in the design 

of a piece of software is leveraged for effects unintended by its original creator. When an 



11 
 

exploit is discovered and released to the public, in the form of a patch from a vendor or a 

proof of concept by a security researcher it is given a Common Vulnerabilities and Exposures 

(CVE) number by the CNA (CVE Numbering Authority) [10]. A CVE number simply identifies 

each exploit uniquely, as well as containing the year in which the exploit was released [11].  

The exploits that I examined during this project were:  

CVE-2016-6515 – This exploit acts as a Denial of Service (DoS) attack for some unpatched 

servers - it relies on sending the server a long password which takes longer for the server to 

hash and respond to thus using server resources [12].  

CVE-2015-5600 – This exploit uses keyboard interactive devices to bypass the 

authentication limit for unpatched servers, allowing for a much larger number of password 

attempts per connection [13]. 

I chose to examine exploits as well as brute-force attempts, as exploits are harder to detect 

because they are not something that is easily visualised on connection logs. This is because 

exploitation attempts, by design, do not appear on connection logs as they would appear as 

benign connections. For this reason, I had to write my own detection methods specific to 

each type of exploit. 

I chose these particular exploits as they represented the types of attacks I was looking to 

analyse, as well as having a large impact if exploited successfully. I examined the CVE list of 

all documented exploits for OpenSSH and chose the most relevant and timely exploits. I did 

not choose to monitor or analyse any older exploits, as I did not think that they would be as 

relevant in the modern threat landscape due to very few target machines running very old 

versions of SSH. There were also a number of modern exploits that did not fit the 

parameters for this project such as those requiring local access or elevated privileges 

beforehand.  

OpenSSH 
OpenSSH is a client-server implementation of the SSH protocol that allows the features of 

SSH to be implemented with very little interaction from the user during setup. OpenSSH is 

distributed as the default SSH client and server for many popular Linux distributions such as 

Ubuntu, Linux Mint, Red Hat and many others [8].  

I chose to analyse OpenSSH as the platform for this project because not only is it widely 

available by default, it is also open source. This means that I will be able to easily access and 

modify the code to provide the functionality I require by creating the new features from 

source code provided to the wider community. In my opinion the fact that OpenSSH is open 

source means that exploits will more likely be used by potential attackers, as they would 

have direct access to the source code. This means that for a cyber-criminal the barrier for 

entry in terms of expertise is lower. This is because finding exploitable code and the creation 

of customised clients to leverage such code would be easier as no reverse engineering 

would be required.  Another reason I chose to use OpenSSH rather than other SSH 

implementations was because of the size of the community maintaining OpenSSH and the 

level of documentation that is available for development. This means that during the 



12 
 

development process should I encounter a problem I should be able to find the solution 

using the documentation or help from the community.  

MongoDB 
MongoDB is a NoSQL database designed for ease of use and flexible schema-less storage of 

data through the use of a document model. The document model simply treats each piece 

of data to be stored as a document and uses BSON as the format to store the individual data 

items. This allows the schema to change between each document without too much loss of 

speed or efficiency as each document can be individually indexed [14]. 

I chose to use MongoDB over MySQL as I did not feel that my project required some of the 

more advanced features that ship with MySQL, thus reducing the complexity of my database 

system. The use of Mongo also meant that I did not need to manually sanitize my inputs to 

the database to account for SQL injection attacks as NoSQL-based database systems do not 

suffer from such vulnerabilities [15].  I also found that Mongo was still very fast to store and 

retrieve documents in line with my requirements, while also allowing me to design my 

software around a schema less database approach - meaning future development or 

schema changes could be made without affecting the underlying database. I chose 

MongoDB over other NoSQL solutions as Flask already had well established interface 

modules for Mongo that I was familiar with through previous work, meaning the time taken 

for setting up the database functionality would be relatively low. 

Flask and Jinja 
In this project, I will be using Flask. Flask is a Python based web framework that makes the 

creation of Rest APIs (Application Programming Interface) straightforward and intuitive. The 

reason I chose to use Flask was because it allowed for easy integration with MongoDB as 

there are readily available Flask modules to allow for a direct interface to the data I wanted 

to store and retrieve. I also chose Flask as it let me develop in the Python which is the 

language I was most comfortable with, and because I had prior experience designing similar 

API features in the past with Flask. Flask works by creating endpoint functions for each page 

and rendering a Jinja HTML template using variables passed in by the endpoint function. 

Jinja allows for safe rendering of HTML content as it sanitizes inputs automatically by 

escaping potentially unsafe character sequences, preventing their use in XSS attacks [16]. 

Jinja is simply a rendering engine that works on top of HTML code to sanitize it before 

rendering content to the user. It can also be used to generate HTML content from Python 

variables using safe character sequences. 

Other Relevant Work 
The problem I am attempting to solve with this report and its accompanying software is the 

lack of understanding of the current threat landscape facing SSH servers that are publicly 

accessible. In particular, I think my work is unique as it covers topics where there is less 

public knowledge such as exploitation, and produces it a form that is understandable and 

easy to digest.   



13 
 

During the design stages of this project I investigated similar work and tried to improve on 

it. The most similar work I could find in this area was a dissertation written by Simon Bell, 

where he analyses brute force attacks on an SSH server [21] [22]. However, where I feel the 

work done by Simon Bell was insufficient since his website GUI lacked clarity and 

interactivity. To improve on this work, I plan on having an interactive GUI with location 

based maps, as well as the ability to toggle timescales on a generally more aesthetically 

pleasing GUI. I also plan to cover the topic of exploitation and weaponization of public and 

proof of concept exploits, to see the impact they have on SSH servers. Because I am directly 

interfacing with the OpenSSH source code I have more freedom to monitor the types of 

incoming connections to my modified server as opposed to using the libssh library like Bell. 

There has also been a number of independent studies running SSH honeypots for small 

periods of time. One such example is a study run for seven days for an article on the website 

Infragistics written by Torrey Bets [23]. This study has provided similar findings to that of 

Bell, however I feel that my project will improve on this by providing the functionality 

mentioned above, as well as running for a significantly longer time (approximately 1-2 

months from creation of the logging functionality).   



14 
 

Approach 

Requirements 
When designing this project, I tried to keep my intended audience in mind when deciding 

the requirements of my system. The requirements, and their justifications, can be seen 

below: 

User interface 

• The user interface must be easy to use and contain clear information. I chose this as 

a requirement because I intend for this software to be used by individuals of all skill 

levels. 

• The graphs and figures shown on the GUI should be interactive and allow the user to 

change timescales. This is intended to make my project more useful than some of 

the existing work as well as giving a more meaningful breakdown of the available 

information.  

• The user interface should be split into clear sections pertaining to each data set that I 

am collecting. This is important because it allows for my users to access the data that 

they require directly, and will be designed not to confuse new users. 

• Can act as a standalone application separate to my dissertation. I would like the 

software that I produce to be concise enough to be understood without the use of 

my dissertation as supplementary material.  

• To show the geographical location and other relevant statistics on connections made 

to the SSH server. This is important to the project because it will make it interesting 

and unique, as I have not found other work that will show the collected data in the 

form that I have chosen. 

• To contain live and up-to date information on a dynamically updated web page. This 

is important as it will mean the most accurate and up to date information is 

displayed on the GUI regardless of whether a user refreshes the page or not. I will 

achieve this using AJAX methods to update the page dynamically.  

Backend and Honeypot 

• To collect relevant data about connections, passwords and exploit attempts. I will 

collect this data with code created by extending the existing OpenSSH 

implementation, and adding HTTP post requests to log the information. 

• To be expandable for future work. I will achieve this by using common conventions 

for the transfer of information, while using software packages that allow for ease of 

extension, such as Flask. 

• To use well-defined software standards for communication. I plan on using JSON 

based communication from the user interface to the server and simple HTTP post 

requests between the honeypot and the web server. This means that my code 

should be understandable to anyone familiar with these programming paradigms.  

• To be as lightweight as possible for use if necessary on a Raspberry Pi. As stated in 

my initial plan my software should allow a user to build it and deploy it on a 

Raspberry Pi where necessary.  



15 
 

• To create reliable testing and build scripts to allow for ease of development. This is 

important for efficiency when developing and to allow for a test suite that is 

consistent across each build iteration of the product.  

• To masquerade as an unmodified SSH server from the perspective of the user. This is 

paramount to the success of this project as the data collected would not be useful if 

the potential attackers knew they were being monitored.  

 

Overview and System Design 
Figure 1. System Overview 

 

Figure 1 shows the general overview of how the modules of the complete system will 

interact.  I will use the web server as a central connection point, meaning it will be used as a 

target for incoming data flow. The storage and data retrieval will be provided by the 

MongoDB database, and the users will access the stored information through the web GUI 

provided by Flask.  

