
C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 1	

Computing	Reachability	Graphs	for	Street	
Networks	and	Investigating	

Approximation	of	Reachability	

CM3203	–	One	Semester	Project	(40	Credits)	
5th	May	2017	

Author:	Winston	Ellis	
Supervisor:	Dr.	Padraig	Corcoran	
Moderator:	Dr.	Frank	C	Langbein	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 2	

Abstract	

The project described in this report investigated Dijkstra’s algorithm and how it can
be used to compute reachability graph of street networks. It also describes a novel
approximation procedure to compute reachability graphs, with scalability as a goal
for large graphs which would take excessive time using Dijkstra’s method.

Background information has been given on the techniques used for computing the
reachability graphs. Analysis of methods to be used in the project have been
provided and results have been presented to justify their use.

	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 3	

Acknowledgements		
	
The	author	would	like	to	express	his	sincere	thanks	to	his	supervisor	Dr.	Padraig	Corcoran	
for	his	guidance	and	encouragement	during	this	project.	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 4	

Table	of	Contents	

	
Abstract	...	2	

Acknowledgements	..	3	

Table	of	Contents	...	4	

Table	of	Figures	..	5	

1	 –	Introduction	..	6	
1.1	 –	Electric	vehicles	and	the	future	..	6	
1.2	 –	Necessity	of	well-placed	Electric	Charging	stations	and	difficulties	6	
1.3	 –	Two	solutions	in	selecting	Electric	Charging	station	locations	...	6	

2	 –	Background	...	8	
2.1	 –	Existing	Solutions	...	8	
2.2	 –	Street	Networks	represented	with	Graph	Theory	...	8	
2.3	 –	Reachability	of	nodes	in	a	graph	..	9	
2.3.1	 –	Dominating	Set	...	10	
2.4	 –	Dijkstra’s	Algorithm	..	10	
2.5	 –	A*	Shortest	Path	Finding	Algorithm	...	13	
2.6	 –	KD	Trees	...	17	
2.7	 –	Projections	and	conversions	...	19	
2.8	 –	Complexity	of	Algorithms	and	Big	O	Notation	...	20	
2.9	 –	Aims	...	21	

3	 –	Design	...	22	
3.1	 –	Programming	Language	and	libraries	used	...	22	
3.2	 –	Solution	1	-	Modified	Dijkstra’s	Algorithm	...	23	
3.3	 –	Solution	2	-	Greedy	Heuristic	Path	Finding	Algorithm	using	KD	Tree	24	
3.4	 –	Dominating	Set	...	28	
3.5	 –	Auxiliary	algorithms	...	29	
3.5.1	 –	Point	in	Polygon	...	29	
3.5.2	 –	Polygon	Smoothing	..	29	
3.6	 –	Evaluating	the	results	of	the	two	algorithmic	implementations	30	
3.7	–	Evaluating	the	performance	of	the	two	algorithmic	implementations	30	

4	 –	Experimental	Results	and	Evaluation	...	33	
4.1	 –	Reachability	Graph	Computation	Evaluation	...	34	
4.2	 –	Performance	Evaluation	...	41	

5	 –	Future	Work	..	48	

6	 –	Conclusion	...	50	

Bibliography	...	51	
	
	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 5	

Table	of	Figures	
Figure	1	-	Street	Network	Represented	as	a	Graph	..	9	
Figure	2	-	Street	Network	Reachability	Graph	..	9	
Figure	3	-	Dijkstra's	Algorithm	Search	Space	Represented	as	a	Tree	11	
Figure	4	-	Dijkstra's	Algorithm	Spatially	Represented	..	11	
Figure	5	Greedy	Search	Diagram	[7]	..	14	
Figure	6	A*	Search	Diagram	[7]	..	14	
Figure	7	-	Greedy	Heuristic	Search	Example	..	16	
Figure	8	-	KD	Tree	x,y-coordinate	split	on	the	left	and	tree	representation	on	the	right	[8]	.	17	
Figure	9	-	KD	Tree	failing	to	find	correct	nearest	neighbor	[10]	...	18	
Figure	10	–	View	of	Earth	above	a	Pole	demonstrating	converging	Longitude	20	
Figure	11	-	Geographic	Obstacle	Example	1	...	25	
Figure	12	-	Sector	Validation	Example	...	26	
Figure	13	-	Geographic	Obstacle	Example	2	...	27	
Figure	14	-	Polygon	Smoothing	Example	..	28	
Figure	15	-	Chaikin's	Polygon	Smoothing	Diagram	[15]	...	30	
Figure	16	-	Dominating	Set	for	London	-	Dijkstra's	-	Reachability	3km	34	
Figure	17	-	Dominating	Set	for	London	-	Dijkstra's	-	Reachability	5km	34	
Figure	18-	Dominating	Set	for	London	-	Approximation	-	Reachability	3km	35	
Figure	19	-	Dominating	Set	for	London	-	Approximation	-	Reachability	5km	36	
Figure	20	-	Dominating	Set	for	Cardiff	-	Dijkstra's	-	Reachability	3km	37	
Figure	21	-	Dominating	Set	for	Cardiff	-	Dijkstra's	-	Reachability	5km	37	
Figure	22	-	Dominating	Set	for	Cardiff	-	Approximation	-	Reachability	3km	38	
Figure	23	-	Dominating	Set	for	Cardiff	-	Approximation	-	Reachability	5km	38	
Figure	24	-	Reachability	Graph	For	Sample	Node	-	Modified	Dijkstra's	39	
Figure	25	-	Reachability	Graph	For	Sample	Node	–	Approximation	40	
Figure	26	-	Reachability	Graph	For	Sample	Node	-	Approximation	and	Modified	Dijkstra’s	

Superimposed	..	40	
Figure	27	-	Reachability	Graph	Computation	Time	For	Cardiff	With	Variable	Street	Network	