In the general use case the SSH server will make a POST request to the specific endpoint for 

the information being logged when a connection is made. The web server will then save the 

information to the corresponding database provided by MongoDB. 



16 
 

When the user requests the GUI, the data will be displayed using relevant AJAX requests 

with the data being provided to the JavaScript functions in the JSON format. This design is 

intuitive for my system as Flask is designed to work with JSON, AJAX requests are based 

around JSON/XML and MongoDB storage is JSON/BSON based; this commonality was by 

design meaning that there should be no data formatting conflicts between the intermediate 

systems. 

User Interface Design 
To ensure consistency between each page of my UI I mocked up screens design shown in 

the figures below using a navigation panel as a static device to allow for the traversal of the 

interface. I chose the navigation panel because it should be a familiar feature to the user as 

it used in many different websites so should be intuitive in its use. I also plan to include 

instructions on how to navigate the website in the introduction information as well a brief 

description of the purpose of the site itself as shown in Figure 2.  

The user interface itself will use standard web technologies provided by Flask such as HTML 

and JavaScript to provide the same experience to each user, and to be accessible to as wide 

an audience as possible without the need to for any specialised hardware or software.  

Figure 2. About Screen 

 



17 
 

Figure 3. Location Analysis Screen 

 

Figure 3 shows the location analysis screen which will be used to display the dynamic 

geographical maps listing the connections attempts made to the server from around the 

world. These maps should be able to show the connections from different timeframes, 

these timeframes are the following:  

• All time 

• Past Month 

• Past Week 

• Past Day 

• Past Hour 

• Past Minute 

This gives the user a level of granularity in their control of the data that they are presented 

with and may show patterns or clusters of activity more clearly than a static view or other 

chart as I have seen in other work.  

The heatmap will show the areas of activity as more of an overview of the threat landscape, 

whereas the cluster map should provide more precise information to the user, as it will be 

able to deliberate the difference between each cluster of IP addresses. This should show 

whether a cluster of many IPs are attempting to access the server from a single location or 

one IP address is making many connection attempts.  

I also plan to include the total number of connections of the interface as it will show the 

scale of the attacks a server might face, which in my preliminary research was much higher 

than might be expected. To accompany this information I will also include a graph of the 

times where each connection was made, to see if there is any correlation between time of 



18 
 

day and the attack itself. This could provide clues to the actual timezone of the attackers as 

it may be obscured by a proxy causing the location data itself to be inaccurate. This 

information may also used to highlight any days that receive less traffic than usual, and 

could be cross-referenced with public holidays on that day (e.g. Chinese New Year). 

Figure 4. Password Analysis Screen 

 

Figure 4 shows the password analysis screen, I plan to include a table of the top ten 

passwords on this screen and the most recent attempt displayed in real time. 

The formatting of the popular password table should be as follows: 

Count Password Count 

1 example123 73 

2 admin 35 

The recent attempt box will contain the details of the most recent attempt including IP 

address, ISP and location information.  

  



19 
 

Figure 5. Exploitation Analysis Screen 

 

Figure 5 shows the exploit analysis page; this page will display details about the chosen 

exploits that my SSH server has detected including frequency and overall use as a 

percentage of total attacks. On this page, I will also include a brief description of the exploit 

for anyone unfamiliar with the specifics of each. 



20 
 

SSH Server Design 
Figure 6. Connection Attempt Use Case 

Figure 6 shows my design for the standard use case to record either brute force attacks or 

simple connections to the server. When an SSH connection is made, the modified SSH server 

will log the attempt by making a HTTP POST request to the Flask server shown in Figure 1. 

This request then in turn updates the database with the relevant information. The 

information sent to the web server is the IP address and the password if one is used. Using 

this information, the server can then get the geographical information based off the IP 

address using an external service, and this can then be stored.  

 



21 
 

Figure 7. Exploitation Attempt Use Case 

 

Figure 7 shows the expected use case for an exploitation attempt. A malicious actor would 

attempt to levy an exploit against the server. This exploit attempt would be unsuccessful as 

the server is fully patched. However, the code I will have written will have a method to 

detect such an attempt and follow the same logging protocol as described in the previous 

figure. A HTTP POST request would be sent to the web server and the exploit attempt and 

exploit type would be recorded and stored on the MongoDB database. 

API Design 
This project is heavily reliant on the RESTFUL API model, as the web server functionality acts 

as the central point for the rest of the systems, allowing for persistent storage for the 

backend and ease of access for the potential audience. Below is a breakdown of each of the 

API endpoints I plan to implement for both the front-end GUI and back-end logging 

functionality.  

Web GUI 

URL /total_attempts 

Type GET 

Example Request N/A 

Example Response {"count": 259798} 

Response Type JSON{int} 

Description Returns the total number of password attempts received with 
variable name ‘count’. 

 



22 
 

 

URL /total_conns 

Type GET 

Example Request N/A 

Example Response {"count": 37167} 

Response Type JSON{int} 

Description Returns the total number of connection attempts received with 
variable name ‘count’. 

 

URL /get_exploit_count 

Type GET 

Example Request /get_exploit_count?exploit=CVE-11-11-11 

Example Response 4 

Response Type int 

Description Returns the total number of exploit attempts for given 
parameter. 

 

URL /get_exploit_percent 

Type GET 

Example Request /get_exploit_percent?exploit=CVE-11-11-11 

Example Response "0.0108%" 

Response Type string 

Description Returns the percentage of exploit attempts of given exploit. 

 

URL /top_passwords 

Type GET 

Example Request /top_passwords?count=10 

Example Response [["admin", 277], ["1234", 247], ["123456", 245], ["12345", 202], 
["password", 184], ["ubnt", 156], ["test", 150], ["!@#$%^", 139], 
["raspberry", 137], ["root", 126]] 

Response Type JSON[list] 

Description Returns the top passwords to the limit given by the integer count 
 

URL /get_time_data 

Type GET 

Example Request N/A 

Example Response [[[20, 44, 0], 24], [[7, 49, 0], 18], [[7, 48, 0], 18], [[7, 47, 0], 17], 
[[7, 46, 0], 15], [[7, 45, 0], 17], [[7, 44, 0], 15], [[7, 43, 0], 17], [[7, 
42, 0], 20], [[7, 41, 0], 18], [[7, 40, 0], 16], [[22, 47, 0], 29], [[22, 
46, 0], 29], [[22, 45, 0], 31], [[22, 44, 0], 32], [[22, 43, 0], 26], … 
snip … 

Response Type JSON[list] 

Description Returns a list of times and connection attempts in the form: 



23 
 

 [[h, m, s] number_of_connections] 

URL /get_geo 

Type GET 

Example Request /get_geo?time=All%20Time 

Example Response [{"coordinates": [32.0376, 120.28], "label": "116.31.116.40"}, 
{"coordinates": [32.0617, 118.7778], "label": "221.229.162.204"}, 
… snip … 

Response Type JSON[list] 

Description Returns a list of coordinates and labels to put onto a 
geographical map with a time parameter. 

 

URL /get_last 

Type GET 

Example Request N/A 

Example Response {"city": "Shanghai", "timestamp": "23:28:29 05-04-2017", "ip": 
"1.1.1.1.1", "isp": "China Unicom Hebei", "country": "China", 
"password": "1111", "regionName": "Shanghai"} 

Response Type JSON{string, string, string, string, string, string, string} 

Description Returns the information about the most recent connection. 
 

SSH Logging 

URL /submit_password 

Type POST 

Example Request {‘password’:‘example’} 

Example Response N/A 

Response Type None 

Description Save the given password to the database with a current 
timestamp. 

 

URL /exploit_attempt 

Type POST 

Example Request {‘exploit’:‘CVE-1-1-1-1’} 

Example Response N/A 

Response Type None 

Description Save the given exploit to the database with a current timestamp. 

 

URL /connection_attempt 

Type POST 

Example Request {‘connection’:‘192.0.0.1’} 

Example Response N/A 

Response Type None 

Description Save the given IP to the database with a current timestamp and 
geographical data. 



24 
 

Hardware and Software Environment 

In the initial proposal for this project, I had chosen to use Raspberry Pis for the honeypot 

and web server functionality as a low-cost alternative to standard computing resources. 

During the testing and development stages of this project I will use my desktop computer as 

a testing platform to host the honeypot and the web server, but will be keeping the 

requirements for speed and portability in mind during development. I will be running the 

honeypot server from a virtual machine (VM) on my desktop computer and running the web 

server from python on my main machine. The mongo database will also be run locally on my 

desktop machine, but could be run as a separate system in the final design. 

The specifications for the web server’s software and hardware are displayed in Figure 8. 

Figure 8. System Information 

 

The specifications for the VM’s software and hardware are displayed in Figure 9. 

The VM will be running 64 bit Ubuntu with the version of OpenSSH required being installed 

from source.  

  



25 
 

Figure 9. Virtual Machine System Information 

 

I chose to do this testing with this environment for ease of use as, I have local access to all 

the machines and have full control on how the network can be set up. I also felt local access 

would be useful as testing the SSH server remotely would mean that I would be regularly 

restarting the SSH daemon that I would be using to administer the changes.   

The initial proposal also stated that I would be using Raspberry Pi’s connected to the 

University network. This approach means that I have further control over my hardware and 

networking resources, without the potential addition of further delays from outsourcing the 

network. I also decided to use a single honeypot device as I think there was no need for 

multiple Pi’s to detect each exploitation or brute force method as it can all be done from a 

single machine.  

  



26 
 

Figure 10 Final System Overview 

Implementation 

Overview 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 shows the state of the final system for a standard connection attempt.  

Each part of the system will be discussed in detail in the sections below.  

 

 



27 
 

OpenSSH Server 

Overview 

The honeypot SSH server implementation followed the design outlined in this document 

closely. To implement the honeypot, I first downloaded the most recent version of the 

open-source code for OpenSSH from a distribution repository. I then built the code using its 

Makefile and started modification, re-building and testing the code where appropriate. In 

accordance with my requirements, the modified version of the OpenSSH server 

implementation I created logged incoming connection requests silently to my server hosted 

at ‘sam-ruff.co.uk’ as shown on Figure 10. In order to achieve this I had to find the 

appropriate methods used to deal with incoming connections, password entry and other 

methods relevant to the chosen exploits and modify them to include logging functionality.  

HTTP POST requests 

To log the incoming requests, password entries and exploitation attempts, I implemented a 

method to perform a HTTP POST request. This allowed for my honeypot server to quickly log 

incoming information without slowing down the processing of the request too drastically. 

Following the design brief to use standardized programming paradigms, this method should 

be scalable and easily modified to add functionality to my system.  

Figure 11. HTTP request method 

 



28 
 

The send_post request function is fairly simple in its design to allow the requirements of 

speed mentioned above. First the hostname is resolved into an IP address and a socket is 

created. A connection to that socket is then made and execution is passed off to the 

process_http function. The process_http function writes the headers of the HTTP request to 

a character buffer, includes the POST parameters, writes the created buffer to the socket, 

reads the response and closes the connection.  

Figure 12. process_http function 

 

The http_post request function is used in the methods discussed below when logging 

information. 

Connection Detection 

In order to detect a connection to my honeypot, I modified the sshd.c file that contained the 

server_accept_loop method. This method acts as the main TCP accept loop for the SSH 

server. During this method, a HTTP POST request is made using the aforementioned HTTP 

POST function. 

Figure 13. HTTP request in the connection loop 

 

As shown in Figure 13, a post_req char buffer is loaded with the IP of the connecting peer 

using the snprintf function. Subsequently the send_post function is called using the 

parameters shown above. HOSTNAME, PAGE, MAXSUB and MAXLINE refer to static 

variables declared at top of the file as shown below in Figure 14.  

 

 



29 
 

Figure 14. Static Variables in sshd.c 

 

Brute Force Detection 

In order to detect brute forcecc attempts I wanted to log each password entry as it was 

entered for authentication. To achieve this I modified the sys_auth_passwd function in the 

auth-passwd.c file. This function is called to authenticate a candidate password against the 

hashed password stored on the local machine.  

Figure 15. sys_auth_passwd function before modification 

 

 

 

 

 



30 
 

Figure 16. sys_auth_passwd function after the addition of logging 

 

Figure 15 shows the unmodified function, this function takes the candidate password, 

ensures that it is non-zero/empty, hashes the password and returns the result of the 

comparison between the hashed password and the stored hash. My modification shown in 

Figure 16 outputs the plaintext password entered to the endpoint ‘sam-

ruff.co.uk/submit_password’. 

Figure 17. static variables added to auth-passwd.c 

 

The EXPLOIT_TARG variable is used in the exploitation detection method.  

Exploitation Detection 

The exploits I chose during the design stages of this project were CVE-2016-6515 and CVE-

2015-5600. Because of the nature of exploitation, I designed a unique detection method for 

each exploit based on their characteristics and proof of concepts I found. 

CVE-2016-6515 as previously detailed is an exploit that causes a Denial of Service by using a 

very long password to consume server resources during the password hashing stage 



31 
 

detailed above. To detect this I modified the auth_password function as shown in Figure 18 

below. 

Figure 18. CVE-2016-6515 

 

Figure 18. shows the patch that has been applied for this exploit by the contributors of 

OpenSSH. The patch prevents this exploit by the introduction of MAX_PASSWORD_LEN 

variable and the check shown above. However, during my tests, I found that this condition is 

never met as connections with passwords longer than 1024 bytes are truncated to 1023 

bytes before reaching the aforementioned if statement. Therefore, to detect a long 

password I checked for the passwords of the truncated length 1023 bytes and assumed that 

any password that passed this check would therefore be classed as an exploit attempt. I 

then post the exploit attempt along with its CVE number to the Flask webserver for logging, 

and end the malicious SSH session by returning 0.  

CVE-2015-5600 is an exploit that bypasses the authentication limit of each SSH session (by 

default 3 password authentication attempts). It achieves this by adding multiple keyboard-

interactive authentication devices of the type ‘PAM’. The book ‘SSH, The Secure Shell: The 

Definitive Guide’ by Daniel Barrett gives the following table to show the possible interactive 

keyboard devices. 

 

PAM (Pluggable Authentication Modules) is a suite of shared libraries that provides dynamic 

authentication support for applications in Linux [24][25]. This exploit leverages the fact that 

multiple devices can be included in an SSH connection attempt using the switch like the 

example below: 

ssh -o KbdInteractiveDevices=pam,pam,bsdauth 



32 
 

In an exploitable system for each interactive device an extra authentication attempt was 

allowed. Thus, by adding multiple instances of the pam keyword, large numbers of 

exploitation attempts were made possible without the connection being terminated. 

To detect this I modified the kbdint_next_device function in the auth2-chall.c file as shown 

in Figure 19 below. 

Figure 19. CVE-2015-5600 

 

This method adds the keyboard devices by looping through the options given by the client. 

The interactive keyboard devices list is comma separated. To detect the exploit, I counted 

the number of times pam was used in the interactive keyboard device list. If it appears more 

than once I assumed an exploitation attempt had occurred as there is no legitimate reason 

to use more than PAM device. The exploit attempt is then logged and the session 

terminated.  

Notable Features 

One of the more notable features developed in this area was how I interfaced directly with 

the OpenSSH code to accurately predict when an exploit attempt occurred in real time. 

Because I could control the code directly, termination of the malicious session also meant 

that I could safe-guard my server from any potential harm when such activity was detected. 

I also tried to keep these detection methods as lightweight as possible to reduce processing 

overheads. I think that I achieved this as both methods are minimalistic and fast at 

execution time. 

Problems Encountered 

The main problem that I encountered during this section of the project was dealing with the 

scale and complexity of the OpenSSH code base. Because I had no prior experience with the 

source code I spend a long time simply reading and understanding the flow of execution. 



33 
 

This problem was also compounded by the lack of comments included in the OpenSSH 

implementation. One of the ways I overcame this complexity and narrowed the search for 

methods relevant to the exploits was through the use of Git commit logs. I found the Git 

commits that corresponded to the patches released for the exploits and used them to 

decide which methods to modify. An example of such a commit is given in Figure 20. 

Figure 20. Git commit for CVE-2015-5600 

 

You can see from Figure 20 where the authentication had been patched to handle multiple 

interactive devices properly. Although this code was heavily modified in the version that I 

was using it gave me an idea of which files/functions to modify.  

 



34 
 

Logging and Storage 

Database and Setup 

To enable the persistent storage of the data collected from my honeypot, I used MongoDB 

as discussed in the design. MongoDB was easy to set up and works out of the box with no 

complicated implementation procedures. For this iteration of the project, I used the default 

local configuration of Mongo. However, in a production environment I would use hardened 

security approaches such as password or public/private key protection on the database 

itself.  

Once I had run mongod.exe to start the database I needed to connect the Flask webserver 

to it. To do this I used Flask’s plugin feature, Flask plugins are used to extend Flask 

functionality and allow it to interface with external software. To interface with MongoDB, I 

used the plugin Flask-PyMongo which allowed me to directly use features of MongoDB 

within Python/Flask’s framework. An example of this is shown in Figure 21. 

Figure 21. PyMongo example 

 

Figure 21 shows an example of a Flask endpoint interacting with MongoDB, the 

@application.route(…) call defines the endpoint URL on the webserver and the variable 

client.db is used to interface with the Mongo database. In this case, the ‘connections’ 

collection is being accessed to retrieve time stamp information.  