Size	...	42	
Figure	28	Reachability	Graph	Computation	Time	For	London	With	Variable	Street	Network	

Size	...	43	
Figure	29	-	Reachability	Graph	Computation	Time	for	Cardiff	16km2	Area	With	Variable	

Reachability	Distance	...	44	
Figure	30	-	Reachability	Graph	Computation	Time	For	London	16km2	Area	With	Variable	

Reachability	Distance	...	45	
Figure	31	-	Reachability	Graph	Computation	Time	For	London	32km2	Area	With	Variable	

Reachability	Distance	...	46	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 6	

	

1 –	Introduction	
1.1 –	Electric	vehicles	and	the	future	
Electric	vehicles	are	becoming	more	established,	efficient	and	more	reliable	in	the	current	
commercial	market	offering.	The	popularity	is	growing	and	the	technologies	behind	the	
batteries	and	their	travel	distance	are	becoming	more	attractive	to	all	levels	of	consumer	
purchasing	power.	In	addition	to	this,	the	constant	rise	in	price	of	fossil	fuels	due	to	the	
growing	scarcity	and	taxation	is	also	pushing	the	need	for	the	growth	of	the	use	of	electric	
vehicles.	To	establish	a	greater	market	share	from	the	fossil	fuel	vehicle	counterpart,	a	well	
organised	and	accessible	network	of	electric	charging	stations	should	be	readily	available	to	
further	promote	the	viability	of	electric	vehicles	to	potential	and	current	users.	
	
1.2 –	Necessity	of	well-placed	Electric	Charging	stations	and	difficulties	
Like	petrol	stations,	the	accessibility	for	electric	vehicles	to	charging	stations	must	be	
adequate	to	be	reached	from	most	locations	depending	on	the	mileage	of	the	vehicles.	
Currently	electric	vehicles	do	require	charging	more	often	than	fossil	fuel	powered	vehicles,	
which	poses	the	challenge	of	requiring	the	placement	of	the	charging	stations	to	be	more	
frequent	on	a	road	network	compared	to	a	petrol	station.	In	addition	to	this,	the	electric	
charging	stations	will	require	the	vehicles	to	be	parked	for	some	time	as	charging	is	not	as	
instant	as	filling	up	a	tank	of	fuel.	Consumer	level	electric	vehicles	in	2017	have	a	range	of	
70	miles	to	300	miles,	depending	on	the	cost	of	the	model	[1].	
	
Some	important	characteristics	of	the	locations	of	the	charging	stations:	

• Frequently	placed	due	to	any	potential	requirement	to	have	an	emergency	charge,	
also	to	accommodate	overflow	(see	last	point	below)	

• Accessible	in	a	dense	urban	area	
• Accessible	for	long	journeys	such	as	on	a	motorway	
• To	be	placed	in	locations	such	that	it	can	be	accessible	from	no	build	zones	e.g.	

housing	areas	or	conservation	areas	
• Spacious	charging	stations	to	accommodate	enough	vehicles	

	
1.3 –	Two	solutions	in	selecting	Electric	Charging	station	locations	
To	solve	this	problem,	I	will	break	it	down	by	representing	the	street	network	as	a	graph	of	
connected	nodes.	Nodes	represent	intersections	of	roads	and	the	end	of	a	dead-end	road.	
The	edges	will	represent	the	roads,	where	the	edge	weight	is	the	road	length.	The	
reachability	of	each	node	will	be	calculated,	this	creates	new	edges	from	the	node	being	
evaluated	to	all	the	nodes	reachable	given	a	distance.	Once	this	graph	has	been	created,	the	
dominating	set	can	be	calculated	using	this	newly	created	graph	to	give	a	set	of	nodes	that	
are	either	a	dominating	node	or	a	neighbour	to	a	dominating	node.		
	
Computing	the	reachability	graph	will	require	a	path	finding	algorithm	to	evaluate	which	
nodes	are	reachable	or	not.	This	can	be	simply	achieved	by	utilising	a	breadth	first	search	
which	will	exhaustively	traverse	through	all	neighbouring	nodes	until	the	nodes	are	beyond	
the	given	distance	limit	set.	This	is	an	accurate	way	of	calculating	the	graph,	however	it	is	
computationally	expensive	the	larger	the	graph	and	the	greater	the	distance	limit	set.	The	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 7	

number	of	the	nodes	evaluated	will	grow	exponentially	the	greater	this	distance	limit.	The	
details	on	how	the	placement	of	the	electric	charging	stations	on	a	street	network	is	
derived,	are	described	in	section	2.3.1.	
	
To	overcome	this	problem	in	the	project,	I	decided	to	try	to	exploit	a	combination	of	depth	
first	search	and	the	use	of	spatial	tools	such	as	KD	Trees	to	approximate	the	reachability	
graph.	A	KD	Tree	is	a	data	structure	which	orders	data	points	by	their	coordinates	which	can	
be	quickly	queried	to	find	nearest	neighbours	through	depth	first	search.	The	goal	is	to	
reduce	computation	time	and	or	computation	resources	so	that	the	algorithm	has	
scalability.	
	
In	conclusion,	the	two	methods	that	will	be	developed	are:	

1. Utilising	a	modified	Dijkstra’s	algorithm	to	search	from	the	initial	node	and	find	all	
nodes	reachable	given	a	max	distance	

2. Utilising	a	KD	Tree	to	find	all	nodes	reachable	given	a	distance	and	then	use	a	depth	
first	search	in	different	directions	from	the	centre	to	evaluate	which	nodes	falling	
under	the	KD	Tree	query	should	be	kept	

	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 8	

2 –	Background	
2.1 –	Existing	Solutions	
The	problem	for	finding	the	reachability	of	nodes	is	a	common	problem	for	different	
contexts	such	as	finding	the	reachability	of	locations	for	public	transport	where	time	is	the	
constraint	instead	of	distance,	depending	on	the	time	of	day	which	determines	the	traffic	
[2].	The	problem	for	this	project	is	simplified	due	to	the	constraint	being	distance	which	is	
not	affected	by	time.	However,	this	could	be	a	consideration	for	an	extension	to	the	project.	
This	referenced	report	mentions	use	of	Dijkstra’s	algorithm	and	use	of	A*	search.	I	will	be	
incorporating	the	style	of	A*	search	in	the	approximation	attempt	in	computing	the	
reachability	graph,	see	section	2.6.	
	