Although MongoDB does not impose a strict schema, my final implementation had the 

following permanent collections. The documents in these collections follow a loose schema, 

however if required, the schema could be modified at a later date without affecting the 

overall implementation. These collections and schema are listed below: 

Passwords Collection: 

This collection contains documents that hold information about each password entry made 

to the server. The standard document in this collection is stored in the following format: 

{“value”: “example”, “timestamp” : python-datetime-object} 

In this case, value refers to the plaintext password entered and the timestamp is stored 

when the value is inserted into the table.  

 



35 
 

Exploits Collection:  

This collection contains documents that hold information about each exploit attempt and 

when it was made. The standard document in this collection is stored in the following 

format:  

{“value”: “CVE-2017-0000”, “timestamp” : python-datetime-object} 

In this case, value refers to the type of exploit being leveraged against the server and the 

timestamp is stored when the value is inserted into the table.  

Connections Collection: 

This collection contains documents that hold information about connection attempts such 

as the IP address of the connecting peer, when the connection was made, geographical and 

technical data associated with the connecting IP address. The standard document in this 

collection is stored in the following format:  

{“ip”: “127.0.0.1”, “timestamp” : python-datetime-object, “geo”: {“status”:”success”, 

“city”: “Cardiff”, “zip”: “CF24”, “countryCode”: “GB”, “country”:”Wales”, 

“region”:”CF24”, “isp”:”Virgin Media”, “lon”:0, “lat”:0, “timezone”: “GMT”}} 

The value ip refers to the connecting peers IP address, the timestamp refers to the time 

when the connection attempt was added to the database, and the geo variable stores a 

dictionary of geographical and technical information retrieved from an external source, 

including latitude and longitude.  

Connection and Password Logging 

To log password and connection attempts, I created the following endpoints: 

 

 

When the post data from the server is received, it is stored in the appropriate collection.  

To retrieve the geographical and technical data listed above, an external API is used. This 

API is provided by ip-api.com and is retrieved using the following code: 

 

The JSON string received is then parsed and inserted into the database. 

 

This service uses the IP address given to associate the corresponding geographic data later 

used for visualisation purposes.  

 

 



36 
 

Exploitation Logging 

To log exploitation attempts I created the following endpoints for the SSH server to POST to:  

 

To achieve this logging I created the function shown in Figure 22. 

Figure 22. Exploitation Logging 

 

This function takes the exploit type (e.g. CVE-2017-0000) and inserts it into the exploits 

collection along with a timestamp. The function returns “” as nothing is returned as a 

response to the POST call other than the 200 successful HTTP code. These exploits can then 

be counted and displayed as a percentage using the functions shown in Figure 23 and 24 

respectively.  

Figure 23. Counting the total number of exploits 

 

Figure 24. Expression as percentage of total connections 

 

The results of these functions are returned as a JSON string. 

 

 

 



37 
 

Notable Features 

A notable feature of the backend database interaction I implemented was the simple 

caching feature. I used this feature to reduce strain on the database when retrieving the top 

ten passwords. The function I created for this could also return a variable amount of the top 

passwords, to allow for future development. 

Figure 25. Top password caching 

 

As shown in Figure 25, the cache is refreshed every 15 seconds for each user to ensure that 

the potentially slow database request is not repeated too often. The main body of the 

function is only accessed if the time between the last request was more than 15 seconds 

ago, otherwise a JSON string containing the cached top ten passwords is returned.  

This list is created by counting each password and placing them into a dictionary in the 

form: {password:count}. This dictionary is then instantiated as a Counter object which allows 

for the most common occurrences to be found and returned. This feature considerably 

speeds up database interactions as the list is only refreshed for a single user every 15 

seconds meaning the other users do not have to wait for their requests to be fulfilled 

concurrently.  

Another notable feature of this part of the project is the return of geographical data filtered 

by time. This is used in the GUI to show connections ranging from All time to those received 

up to one minute ago. This function is shown in Figure 26. 

 

 

 



38 
 

Figure 26. Time-based retrieval of geographic data 

 

I designed this code so it could be extensible for future work so that more granular controls 

could be implemented. This function shows the variable time_from_now being decided by 

the input from the GET request variable time. This object is stored as a time delta variable 

and each connection in the connections collection is queried against this value. If the 

queried value is less than the delta value is appended to the output. The output is then 

return as a JSON string for processing client-side.  

Problems Encountered 

The main problem I encountered during this stage of the project was an incompatibility 

between some types of UTC timestamps. After investigation, I discovered this was because 

the time zone information stored with the timestamps did not match between time zone 

aware and time zone unaware values. Calls to datetime.datetime.utcnow() by default were 

time zone aware while the timestamps that were being saved to the database were not. 

This meant during comparison an error would be thrown. To overcome this I ensured all of 



39 
 

the timestamp values used in my system ignored time zone. This was achieved by setting 

tzinfo equal to None when retrieving a timestamp. This can be seen in Figure 26.  

GUI and Front-End  

Overview 

I followed the screen designs in this report to design the GUI that will be presented to end 

users of my system. I used the Flask to serve the HTML templates that I created to form the 

final implementation shown in the figures below. This implementation was running the Flask 

application directly. However, in a production environment I would use an intermediate 

such as gunicorn to allow for better scalability of the application.  

Figure 27. About Screen 

 

The purpose of this page is to inform a user about the project and try to give an insight of its 

purpose. I used the minimalistic design discussed during the design stages to allow the user 

to easily understand and navigate the interface shown. I chose to use a simple type-face and 

clear language to allow for the project’s compatibility with widest target audience possible.  

To achieve this I set up the Flask server with the main landing page rendering the above 

template. This page displayed static information and a dynamically rendered IP address 

which was retrieved and included at run time.  

 



40 
 

Location Analysis 

The location analysis page uses the Google Maps API to highlight the geographic location of 

connection attempts to the user. These two map views show the density and clusters of 

connections respectively, these maps can be filtered to allow the user to define a specific 

timeframe to view. 

Figure 28. Location Analysis Page 

 

Figure 28 shows the layout of the implemented page including a sample of the data that I 

collected during the course of this project. This page also contained an interactive graph 

allowing the user to zoom in on specific time periods. To populate the maps, I used AJAX 

requests to allow the data to be dynamically displayed and removed without needing to 

refresh the page. An example of this can be seen in Figure 29. 

Figure 29. Loading geographic data with AJAX 

 

 

 

 

 

 



41 
 

Figure 30. Populating the maps 

  

Figure 29. shows the geographic data being loaded using the JQuery getJSON function. This 

function takes the time frame defined by the user and retrieves the results based on this 

filter. These coordinates are then used to populate an array named coords, the IP address of 

data in this case, is used as a label. The coords array is then used to load markers onto the 

map using the Google Maps API. The label information is included when the map is 

rendered. 

To access the Google Maps API, an API developer key is required. I stored the API key 

associated with my account as a static variable on the Flask server. I then passed the API key 

to the Jinja template using the format shown in Figure 31. 

Figure 31. Loading the API key with Jinja 

 

Figure 32. Embedding API key into the template at runtime 

 

The API key can then be embedded at runtime using the format shown in Figure 32. This 

means that I can change the API key as needed in the future without re-writing the template 

itself.  

 

 

 

 

 

 

 



42 
 

Password Analysis 
Figure 33. Password Analysis Page 

 

The password analysis page is shown in Figure 33. The table containing the top ten 

passwords and the most recent connection attempt are dynamically generated using AJAX 

in a similar fashion to the geo-data discussed in the previous section. To get the top ten 

passwords I sent a GET request to the /top_passwords endpoint and allocate them based on 

their index in the sorted list that is returned. This is then repeated every 15 seconds to 

update the table. The function that achieved this can be shown in Figure 34. The purpose of 

this page is to outline the most common passwords used in a brute force attack. I hope this 

insight can raise the awareness of the user to the potential dangers of using weak 

passwords. 

 

 

 

 

 

 

 

 



43 
 

Figure 34. Populating the top ten passwords table 

 

Exploit Analysis 
Figure 35. Exploitation Analysis Page 

 

Figure 35 shows the statistics I gathered during this project regarding exploitation. This page 

describes the types of exploits I have been examining and dynamically displays statistics for 

each exploit using AJAX. The data in Figure 35 was used during testing and does not reflect 

my actual results. The data on this page refreshes every 2.5 seconds reflecting any changes 

in real-time.  

Notable Features 

A notable feature of this section of the project was the level of interactivity provided to the 

end-user. I allowed granular control where possible to filter the analytics to provide the 

specific results the user required. One such example was the connections bar graph on the 

Location Analysis page that allowed the user to zoom in on specific data points. This can be 

seen in Figure 36.  