This	problem	is	also	similar	to	routing	internet	traffic	for	networks	to	determine	which	is	the	
shortest	path	from	A	to	B	to	reduce	communications	latency.	Once	the	reachability	graph	
has	been	created,	it	can	be	used	as	a	reference	to	plan	efficient	routes	of	packets.	For	the	
project,	instead	of	using	the	reachability	graph	as	a	reference	to	route	packets,	it	will	be	
used	as	a	reference	to	create	the	dominating	set.	The	dominating	set	can	also	be	used	in	
this	context	of	routing	traffic	so	that	the	dominating	set	suggests	where	upgrades	for	the	
network	can	be	placed,	such	as	more	capable	routers	to	increase	the	throughput	of	packets.	
	
2.2 –	Street	Networks	represented	with	Graph	Theory	
For	this	project,	the	street	networks	used	will	be	in	a	graph	form.	This	is	for	the	abstraction	
of	the	street	network	so	that	path	finding	algorithms	can	be	used	to	calculate	the	
reachability	graph.		
	
Graph:	A	weighted	graph	is	denoted	as	𝐺 = (𝑁, 𝐸, 𝑤)	where	𝑁	is	a	finite	set	of	nodes,	𝐸	is	a	
finite	set	of	edges	(𝐸 ⊆ 𝑉	×	𝑉)	and	𝑤	is	the	weight	of	an	edge.	Nodes	are	also	referred	to	as	
vertices,	and	will	be	referred	to	as	nodes	in	this	report.	An	edge	contains	a	head	and	a	tail,	
where	in	the	tuple	𝑒𝑑𝑔𝑒 ∈ (𝑢, 𝑣)	the	term	𝑢	is	the	head	and	𝑣	is	the	tail.	The	graphs	used	in	
this	report	will	be	a	undirected	graph	such	that	an	edge	from	𝑢	to	𝑣	implied	that	there	is	an	
edge	from	𝑣	to	𝑢	[3].	Therefore,	one	way	streets	will	not	be	considered	in	the	calculations.	
This	will	simplify	the	problem	for	the	current	implementation	but	could	be	added	in	future	
work.	The	graphs	will	all	have	positive	weights,	these	will	be	used	as	the	length	of	a	road	in	
the	street	networks.	The	map	locations	that	have	been	tested	have	minimal	one	way	road	
systems,	so	this	will	not	have	a	big	impact	on	the	final	reachability	graph.		
	
Street	Networks:	The	street	network	data	is	retrieved	from	OpenStreetMaps	which	contains	
lots	of	geographical	information	that	can	be	utilised	by	algorithms.	For	example,	the	roads	
will	be	given	properties	such	as	defining	if	it	is	a	one-way	road	or	if	it	a	pedestrian	only	road.	
The	algorithms	implemented	for	this	project	will	only	utilise	the	street	length	as	the	weight	
of	the	edges,	therefore	the	graphs	that	are	extracted	from	OpenStreetMaps	will	be	
simplified	to	reduce	file	size	and	algorithm	run	time	by	pruning	unnecessary	data.	
	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 9	

The	following	figures	illustrate	the	differences	of	the	a	street	network	represented	as	a	
graph	and	represented	as	a	reachability	graph.		

	
Figure	1	-	Street	Network	Represented	as	a	Graph	

	
Figure	2	-	Street	Network	Reachability	Graph	

Figure	1	contains	a	weighted	graph	of	6	nodes.	If	this	were	a	street	network,	the	weight	
would	be	the	street	length.	If	a	reachability	algorithm	were	to	be	applied	to	that	network	
with	a	reachability	distance	of	7	starting	at	the	red	node,	the	resulting	graph	is	shown	in	
Figure	2.	The	graph	becomes	disconnected	as	the	node	on	the	right	is	not	reachable.	
	
2.3 –	Reachability	of	nodes	in	a	graph	
The	definition	of	the	reachability	states	that	a	node	𝐵	is	reachable	from	𝐴	if:	

• 𝐵	is	the	same	node	as	𝐴	

3	

3	

3	

3	

8	
	

1	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 10	

• There	is	an	edge	from	node	𝐵	to	𝐴		
• There	exists	node	𝐶	such	that	node	𝐶	is	reachable	from	𝐴	and	𝐵	is	reachable	from	𝐶	

	
This	is	used	to	determine	if	another	node	can	be	reached	in	the	graph	or	how	many	steps	it	
takes	[4].	
	
The	reachability	of	nodes	in	a	graph	is	found	by	giving	the	searching	algorithm	some	criteria	
of	maximum	distance	that	can	be	travelled.	The	algorithm	should	check	as	it	is	traversing	
neighbouring	nodes	in	its	list	of	nodes	that	it	has	not	visited	to	see	if	the	current	node	
distance	plus	the	cost	of	traversing	the	edge	will	pass	over	the	max	distance	threshold.	
Every	node	that	is	visited	and	is	under	the	max	distance	threshold	will	have	a	new	edge	
added	from	the	initial	node	to	the	node	visited.	This	connects	the	initial	node	directly	to	all	
the	visited	nodes	within	the	max	distance	threshold.	The	new	connectivity	is	necessary	for	
calculating	a	dominating	set.	See	Figure	1	and	Figure	2	for	a	visual	description.	
	