 

 

 



44 
 

Figure 36. Zoomed in connections graph 

 

Another notable feature of this part of the project was the intuitive feedback given to the 

user while they are waiting for the AJAX requests to resolve. I included loading spinner 

images where possible to reassure the user that the data is being loaded remotely. This is 

necessary in some cases, such as the request for the non-cached top ten passwords, as it 

can be slow.  

Problems Encountered 

A problem that I encountered during at this stage was that the CSS files were not being 

loaded once modified. This meant that testing small layout changes was difficult as the CSS 

files were being cached by my browser. To overcome this problem, I used a feature of Jinja 

to force the cache to be refreshed on each reload of the page. By generating a random 

version at the end of the CSS file, the browser believed the file had changed and therefore 

reloaded it.  

 

Another problem I encountered was that the density shown on the heatmap did not reflect 

the actual density of the data. This was because of the default value used in the heat map 

from the API for maximum density. Because of the large amount of data points originating 

from China, the heatmap showed little to no activity in other areas. Whereas you can see 

from the other map this is not the case, this problem is demonstrated by Figure 37.  

Figure 37. Heatmap Rendering Issue 

 



45 
 

To resolve this issue, I changed the configuration of the heatmap file to set a maximum 

density for the data points. This showed more of a balanced representation of attacks 

spread across the globe.  

Figure 38. Heatmap after modification 

 

 

Administration 

Overview 

To get the individual parts of this project working together cohesively I had to decide on a 

networking solution that worked with the hardware and software I had available to me 

during testing.  

Hosting and Port forwarding 

To achieve this cohesiveness, while still ensuring that ability for future work to be 

performed on the system, I hosted the webserver on my home computer and pointed 

outgoing connections to the server from the honeypot to the hosted site. I chose to host it 

on my personal website as I already owned the domain name sam-ruff.co.uk. Using this 

methodology meant that I could switch out webservers (potentially to a Raspberry Pi) by 

simply changing the DNS settings of my personal website.  

To allow for the SSH and web connections to be routed correctly I port forwarded my 

router. This meant I could choose which requests were sent to which internal IP address 

based on the destination port. The router configuration page is shown in Figure 39.  

 

 

 

 

 



46 
 

 

Figure 39. Port forwarding options 

 

As shown by Figure 39, SSH connections on port 22 were directed to the machine running 

the SSH server (which was a virtual machine running on my desktop computer) and the 

HTTP requests sent on port 80 were routed to the Flask webserver listening on port 5000. 

Ensuring Portability 

To ensure the portability of this project I used Linux-compatible software for both the web 

server and honeypot. This was to allow for the eventuality of moving the system over to 

Raspberry Pis. The honeypot having been taken from the open-source repository designed 

for Linux and modified on an Ubuntu machine will work on Ubuntu running from a Pi. The 

web server is also compatible with Raspberry Pis as they come with Python installed by 

default on their Ubuntu and Raspbian distribution, and the Flask modules can be easily 

installed using pip or a similar package manager.  

Problems Encountered 

A problem I encountered while administering the final implementation was that the VM 

could not be found on my network while it was seemingly connected. After some 

investigation, I discovered that it was because the network adapter for the virtual machine 

was not set to bridged adapter mode. This meant that the virtual machine did not act as a 

machine on my home network but rather on a separate internal network. A simple 

configuration change within the VM settings made it visible on the network.  

  



47 
 

Results and Evaluation 

Testing 
To ensure my software worked as outlined in the requirements, I conducted a number of 

tests. These tests included informal usability assessments for my GUI and rigorous software-

based testing approaches for the system as a whole.  

SSH Server 

To test the honeypot server’s functionality, I separated the tests into three distinct parts. 

These parts were decided on based on the modules I was testing at the time. 

To test the basic HTTP POST logging functionality of my system, I used an external POST 

endpoint called ‘requestb.in’. I used this service because I had not set up the Flask web 

server fully at the time of testing, and the requestb.in service made a raw HTTP output of 

the requests more readily available than Flask. 

Figure 40. Requestb.in headers 

 

Figure 40 shows the modification I made to the static variables to include this change in my 

honeypot during testing. This form of testing allowed me to remove data I had included in 

my HTTP request and test the response time of my system before introducing other 

functionality that could have affected my results. From these tests, I developed the logging 

system to be fast and responsive at the lowest appropriate level. Figure 41 shows an 

example post request from the requestb.in service. 

Figure 41. Requestb.in example 

 

 

To test the database and persistent storage functionality of my system, I created testing URL 

endpoints on the Flask server to dump database contents. This test meant I could I ensure 

all the data stored on my database was in the form that I expected and was being handled 

correctly. An example output of such an endpoint is shown in Figure 42.  



48 
 

Figure 42. Password dump output 

 

I performed these tests in this way as it gave me the most easily accessible view of the data 

with little effort. An alternative approach to viewing the Mongo database would have been 

to use a GUI administration tool, however for such a simple storage solution I did not think 

that was necessary and chose to use the aforementioned method as it did not require any 

external software installation, was easier to implement and could be removed with the 

deletion of a few lines of code once the testing was complete. 

To test the location based detection of my system, including the use of an external API for 

geolocation data, I made SSH connections from the command line of my laptop and ensured 

the correct geolocation data was included on the map and stored in the database. From my 

home PC, the results seemed to be working the way that I had intended. To further test this 

functionality, I used a VPN (Virtual Private Network) to make my connections appear in a 

different geographic location under a different IP address. Using the VPN provider Tunnel 

Bear I changed my location and tested the system again using a known location. This test 

and subsequent tests provided successful, so I evaluated this part of the system to be 

working as intended. I performed these tests because it was necessary to ensure that the 

location based detection was working correctly as it was a defining part of my system and it 

heavily relied on an external API for its input data.  

To test the password and connection detection functionality of my system, I made different 

connection attempts to ensure system stability and reliability. I started by doing normal 

single SSH connections and ensuring that the connection itself and subsequent password 

entries were logged. Once this was fully working, I made multiple concurrent connections to 

ensure that server could handle the increased load. Finally, I tested the external connectivity 

of the service after port forwarding my router by connecting via external IP addresses. The 

system passed these tests with no real problems. I chose this method of testing as it 

simulated the type of traffic that I expected my server would be facing once collecting actual 

data and ensured that the system was functioning as expected.  I tested external 

connectivity as I wanted to ensure that no local connection was being made that could not 

be made from an external IP address. I tested this because my laptop I used for testing the 

initial SSH connections was also on the same local network as my honeypot system.  



49 
 

To test the exploit detection functionality of my system, I developed bash testing scripts 

using the proof of concepts that I found alongside the write-ups on exploit-db. To test CVE-

2016-6515, I wrote the following bash script: 

 

This script was called cve-2016.sh and took a single command line argument. The command 

line argument is the length of the password being entered, therefore an example of the 

command used to test the server is as follows: 

 

The length parameter needed to be more then 1024 to test an exploit attempt. 

The script referenced the expect.sh file, this file is included below: 

 

This function uses expect functionality to send keyboard strokes to interactive inputs such as 

the SSH password input. The script above first sets the password and server variables based 

on the input arguments, it then spawns an SSH process with the parameters detailed above, 

substituting the server into it. The script then expects an input containing the string assword 

and sends the password in response to it. I chose this method of testing because it allowed 

me to automate my tests more easily and gave me the flexibility to test long passwords to 

ensure that it would work as expected, I could also test exploit attempts with passwords of 

lengths on the checking boundaries to ensure they were handled correctly.  

I tested the method to detect CVE-2015-5600 using the following command: 

p=`perl -e "print 'A' x $1;"` 

     ./expect.sh $p sam-ruff.co.uk 

./cve-2016.sh 2000 

#!/usr/bin/expect -f 

set password [lindex $argv 0]; 

set server [lindex $argv 1]; 

spawn ssh -o 

UserKnownHostsFile=/dev/null -o 

StrictHostKeyChecking=no $server 

expect "assword:" 

send "$password\r" 

interact 



50 
 

 

This command uses Perl to dynamically insert x number of PAM devices based on the 

number given. Using this method, I tested that my function could detect the number of 

interactive devices appropriately. I chose to use this method of testing as it mirrored an 

example given by the proof of concept included in the write-up on exploit.db. This means 

that a would-be attacker is likely to use a similar method of attack and that my system 

would be able to detect such an attack.  

Web Server 

The testing of my web server mainly consisted of end-user testing. During these tests, I 

ensured that my GUI was clear, understandable and contained adequate but not 

overwhelming information about the project. To achieve this, I performed informal usability 

tests with users that had not been briefed on the aim of the project and had not seen the 

site before. After they had finished browsing the site, I took feedback from them and 

ensured that they had understood the intentions of each part of the project. Using this 

feedback, I made changes where necessary and added further clarification to some parts of 

the GUI. I used this method of testing because it meant I could receive constructive criticism 

from a fresh user’s perspective on how to improve the GUI. This meant I could meet the 

requirement that my GUI should be easy to use and understand.  