2.3.1 –	Dominating	Set	
From	source	[5]	Definition	7.1:	(Dominating	Set).	Given	an	undirected	graph	𝐺	 = 	 (𝑉, 𝐸),	a	
dominating	set	is	a	subset	𝑆	 ⊆ 	𝑉	of	its	nodes	such	that	for	all	nodes	𝑣	 ∈ 	𝑉	,	either	𝑣	 ∈ 	𝑆	
or	a	neighbor	𝑢	of	𝑣	is	in	𝑆.	
	
Computing	the	smallest	dominating	set	is	not	straight	forward	to	get	the	perfect	set	of	
dominating	nodes.	The	computation	of	this	problem	is	defined	as	NP-hard.	This	means	that	
to	have	an	acceptable	runtime	to	solve	this	problem,	approximation	algorithms	can	be	used.	
These	algorithms	are	said	to	be	optimal	to	a	certain	factor	[5].	The	downside	to	this	
implementation	is	that	the	dominating	set	can	differ	for	each	run	depending	on	the	
sequence	of	the	nodes	that	are	chosen.		
	
For	this	project,	the	dominating	set	will	be	computed	after	all	the	nodes	in	a	given	street	
network	have	their	reachability	graph	computed	and	combined	into	one	graph.	This	highly	
connected	graph	will	then	have	the	dominating	set	computed,	which	will	be	the	suggestion	
of	the	electric	vehicle	charging	stations.	
	
2.4 –	Dijkstra’s	Algorithm	
Dijkstra’s	algorithm	is	a	shortest	path	algorithm	that	maintains	a	priority	queue	of	active	
nodes	with	tentative	distances.	This	priority	queue	orders	the	active	nodes	with	the	smallest	
tentative	distance	at	the	front	with	ascending	tentative	distances	to	the	end.	Initially	only	
the	initial	node	is	the	active	node	and	its	neighbours	are	added	to	the	queue.	The	tentative	
distance	of	the	initial	node	is	set	to	0	and	all	other	nodes	are	set	to	positive	infinity.	As	the	
neighbours	are	checked,	their	distance	from	the	initial	node	replaces	the	positive	infinity	
distance	and	are	ordered	in	the	priority	queue.	The	algorithm	then	iterates	through	the	
priority	queue	evaluating	each	node	at	the	front	of	the	queue	by	checking	if	it	is	the	goal	
node	or	adding	its	neighbours	to	the	priority	queue.	The	algorithm	can	adjust	the	distances	
of	each	node	if	there	is	a	shorter	path	to	the	node	being	evaluated	by	relaxing	them.	The	
algorithm	will	stop	when	it	reaches	the	goal	node.	
	
The	list	of	visited	nodes	as	the	algorithm	iterates	grows	in	a	circle	around	the	initial	node,	
essentially	as	a	circle	until	the	goal	node	is	reached.	The	algorithm	does	not	know	in	which	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 11	

direction	to	search	so	it	searches	in	all	possible	directions.	This	is	a	property	of	breadth	first	
search.	At	a	given	time	during	searching,	since	the	algorithm	iterates	though	all	closest	
neighbours	in	turn,	the	shape	of	the	search	space	will	resemble	a	circle.		
	

	
Figure	3	-	Dijkstra's	Algorithm	Search	Space	Represented	as	a	Tree	

In	Figure	3,	the	tree	of	an	example	Dijkstra’s	algorithm	search	shows	the	neighboring	nodes	
of	the	red	node,	which	is	the	initial	node.	Level	2	contains	all	the	neighbors	to	the	initial	
node	and	level	3	contains	all	the	neighbors	to	the	nodes	in	level	2.	The	numbers	inside	the	
nodes	represent	the	cost	to	get	to	the	node	from	the	initial	node.	

	

Figure	4	-	Dijkstra's	Algorithm	Spatially	Represented	

Level	1	

Level	2	

Level	3	

0	

3
	

4
	

3
	

7
	

9
	

5
	

6
	

10
	

11
	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 12	

	
Figure	4	shows	how	the	space	evaluated	grows	outward	as	it	evaluates	the	paths	in	all	
directions	until	it	eventually	reaches	the	goal	node,	giving	the	shortest	path	to	the	goal	
node.	A	potential	path	has	been	shown	with	green	edges	and	purple	nodes.	The	branch	that	
does	not	lead	to	the	goal	node	would	have	had	a	shorter	tentative	distance	initially	but	as	
the	algorithm	iterates	it	would	have	evaluated	the	other	node	which	is	a	neighbour	to	the	
goal	node.	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 13	

	
Dijkstra’s	Algorithm	Find	the	shortest	path	[6]	 input:	(graph	𝑮,	initial	node	𝒗)	
	
For	each	node	in	G:	
	 distance[node]	=	positive	infinity	
	 previous[node]	=	null	
distance[v]	=	0	
Q	=	set	of	all	nodes	in	G		 	 	 	 	 //priority	queue	
while	Q	is	not	empty:	
	 u	=	Q.pop(node	in	Q	with	smallest	distance)	
	 for	each	neighbour	n	of	u:	
	 	 T	=	distance[u]	+	distanceBetween[v	+	u]	
	 	 if	T	<	distance[v]:	 	 	 	 //relaxation	
	 	 	 distance[v]	=	T	
	 	 	 previous[v]	=	u	 	 	 	
	
output:	previous	(connected	graph	of	distances	between	all	nodes	searched)	
	
	
Project	specific	modifications:	The	property	of	Dijkstra’s	algorithm	where	it	evaluates	nodes	
spatially	in	all	directions	from	the	initial	node	is	quite	useful	in	computing	the	reachability	
graph.	Changing	the	criteria	of	stopping	from	reaching	a	goal	node	to	just	evaluating	the	
tentative	distance,	and	keeping	a	set	of	the	nodes	that	have	a	tentative	distance	smaller	
than	the	max	distance	threshold.	The	necessity	of	keeping	an	adjacency	list	that	records	the	
actual	path	to	the	goal	node	is	not	required.	This	greatly	simplifies	the	implementation	of	
the	algorithm.	
	