Further Testing 

There are three tests that I would have liked to have performed during this stage of the 

project, but could not due to time constraints. The first of the tests I would have liked to 

have performed was an extreme input test. I could have tested the inputs of my system 

more thoroughly in response to extreme inputs, such as pressing the change time frame 

button rapidly many times on the Location Analysis page. This test would have meant that 

my final product would have been more robust to any unusual inputs given by the end user.  

The second test that I would have liked to have performed is a formal usability study to 

allow me to collect more actionable data across a larger data set. This data could then have 

been collated and analysed to see if there was any further feedback available to improve my 

GUI. This test would have provided me with more certainty that my project could be 

understood by my target audience and meet its aims, to a degree that an informal study on 

a small user base could not.  

The final test I would have liked to have performed is a formal penetration test. Although as 

my project progressed I tested it for security weaknesses and ensured that security was 

taken in account during the design stages, I feel that a more thorough security analysis 

could have been performed. This type of test would ensure that my web server and back-

end infrastructure was as secure as possible against any type of malicious attack.  

 

 

 

ssh -o KbdInteractiveDevices=`perl -e 'print "pam," x 100'` sam-ruff.co.uk 



51 
 

Evaluation against Requirements 
To evaluate the effectiveness of my project, in regards to meetings its aims, I have 

compared the results/final implementation of project against the requirements put forth in 

the design.  

User interface 

• The user interface must be easy to use and contain clear information. I chose this as a 

requirement because I intend for this software to be used by individuals of all skill levels. 

My project has met this requirement as I have iteratively improved my GUI throughout its 

creation and have kept my target audience in mind during the design and implementation 

stages. The navigation is intuitive and the design is kept minimal containing concise 

information.  

• The graphs and figures shown on the GUI should be interactive and allow the user to 

change timescales.  

The GUI I have created contains fully interactive graphs and figures providing meaningful 

information to the user and allowing filtering and control for major data sets. 

• The user interface should be split into clear sections pertaining to each data set that I 

am collecting. 

The sections of analysis are separated into each page and clearly defined to the user, from 

my usability tests I have refined this separation and made it clear to reduce confusion or 

misinterpretation of data.  

• Can act as a standalone application, separate to my dissertation. I would like the 

software that I produce to be concise enough to be understood without the use of my 

dissertation as supplementary material.  

I feel that the GUI application meets this requirement as the data shown on the site is self-

explanatory as well as providing additional research material if the user requires.  

• To show the geographical location and other relevant statistics on connections made 

to the SSH server.  

This requirement has been fulfilled as the features listed have been provided as well as 

additional functionality. 

• To contain live and up-to date information on a dynamically updated web page. This 

is important as it will mean the most accurate and up to date information is displayed on the 

GUI regardless of whether a user refreshes the page or not. I will achieve this using AJAX 

methods to update the page dynamically.  

This requirement has been mostly met as a large proportion of the information shown is 

dynamically updated using AJAX. However, the maps are not updated until the time filters 

are changed to prevent them from graphically flickering once the update is performed.  

 



52 
 

Backend and Honeypot 

• To collect relevant data about connections, passwords and exploit attempts. I will 

collect this data with code created by extending the existing OpenSSH implementation, and 

adding HTTP post requests to log the information. 

My final implementation meets this requirement as the relevant data is collected in real 

time and stored persistently using a database. This data is transferred through the addition 

of POST requests as stated in the requirement.  

• To be expandable for future work.  

This requirement has been met as I implemented the sub-systems with future work in mind. 

For example, the use of Mongo instead of SQL allows for expandable database storage and 

the use of Flask allows for the addition of modules that extend functionality i.e. the use of 

HTTPS. 

• To use well-defined software standards for communication.  

My project uses RESTful API features and standard communication medium such as JSON to 

communicate informaton. The use of these standards means that my code is 

understandable and straight-forward allowing for development by others if necessary.  

• To be as lightweight as possible for use if necessary on a Raspberry Pi. 

Throughout this project, I have used lightweight software to achieve the goals set out by 

these requirements. Mongo, Flask and the implementation of my HTTP post requests prove 

this mantra has been followed. The focus on portability also means that all features can be 

moved onto a Rasberry Pi with minimal development overhead.  

 • To create reliable testing and build scripts to allow for ease of development.  

This requirement has been met as demonstrated in the Testing section of this report. I have 

created Bash scripts to make testing more streamlined and automatable. The use of build 

scripts was unnecessary as a Make file was used in the implementation of OpenSSH, 

allowing for easy compilation of the source material. 

• To masquerade as an unmodified SSH server from the perspective of the user. 

This requirement has been met as the final implementation of my SSH server, from a user’s 

perspective is no different to any other implementation. There are no visual or performance 

cues that the connection attempts are being monitored.  

Results 
During the course of one month I collected the data generated from the honeypot server. I 

then analysed this data, collating it to render some insightful results. The summary of these 

results is shown below: 

 



53 
 

Password Analysis 
Figure 43. Top Ten Passwords 

 

Figure 43 shows the top passwords used in brute force attacks against the SSH honeypot 

server, out of 157,676 passwords tried the password admin was entered 298 times. 

These results show that the most likely passwords to be tried are in one of two categories, 

weak passwords or administration/testing passwords.  

The weak passwords are short and obvious sequences such as password, 1234 or 12345, 

which could have been used to make the password easy to remember. These sequences 

make up 3 of the top 4 passwords used.  

The other type of password that is targeted are administration or testing passwords, these 

include default passwords for many systems such as raspberry or ubnt, or likely choices such 

as admin or root. This could be addressed through a change in the implementation of 

default passwords. Each system or machine could have their own defaults password 

generated and included when the machine is deployed. An example of this technique is the 

default passwords included with home routers. The password is generated by the 

manufacturer and included on a sticker on the router itself. This negates the problem of 

default passwords not being changed before deployment as each is different and complex 

enough to be fairly secure.  

From these results, it can be concluded that attackers are using the scale of the search 

space to access servers that could be defined as ‘low-hanging fruit’. This means that they 

are insecurely set up making accessing them easy once they are found, as opposed to 

wasting resources on well-defended servers.   



54 
 

I am confident that these results are accurate as they concur with research performed by 

others done on this topic over smaller lengths of time. An example of this can be found in 

the research performed by Malone and David (Investigating the Distribution of Password 

Choices, 2012), where the most common passwords stored in the rockyou dictionary file 

were ‘123456’, ‘12345’, ‘123456789’ and ‘password’. The rockyou file is commonly used as 

a dictionary for brute force attacks as it is compiled from database password leaks. These 

findings concur with my results. To further increase my confidence in these results I would 

like to increase the time/number of servers to see if this consistency is maintained.  

These results are useful as the can be used to educate the public in an understandable 

manner to demonstrate the dangers of having a weak password such as those shown above. 

This data can also be used to highlight the threat of server compromise to ICT enthusiasts or 

systems administrators setting up SSH servers, as they may underestimate the scale of the 

threat.  

Location Analysis 
Figure 44. Heatmap of Connections 

 

Figure 44 shows the distribution of connection attempts in the form of a heatmap, this 

shows that the majority of the connections are coming from developed countries, mainly 

China and Central Europe. I suspect that a large number of these connections from the Far 

East connecting to the West are proxy connections. The geographical location means that 

any attempt to prosecute or find the user of such proxies would be hard if not impossible 

due to the international relations between China and the UK. This deniability would be an 

advantage to an adversary that does not what to have their activity traced back to them.  

 

 



55 
 

Figure 45. Cluster representations 

 

Figure 46. Breakdown of Connections by Location 

Location  Total Connections Percentage 

China  34955 88.67% 

Western Europe/Scandinavia  1641 4.16% 

Central/Eastern Europe 1303 3.31% 

India/South-East Asia  802 2.03% 

North America 269 0.68% 

South America 241 0.61% 

Other 138 0.35% 

Middle East 70 0.18% 
 

Figure 45 and 46 shows the number of connections by geographical location. This confirms 

the conclusions drawn from the heatmap. However, after investigation, a large number of 

the Chinese connections originate from a small set of IP addresses, with close geographical 

proximity. This is demonstrated in Figure 47. 

 

 

 

 

  

 



56 
 

Figure 47. Large numbers of connections coming from single IP ranges 

 

The connections shown in Figure 47 consist of a range of 8 IP addresses but make up 

approximately 25% of the 39,419 connections that I received. This suggests that a significant 

portion of the brute force attempts that I detected came from a single source. It also shows 

that once a potential target has been found a would-be adversary will usually either only try 

a very small number of common passwords or attempt a dictionary-attack kind of approach, 

leveraging many attempts over time. These connections were also made in quick succession 

for many thousands of attempts for an extended period, strongly indicating that these 

connections are being made from a bot/script rather than by hand. 

I am confident in these results as the data can be clearly visualised using the GUI I have 

created. The conclusions I have drawn are supported by the data discussed in this report 

and by the investigation of real-world attacks performed by others. To further support these 

points, I would like to set up servers in different geographical locations to observe if the 

main site of the attacks change. For example, set up the server to appear as if it was based 

in mainland China and see if the majority of connections originate from the United States or 

a similar location with poor geopolitical relations with China.  

These results could be used to advise sysadmins on the creation of firewall rules or SSH 

connection block lists. This data could also be used in collaboration with other data sources 

to determine the motives behind the connection attempts.  

Exploit Analysis  

The conclusions drawn from the exploit analysis side of my project were inconclusive. The 

final number of exploitation attempts for both CVE-2016-6515 and CVE-2015-5600 was 0 

over a one month period. From this a number of conclusions could be drawn. 

One conclusion is that these exploits are leveraged too infrequently, if at all. Or that my 

methods were not detecting them, potentially due to some form of evasion or obfuscation 

of the technique. 



57 
 

Another potential explanation is that these exploitation techniques are not used because 

they have a higher learning curve for potential attackers. The lack of availability and level 

complexity of specific exploitation techniques could cause a barrier for entry. This is not the 

case with generic brute forcing scripts, that require little skill to use and find. These brute 

forcing scripts also require less knowledge to understand and depending on the source, little 

to no programming expertise. These factors could prevent potential threat actors from 

choosing the exploitation option as an attack vector, or conversely that more advanced 

attackers may use such exploitation techniques against higher value targets with 

significantly greater reward from the compromise of the target system. An example of such 

a system is a bank, where the skill and time investment for a malicious actor needed to 

comprise the system would be worth the potential returns.  

Further tests could be performed to gain an understanding of the threat regarding 

exploitation. I would run the detection system for longer with a larger array of exploit 

detection. During the testing of my system I detected a number of unusual requests 

targeting my web server rather than the honeypot, that may have been types of 

exploitation attempts. These attempts included payloads that resembles shell code and 

directory traversal attacks to probe for administration panels. In future work, I would like to 

investigate these accesses further, visualisations of the requests are shown in the figures 

below: 

Figure 48. Potential Shell Code from HTTP 0.9 Request to web server 

 

Figure 49. Directory Traversal intended for PHP myAdmin 

 

Figure 50. Other Unusual HTTP requests 

 

 

This is only a sample of these type of requests I found in the connection log of my web 

server. This suggests due to the frequency and range of these types of attacks, that exploits 

are being leveraged against the web server, just not of the type I chose to initially analyse.  

Results Summary 

• This project yielded an extensive sample of the types of passwords used in real-

world brute force attacks on password-protected SSH servers. 

• A top-ten list of these passwords was produced and from this data conclusions can 

be drawn that can be used to better secure production systems.  

• Geographical data from the connections made to the server have been collected and 

visualised. 



58 
 

• The scale of the threat can now be better understood with these results, as it is valid 

to assume that any public SSH will be attacked using the methods discussed in this 

report. 

• The attacks detected by server are likely performed by bots that find the server’s 

address probing IP addresses ranges for responses on the default SSH port.  

• Over the one month period no exploit attempts were detected for the chosen 

exploits 

• However, there is significant evidence of other forms of attack being performed. 

 

Evaluation of Results/Methods 

Password/Connection Analysis  

The methods I used for my password analysis were appropriate, as they allowed me to 

automatically filter and sort the results of my data collection in schema-less format. The 

main strength of this approach is the extensibility for future content and the flexibility of the 

design framework. This approach allows for changes to the underlying database and update 

the PyMongo modules, with no changes to the underlying implementation. The use of 

Python as a programming language allowed me to code in a style that I was familiar with, as 

well as being readable and easy to understand. This due to Python being closer to natural 

language than other programming languages such as C.  

However, a weakness of my connection and password analysis methodology is that the 

connections and password entries are stored on the database as separate documents in 

different collections. So, other than time correlation, there is no way to tell which 

connections input which individual passwords. This could be a problem when concurrent 

connection attempts are made as it is not currently possible to distinguish the two IP 

addresses after their initial connections are made. This problem could be overcome if I had 

more time by simply including connection information when the password is stored and 

using it as a primary key to identify the document. 

Exploitation Analysis 

Although I did not receive significant results from my exploit analysis, I think the 

methodology used was suitable. However, I think that a larger set of exploits could have 

been accounted for as the attack vector is so significant. It may have been more useful to 

have collected more data on the types of exploits being deployed, by first looking at 

suspicious connection attempts and working backwords to an exploit detection system. 

Rather than trying to guess what potential exploits may be used in real world scenarios.   

A strength of the exploitation analysis methodology is that any of the changes mentioned 

above would be easy to implement after the fact, due the design of my system. If any other 

OpenSSH exploits become prevalent then the detection functionality could be extended 

using a similar style to the functions I have created for this project. This analysis could also 

act as starting point for further work, as the system for storing and displaying such data has 

been developed following standard conventions and allowing for extensibility. 



59 
 

SSH Server 

I think that using the open source version of an SSH server implementation was a defining 

feature of this project. The level of control over connection information that this allowed 

was sustainably more granular than other potential solutions. However, the main problem 

with this methodology was that working with such a large code base can be difficult when 

first trying to grasp the functionality of the system.   

Another problem with this approach is during testing stages the SSH server would need to 

be restarted regularly. If the system had been being administered remotely, the connection 

would have been lost at this point. This is because of the need to reboot the SSH server 

running on the machine when re-compiling its code, whilst simultaneously using the SSH 

connection to execute such compilation commands. This could be a potentially frustrating 

issue for a developer to this system. A way to overcome this problem would be to run a 

separate SSH server listening on a non-default port and using it to administer commands 

instead of the SSH server being rebooted/recompiled. 

  



60 
 

Future work 
Future work has been discussed in various sections throughout this report. This section will 

briefly summarise these points and expand on them further. 

The first potential piece of future work to improve the security of the final system I have 

created, would be to further invest in encryption and password protection technologies. 

This can be achieved using the Certificate Authority LetsEncrypt, in conjunction with the 

Flask-SSLify module, a module that allows for HTTPS connections to made with Flask. This 

would provide greater security for the requests from the honeypot and between the user 

and web server. The Mongo database could also be hardened by adding password 

protection to ensure only authorised users could access the database.  

Another piece of future work for this project is the inclusion of more exploit detection 

methods to increase the chance of observing an exploit attempt in the real world. This type 

of detection would prove useful in further elucidating the threat landscape regarding the 

use of exploits. This coupled with a more thorough investigation of other suspicious 

connections shown in Figures 48,49 and 50, could lead to more conclusive results than those 

reached by this project. This could be achieved by browsing exploit databases such as 

‘exploit-db.com’, researching specific exploits and proof of concepts then implementing a 

detection method for each exploit. This exploitation detection suite coupled with a longer 

data collection phase could then be used to provide further information to the target 

audience on potential threats to be aware of.  

A final piece of future work to extend this project’s functionality is the analysis of username 

and password pairs, along with the persistent logging of complete sessions. The username 

of the connection attempts is currently not stored by my system as my main focus was on 

password security. However, performing analysis on likely usernames to be used in brute-

force attacks could also be a useful data point for hardening an SSH server. As mentioned in 

the previous section I would also like to be able to log which passwords were associated 

with each session, meaning that concurrent connection attempts could be easily 

distinguished. The combination of these two features could highlight whether potential 

adversaries try the common passwords many times different usernames or vice versa. This 

information could then be used in automatic detection systems to block malicious 

connection attempts.  

  



61 
 

Conclusion 
In conclusion, this project has been successful in meeting the requirements set during the 

design stage. The data collection part of the project was conducted for 1 month, where SSH 

connections, password attempts and exploits were monitored. During this time, 39,419 

connection attempts were logged and 157,676 password entries as part of those sessions. 

This shows that public SSH servers are constantly being attacked by adversaries probing for 

weak or default passwords. The results of this project can help the general public 

understand the risks of weak passwords as it demonstrates the threat in a real-world 

scenario. System administrators could also use this information to better secure their 

systems by using the information given in this project to create firewall or SSH connection 

rules. A sysadmin can also protect against potential exploitation by keeping software up-to-

date with the latest patches and being aware of emerging security threats.  