See	section	3.2	for	the	pseudocode	for	the	modified	Dijkstra’s	algorithm.	
	
Dijkstra’s	algorithm	is	a	breadth	first	search	algorithm,	it	will	expand	all	nodes	at	a	level	
before	traversing	to	the	next	level	of	nodes.	This	property	is	useful	as	it	will	ensure	that	all	
nodes	are	visited	and	none	are	skipped,	essential	for	computing	the	reachability	graph.	This	
property	comes	at	a	cost,	the	algorithm	will	require	a	lot	of	memory	resources	as	the	search	
level	increases.	The	scalability	of	this	algorithm	is	quite	poor	when	searching	through	large	
graphs.	
	
2.5 –	A*	Shortest	Path	Finding	Algorithm	
Dijkstra’s	and	A*	search	are	both	mentioned	in	the	report	referenced	in	[2]	to	be	used	in	
computing	the	reachability	graph.	A*	search	uses	a	heuristic	to	direct	the	search	spatially,	
this	means	it	should	evaluate	less	nodes	compared	to	Dijkstra’s	algorithm	using	more	of	a	
depth	first	search.	The	A*	algorithm	is	useful	when	trying	to	find	the	shortest	path	without	
searching	in	areas	which	obviously	do	not	lead	you	directly	to	the	goal	node	and	are	
misleading	to	search	algorithms.	
	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 14	

	
	

Figure	5	Greedy	Search	Diagram	[7]	

As	can	be	seen	from	this	picture,	a	concave	obstacle	will	fool	some	search	algorithms	and	
cause	it	to	take	a	long	path	to	the	goal	node.	This	is	an	example	of	a	greedy	algorithm.	
	

	
	

Figure	6	A*	Search	Diagram	[7]	

As	can	be	seen	here,	the	A*	algorithm	can	work	out	that	there	is	an	impassable	area	and	will	
still	give	the	shortest	path.	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 15	

A*	search	computes	its	search	path	at	each	node	by	computing	the	value	for	each	
neighbouring	node	using	the	equation	where	𝑁	is	the	node	being	checked:		
	

𝑓 𝑁 = 	𝑔 𝑁 + ℎ(𝑁).	
	
	In	this	equation	𝑔 𝑁 	is	the	current	cost	of	the	node	and	ℎ 𝑁 	is	the	heuristic	cost.	The	
algorithm	will	choose	the	neighbouring	node	from	the	current	active	node	with	the	smallest	
cost	given	by	𝑓(𝑁).	The	heuristic	cost	is	calculated	prior	to	running	the	algorithm.	This	can	
be	performed	by	calculating	the	actual	cost	for	every	pair	of	nodes	or	if	that	is	unfeasible	for	
large	graphs,	then	an	approximation	approach	can	be	taken.	The	approximation	approach	
can	utilise	waypoints,	which	can	be	nodes	with	high	connectivity	that	the	search	is	likely	to	
traverse	many	times	during	different	searches.	A	heuristic	does	not	need	to	be	
precomputed	if	the	graph	does	not	have	many	obstacles,	however	the	street	networks	used	
for	this	project	will	have	such	obstacles	as	geographic	obstacles	mentioned	above	[7].	
	
Project	Specific	Modifications	(Greedy	Heuristic	Search):	Precomputing	the	heuristics	for	
the	street	networks	used	would	not	be	suitable	as	this	process	alone	would	take	time,	
whereas	one	of	the	aims	of	this	project	is	sensitive	to	timing	of	the	computation	of	the	
reachability	graphs.	In	addition	to	this,	precomputation	is	only	applicable	to	individual	street	
networks	and	the	reachability	algorithm	is	applied	to	different	graphs.		
	
To	avoid	precomputation,	the	algorithm	will	use	the	Euclidian	distance	to	the	goal	node	as	
the	heuristic.	As	the	algorithm	checks	the	neighbouring	nodes	to	see	which	path	it	should	
take,	it	will	choose	the	node	that	has	the	smallest	Euclidian	distance	to	the	goal	node.	This	
heuristic	directs	the	search	in	the	direction	of	the	goal	node	in	a	depth	first	search	manner.	
Termination	of	this	algorithm	is	shared	with	A*,	where	if	the	goal	node	is	reached	then	it	
stops.	Another	termination	check	is	added,	if	the	distance	travelled	as	it	traverses	nodes	
reaches	the	reachability	distance	e.g.	3Km,	then	it	shall	stop.		
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 16	

	
	
Greedy	Heuristic	Search	Find	goal	node	using	Euclidian	distance	as	heuristic	 	
	 input:	(graph	𝑮,	initial	node	𝒗,	goal	node	𝒖,	reachability	distance	maxDistance)	
	
frontier	=	heapQueue(neighbours(𝒗))	
visited	=	set(∅)	
closestNode	=	v	
furthestDistance	=	maxDistance	
while	frontier	is	not	empty		
	 currentNode	=	frontier.pop()	
	 if	currentNode	in	visited	
	 	 continue	
	 if	currentNode	<=	maxDistance		
	 	 for	each	neighbour	n	of	currentNode		
	 	 	 heuristic	=	Euclidian	distance	of	current	node	to	goal	node	u	
	 	 	 if	heuristic	<	furthestDistance		
	 	 	 	 furthestDistance	=	heuristic	
	 	 	 	 closestNode	=	n	
	 	 	 frontier.push(n)	
	
output:	closest	node	to	goal	closestNode	
distance	of	node	which	had	smallest	euclidian	distance	to	goal	node	furthestDistance	
	

	
	Figure	7	-	Greedy	Heuristic	Search	Example	

	
In	Figure	7	the	path	from	the	red	initial	node	to	the	green	goal	node	is	shown.	The	Algorithm	
traverses	through	the	dark	blue	nodes	until	it	reaches	the	goal.	The	light	blue	node	is	an	
example	of	the	heuristic	leading	the	path	finding	greedily	to	the	goal	node,	however	the	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 17	

light	blue	node	is	not	connected	to	the	goal	node.	The	algorithm	will	then	pic	the	next	
closest	node	and	continue	until	the	termination	criteria	is	met.		
	
2.6 –	KD	Trees	
For	the	approximation	algorithm,	a	method	to	find	nodes	without	evaluating	them	
individually	is	required.	A	KD	Tree	query	works	in	the	same	style	as	Dijkstra’s	algorithm	
spatially	where	from	the	node	being	queried,	the	search	will	look	out	in	a	direction	up	to	a	
specified	distance	in	a	circle.	See	Figure	4	in	section	2.5.1	for	a	visual	representation.	This	
data	structure	is	used	to	reduce	computation	time.	
	
A	KD	Tree	works	by	splitting	the	list	of	coordinates	alternating	by	the	x-coordinate	and	y-
coordinate	for	a	2	dimensional	KD	Tree,	therefore	alternating	on	the	dimension	attributes	of	
the	dataset.	This	will	therefore	on	the	first	split,	put	half	of	the	x-coordinates	on	the	left	and	
the	other	half	on	the	right	then	following	the	same	principle	with	the	y-coordinates.	Simply,	
it	must	look	at	all	the	values	for	the	x	coordinates	in	the	data	given	and	split	it	at	the	median	
putting	the	lower	half	on	the	left	and	the	other	half	on	the	right.	The	next	split	will	be	on	the	
y	coordinates,	finding	the	median	for	the	left	half	and	then	splitting	that	in	half	and	then	
finding	the	median	of	the	right	half	and	splitting	that	in	half.	By	doing	this,	a	tree	is	created	
which	can	be	more	efficiently	queried	compared	to	individually	searching	for	the	nodes	that	
fit	the	search	criteria,	explained	below	in	the	Nearest	Neighbour	Search	section.	The	tree	
created	will	have	not	have	a	depth	greater	than	𝐿𝑜𝑔@𝑁	where	𝑁	is	the	number	of	data	
points.	
	

	
Figure	8	-	KD	Tree	x,y-coordinate	split	on	the	left	and	tree	representation	on	the	right	[8]	

Figure	8	illustrates	spatially	how	the	KD	Tree	splits	up	coordinates.	The	lines	denoted	by	L	are	
the	level	splits	which	split	the	coordinate	by	half	in	turn	and	the	points	denoted	by	P	show	
the	coordinates	that	are	at	the	end	of	the	nodes	where	the	splitting	occurs.	The	first	level	is	
split	on	point	P5	which	has	the	median	x	coordinate	value	for	the	dataset.	On	the	second	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 18	

level	L2,	it	is	split	on	P2	which	is	the	median	y	coordinate	and	for	L3	which	is	on	the	same	
level	as	L2,	is	split	on	P7.		
	
Nearest	Neighbour	Search:	On	the	right-hand	side	of	Figure	8,	the	tree	shows	the	points	P	as	
the	leaf	nodes.	When	a	query	for	nearest	neighbour	search	is	used	on	this	data	structure,	
the	point	will	be	compared	to	the	values	on	each	level	to	determine	how	the	query	will	
traverse	the	tree.	When	it	reaches	the	leaf	node(s),	the	value	given	to	the	query	will	then	
compare	to	these	value(s)	to	see	which	is	the	nearest	neighbour.	This	tree	structure	
provides	logarithmic	searching	speeds,	𝐿𝑜𝑔	𝑁	[9].	
	
However,	there	is	one	downside	to	this	data	structure,	the	query	can	sometimes	not	find	
the	actual	nearest	neighbour.	When	the	search	traverses	the	tree	and	reaches	the	lowest	
level	containing	the	potential	nodes,	the	actual	nearest	neighbour	may	be	in	a	neighbouring	
branch.	
	

	
Figure	9	-	KD	Tree	failing	to	find	correct	nearest	neighbor	[10]	

In	Figure	9,	the	red	circle	shows	the	actual	nearest	neighbor	to	the	black	X	which	is	the	point	
being	queried	to	find	the	nearest	neighbor.	The	KD	Tree	will	traverse	down	the	tree	and	end	
at	the	level	highlighted	in	blue.	The	nearest	neighbor	to	the	query	point	is	the	point	circled	
in	yellow.	The	amount	of	nodes	and	their	spatial	density	for	the	data	points	used	in	this	
project,	this	shortcoming	of	nearest	neighbor	search	will	not	affect	the	results	of	the	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 19	

approximation	results.	If	the	nearest	neighbor	search	finds	the	wrong	closest	neighbor,	the	
node	is	likely	to	be	very	close	and	for	the	purpose	this	search	is	used	for	is	not	necessary	to	
find	the	exact	closest	neighbor,	see	section	3.3	for	the	use	of	nearest	neighbor	search	at	the	
arc	midpoint.	
	
Nearest	Neighbour	Range	Search:	To	find	all	nearest	neighbours	in	a	radius	around	the	
centre	point,	an	r-Nearest	Neighbour	query	needs	to	be	computed	on	the	KD	Tree.	This	
requires	the	search	algorithm	to	traverse	down	the	tree	to	find	the	left	most	node	in	the	
tree	which	is	at	the	border	of	the	range	specified.	It	must	also	find	the	rightmost	node	at	
which	is	at	the	border	of	the	range	specified.	All	nodes	in	between	these	two	will	be	
returned	in	the	query.	
	