This project found that the top passwords consisted of weak passwords such as ‘12345’, 

‘1234’ and ‘password’ and default administration passwords such as ‘raspberry’ or 

‘admin’.  A potential solution to fix this problem is to change the way default passwords are 

implemented, generating unique default passwords for each machine/software 

implementation. It would also be advantageous to encourage users when setting up SSH 

servers to use stronger passwords. The use of long passwords containing characters, 

numbers and punctuation, to make brute-force more time consuming. To improve security 

considerably whilst also addressing this problem, the use of public and private key based 

systems would ensure that bad practise is not exercised, as there is no need to memorise 

long passwords.  

During the data collection phase for the chosen exploits; CVE-2016-6515 and CVE-2015-

5600, no exploitation attempts were detected. This may suggest that these exploits are not 

in use as an attack vector, or that they are being obfuscated in some way to avoid detection. 

However, during the course of this period other unusual traffic was observed that could also 

point towards the use of exploitation as another means of attack. 

This study could have been improved by including more exploitation detection methods. 

This would address the flaw that the search space for exploit attack vectors is limited to the 

two chosen exploits. This approach would be more likely to provide actionable results to 

illustrate the modern threat landscape. 

Overall, the results of this study can be useful when applied in real world scenarios. The 

project itself is accessible to a wide range of audiences and the information is displayed in 

an aesthetically pleasing manner through the use of the web GUI.  

 

  



62 
 

Reflection on Learning 
This project has benefitted me greatly as an individual in terms of both technical and 

professional skills. I have honed my technical ability and knowledge in the areas discussed in 

this report through the use of surrounding literature material, practical implementation and 

the socialisation of knowledge gained via the generation of this report. These skills can be 

transferred to further work as I now feel more confident in the creation of scientific 

documentation material and the production of quality software.  

I also now appreciate the value of constructive communication as a means of development. 

With the effective communication between my supervisor and I, I could progressively 

improve the quality of the information contained in my report as it developed rather than 

allowing any potential mistakes to propagate throughout the final product. This style of 

modular improvement can be transferred to other areas of my work and will help me during 

my professional career, as it provides a methodology to follow when iteratively improving a 

piece of work. This has overall enhanced my professional and inter-personal skills as I feel I 

can now more concisely pitch an idea to a party with no prior knowledge of the subject 

matter.   

A problem that I encountered during this project was the realisation that the hardware 

proposed in my initial plan would make testing more difficult. The use of Raspberry Pis 

connected to the Cardiff University Network introduced a number of potential remote 

administration problems. To overcome this I adjusted the design of my final system to allow 

for the use of the hardware I had available to me, whilst remaining compatible with the 

proposed system. This allowed me, if necessary, to transfer the system to the hardware it 

was originally designed for after the fact. I now feel that I could apply this decision-making 

process to similar situations in the future where flexibility of such requirements might be 

necessary.   

Tackling a project of this scale was challenging but rewarding. I developed a detailed plan 

that lead to a cohesive end product, adapting the requirements of my system as necessary. 

Overall I feel that I met the requirements I set myself and created a piece of work I can be 

proud of, whist developing transferrable skills that can be applied in my future career as a 

Computer Scientist.   



63 
 

Bibliography 
[1]A.  Stabek, P.  Watters and R.  Layton, "The Seven Scam Types: Mapping the Terrain of 

Cybercrime", 2010 Second Cybercrime and Trustworthy Computing Workshop, 2010. 

[2]M.  Levi, "Assessing the trends, scale and nature of economic cybercrimes: overview and 

Issues", Crime, Law and Social Change, vol. 67, no. 1, pp. 3-20, 2016. 

[3]D.  McMillen, L.  Horacek, L.  Pugliese, M.  Alvarez and P.  Cobb, "Explore how 

cybercrime trends and incident forensics are evolving—based on the real-world insights 

of the IBM Security Services team", IBM Quarterly Threat Assessment, 2015. 

[4]G.  Venkatachalam, "The OpenSSH Protocol under the Hood", 2007. 

[5]E.  Spafford, "OPUS: Preventing weak password choices", Computers & Security, vol. 11, 

no. 3, pp. 273-278, 1992. 

[6]M.  Czerwinski, CHI '08 Extended Abstracts on Human Factors in Computing Systems, 

1st ed. New York, NY: ACM, 2008. 

[7] SSH Communications Security Corp, "The Secure Shell (SSH) Connection Protocol", 

2006. 

[8] Openssh.com, "Statistics from the current scan results", Openssh.com, 2008. [Online]. 

Available: http://www.openssh.com/usage/ssh-stats.html. [Accessed: 04- Apr- 2017]. 

[9]A.  Solino and G.  Richarte, "CA-1999-15", Cert.org, 1999. [Online]. Available: 

http://www.cert.org/historical/advisories/CA-1999-15.cfm. [Accessed: 04- Apr- 2017]. 

[10] Cve.mitre.org, "CVE -Request a CVE ID", Cve.mitre.org, 2017. [Online]. Available: 

https://cve.mitre.org/cve/request_id.html. [Accessed: 04- Apr- 2017]. 

[11] Cve.mitre.org, "CVE -About CVE", Cve.mitre.org, 2017. [Online]. Available: 

https://cve.mitre.org/about/index.html. [Accessed: 04- Apr- 2017]. 

[12] Cvedetails.com, "CVE-2016-6515 : The auth_password function in auth-passwd.c in 

sshd in OpenSSH before 7.3 does not limit password lengths for password a", 



64 
 

Cvedetails.com, 2016. [Online]. Available: https://www.cvedetails.com/cve/CVE-2016-

6515/. [Accessed: 04- Apr- 2017]. 

[13] Cvedetails.com, "CVE-2015-5600 : The kbdint_next_device function in auth2-chall.c in 

sshd in OpenSSH through 6.9 does not properly restrict the processin", Cvedetails.com, 

2015. [Online]. Available: https://www.cvedetails.com/cve/CVE-2015-5600/. 

[Accessed: 04- Apr- 2017]. 

[14]Z.  Parker, S.  Poe and S.  Vrbsky, "Comparing NoSQL MongoDB to an SQL DB", 

Proceedings of the 51st ACM Southeast Conference on - ACMSE '13, 2013. 

[15] Docs.mongodb.com, "FAQ: MongoDB Fundamentals — MongoDB Manual 3.4", 

Docs.mongodb.com, 2017. [Online]. Available: 

https://docs.mongodb.com/manual/faq/fundamentals/#how-does-mongodb-address-sql-

or-query-injection. [Accessed: 04- Apr- 2017]. 

[16]A.  Ronacher, "Jinja2 Documentation", 2008. [Online]. Available: 

http://mitsuhiko.pocoo.org/jinja2docs/Jinja2.pdf. [Accessed: 04- Apr- 2017]. 

[17]A.  K.Kolhe and P.  Adhikari, "Injection, Detection, Prevention of SQL Injection 

Attacks", International Journal of Computer Applications, vol. 87, no. 7, pp. 40-43, 

2014. 

[18]"TalkTalk gets record £400,000 fine for failing to prevent October 2015 attack", 

Ico.org.uk, 2017. [Online]. Available: https://ico.org.uk/about-the-ico/news-and-

events/news-and-blogs/2016/10/talktalk-gets-record-400-000-fine-for-failing-to-prevent-

october-2015-attack/. [Accessed: 07- Apr- 2017]. 

[19]G.  Kaur, "Study of Cross-Site Scripting Attacks and Their Countermeasures", 

International Journal of Computer Applications Technology and Research, vol. 3, no. 

10, pp. 604-609, 2014. 

[20]2017. [Online]. Available: http://research.omicsgroup.org/index.php/Brute-force_attack. 

[Accessed: 07- Apr- 2017]. 



65 
 

[21]S.  Bell, SecureHoney, 2014. [Online]. Available: http://securehoney.net/dissertation.pdf. 

[Accessed: 07- Apr- 2017]. 

[22]S.  Bell, "What is Secure Honey? | SSH honeypot written in C", Securehoney.net, 2014. 

[Online]. Available: http://securehoney.net/about.html. [Accessed: 07- Apr- 2017]. 

[23]T.  Bets, "What I Learned After Using an SSH Honeypot for 7 Days - Evangelism - 

Infragistics.com Blog", Infragistics.com, 2017. [Online]. Available: 

https://www.infragistics.com/community/blogs/torrey-betts/archive/2016/03/28/what-i-

learned-after-using-an-ssh-honeypot-for-7-days.aspx. [Accessed: 07- Apr- 2017]. 

[24]"PAM documentation", Linux Manual, 2017. [Online]. Available: 

https://linux.die.net/man/8/pam.d. [Accessed: 16- Apr- 2017]. 

[25]"Chapter 1. Introduction", Linux-pam.org, 2017. [Online]. Available: http://www.linux-

pam.org/Linux-PAM-html/sag-introduction.html. [Accessed: 16- Apr- 2017]. 

 