2.7 –	Projections	and	conversions	
The	coordinate	system	for	the	OpenStreetMaps	use	latitude	and	longitude,	which	is	
referenced	as	a	projection	with	the	code	WGS84	[11].	Projections	are	used	to	model	the	
surface	of	the	Earth,	many	projections	are	required	as	the	surface	of	the	earth	is	not	
perfectly	spherical,	it	is	an	oblate	spheroid.	In	addition	to	this,	the	surface	of	the	earth	is	not	
consistent	as	the	surface	height	compared	to	sea	level	is	different	for	every	area.	To	more	
accurately	model	areas	closely,	there	needs	to	be	projections	for	different	areas	of	the	
Earth.	The	projection	EPSG:27700	[12],	which	models	the	United	Kingdom	will	be	used.	This	
projection	preserves	Euclidian	distance,	which	will	be	used	extensively	in	the	approximation	
of	the	reachability	graph	[13].		
	
Converting	the	street	network	from	latitude	and	longitude	coordinates	before	computing	
the	reachability	graph	is	required	for	the	KD	tree	data	structure.	As	the	poles	are	
approached,	the	meridians	of	the	longitude	become	closer	together	eventually	converging	
at	the	poles.	See	Figure	10,	the	red	arrow	pointing	at	the	meridians	show	them	converging	at	
the	pole.	So	for	two	coordinates	of	latitude	and	longitude	that	share	the	same	latitude	value	
and	differ	only	in	longitude,	the	actual	distance	between	the	two	coordinates	would	be	
different	if	measured	at	the	equator	compared	to	close	to	the	poles.	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 20	

	

	
Figure	10	–	View	of	Earth	above	a	Pole	demonstrating	converging	Longitude	

This	property	would	affect	the	accuracy	of	the	KD	tree,	therefore	the	conversion	before	the	
algorithm	starts	will	be	necessary.	In	addition	to	this,	converting	from	latitude	and	longitude	
during	the	computation	of	the	reachability	graph	as	necessary	would	slow	down	the	
algorithm.	This	conversion	at	the	start	is	a	set	constant.	
	
2.8 –	Complexity	of	Algorithms	and	Big	O	Notation	
Complexity	of	an	algorithm,	the	measure	of	how	an	algorithm	scales	as	the	problem	gets	
larger,	is	an	important	consideration	for	this	project.	Complexity	is	expressed	in	Big-O	
notation	as	a	function	𝑂	of	the	problem	size	𝑁.	Some	examples	of	Big-O	notation:	
	

• a	constant-time	method	is	"order	1":	𝑂(1)	
• a	linear-time	method	is	"order	N":	𝑂(𝑁)	
• a	quadratic-time	method	is	"order	N	squared":	𝑂(𝑁@)	

	
Big-O	notation	do	not	have	constants	or	low	order	term	as	these	will	not	affect	the	time	as	
much	as	the	higher	order	terms	do	[14].	
	 	

Meridians	of	
Longitude	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 21	

2.9 –	Aims	
In	this	project,	several	goals	have	been	identified.	The	goals	cover	computing	the	
reachability	graph	and	the	use	of	mathematical	and	technical	approaches	to	achieve	
approximation	and	optimisation.	The	main	aims	listed	below	are	in	order	of	ascending	
complexity:	
	

1. Compute	a	reachability	graph	for	a	street	network	using	a	modified	Dijkstra’s	
algorithm	

	
2. Compute	a	reachability	graph	through	approximation	using	a	KD	Tree	

	
3. Compute	a	reachability	graph	through	approximation	using	a	KD	Tree	with	a	

combination	of	algorithms	and	mathematical	theory	to	more	accurately	define	the	
graph	and	with	optimisation	of	the	solution	

	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 22	

3 –	Design	
3.1 –	Programming	Language	and	libraries	used	
Python	has	a	large	range	of	scientific	libraries	that	can	be	used	to	implement	this	project.	
They	provide	most	of	the	code	required.	However,	it	has	been	necessary	to	recode	some	of	
these	algorithms	to	meet	the	project	modification	specifications	where	necessary.	
	

1. NetworkX	
• Provides	tools	to	create	and	manipulate	graphs	and	has	a	method	to	work	

out	the	dominating	set	
2. OSMnx	

• Provides	a	lookup	to	OpenStreetMaps	to	extract	a	street	network	and	save	it	
in	GraphML	format	for	NetworkX	

3. Heapq	
• Provides	the	heap	queue	algorithm	to	create,	push	and	pop	elements	

4. SciPy	
• Contains	the	KD	Tree	data	structure	used	implemented	in	C	

5. CartoPy	
• Reads	Shapefiles	to	be	used	in	conjunction	with	matplotlib	to	visualise	the	

algorithms	implemented	for	testing	and	to	visualise	the	dominating	set		
o Shapefiles	for	Cardiff	and	London	obtained	from	mapcruzin.com	

6. PyProj	
• Provides	conversion	between	projections	used	

7. Numpy	
• Used	for	trigonometric	methods		

8. Matplotlib	
• Provides	plotting	tools	to	visualise	the	outputs	of	the	algorithms	

	
	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 23	

3.2 –	Solution	1	-	Modified	Dijkstra’s	Algorithm	
Modifying	Dijkstra’s	algorithm	for	this	project	is	relatively	simple.	The	requirement	for	the	
algorithm	is	to	keep	track	of	all	nodes	visited	that	are	under	the	max	distance	threshold	
given.	There	is	no	need	to	keep	track	of	the	path	to	each	node	visited,	only	the	set	of	active	
nodes	is	required.	The	set	of	active	nodes	is	kept	by	the	priority	queue	which	this	algorithm	
will	keep	querying	for	the	element	at	the	front	of	the	queue.		
	
A	priority	queue	is	an	abstract	data	structure,	this	data	structure	can	be	implemented	with	
the	required	properties	by	using	a	Heap	Queue.	A	heap	queue	is	different	to	a	normal	queue	
by	instead	of	ordering	elements	by	“first	in	first	out”	it	orders	the	elements	by	priority.	For	
this	project,	the	priority	is	going	to	be	the	smallest	tentative	distance	from	initial	node	to	
the	active	node	being	evaluated	(see	2.5.1).	
	
In	the	search,	there	will	be	nodes	that	share	neighbouring	nodes.	This	means	that	these	
nodes	will	be	added	to	the	heap	queue	multiple	times	with	only	the	tentative	distance	
differentiating	them.	Since	we	only	need	to	see	if	a	node	has	been	visited	once,	duplicates	
will	not	matter	and	do	not	need	to	be	removed	from	the	heap	queue.	This	would	have	been	
computationally	expensive	since	the	heap	queue	would	have	had	to	be	remade	each	time	
there	was	a	duplicate	removed.		
	
This	algorithm	is	run	inside	a	for	loop	which	will	evaluate	all	the	nodes	in	the	given	street	
network	to	calculate	the	reachability	of	each	node.	In	this	loop,	the	modified	Dijkstra’s	
algorithm	is	given	the	initial	node	and	the	street	network	as	a	graph	and	returns	the	set	of	
reachable	nodes.	A	nested	loop	will	go	through	this	set	and	add	edges	from	the	initial	node	
to	these	nodes	to	connect	them	all.		
	
Once	the	first	loop	has	iterated	through	all	the	nodes	in	the	street	network,	the	reachability	
graph	is	constructed	and	the	dominating	set	can	be	calculated.	At	this	stage,	the	first	aim	
has	been	achieved.	
	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 24	

	
Modified	Dijkstra’s	Find	all	reachable	nodes	within	a	set	distance	(initial	node	𝒗)	
	
frontier	=	heapQueue(neighbours(𝒗))	
reachable	=	set(∅)	
while	frontier	is	not	empty	
	 currentNode	=	frontier.pop()	
	 if	currentNode	in	reachable		
	 	 continue	
	 if	currentNode	<=	maxDistance		
	 	 reachable.add(currentNode)	
	 	 for	all	neighbours	of	currentNode	frontier.push(neighbouring	nodes)	
	 else		
	 	 break	
return	reachable	
	
	
3.3 –	Solution	2	-	Greedy	Heuristic	Path	Finding	Algorithm	using	KD	Tree	
This	algorithm	is	more	complex	than	the	modified	Dijkstra’s	algorithm,	all	the	steps	and	
justifications	for	each	method	used	to	approximate	the	reachability	graph	are	discussed	
below.	
	
A	graph	must	be	created	containing	the	nodes	in	the	street	network	with	coordinates	for	
the	projection	used	converted	from	latitude	and	longitude.	After	this	a	KD	Tree	containing	
all	these	needs	to	be	initialised.	This	KD	Tree	will	be	queried	many	times	by	the	main	loop	
looking	for	all	potential	reachable	nodes	from	an	initial	node	to	then	be	processed	to	
remove	the	nodes	that	the	algorithm	does	not	suggest	that	is	reachable.		
	
The	algorithm	will	now	loop	through	all	the	nodes	in	the	street	network	to	approximate	the	
reachable	nodes.	For	each	node	in	this	loop,	a	range	query	is	used	to	find	all	nearest	
neighbours	in	a	certain	distance.	This	distance	is	set	just	above	the	average	distance	that	the	
modified	Dijkstra’s	algorithm	finds.	So,	if	the	algorithm	was	given	3km	as	a	max	distance	
through	roads,	in	Euclidian	distance	the	furthest	reachable	nodes	were	found	to	be	around	
2.2km.	This	is	a	fair	assumption	to	make	because	due	to	the	bends	in	roads	in	street	
networks	the	outermost	nodes	will	not	also	have	the	same	Euclidian	distance.	This	
assumption	is	used	to	reduce	the	number	of	nodes	that	need	to	be	evaluated	later	in	the	
algorithm	that	are	checked	if	they	fit	inside	the	polygon	constructed	which	approximates	
the	reachable	nodes.	
	
Up	to	this	point	in	this	algorithm,	the	second	aim	of	the	project	has	been	achieved.	The	next	
section	incorporates	the	extra	techniques	to	give	a	more	accurate	approximation.	After	
comparing	the	reachability	for	a	small	sample	of	nodes	using	the	modified	Dijkstra’s	method	
and	the	tree	that	the	KD	Tree	approximation	produced,	there	were	some	interesting	results.	
The	geography	of	the	area	around	the	initial	node	will	cause	the	shape	of	reachable	nodes	
for	the	modified	Dijkstra’s	method	to	not	be	a	circle.	Geography	such	as	rivers	and	parks	
that	have	no	street	network	connectivity	through	them	means	that	nodes	beyond	this	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 25	

geographical	obstacle	will	not	be	reachable,	but	the	KD	Tree	approximation	method	still	
suggests	such	nodes	as	reachable.	

	
	

	
Figure	11	-	Geographic	Obstacle	Example	1	

In	Figure	11	on	the	right	is	the	reachable	nodes	of	a	sample	node	next	to	a	geographic	
obstacle	(see	blue	arrow)	produced	by	the	modified	Dijkstra’s	algorithm.	On	the	left,	shows	
the	reachable	set	of	nodes	produced	by	a	KD	tree.		
	
To	tackle	the	problem,	the	nodes	that	the	KD	Tree	return	as	reachable	must	be	validated.	
This	will	be	done	by	splitting	the	circle	shape	of	nodes	returned	into	8	sectors	and	
individually	checking	how	far	from	the	initial	node	the	radius	of	the	sector	should	be.	This	
can	be	done	by	using	the	Greedy	Heuristic	Search	from	the	initial	node,	traversing	nodes	
until	it	reaches	the	outermost	node	in	the	theoretical	sector	or	if	it	reaches	the	max	distance	
that	the	modified	Dijkstra’s	algorithm	uses,	e.g.	3km.	This	outermost	node	is	defined	as	the	
nearest	neighbour	to	the	midpoint	of	the	arc	in	each	sector.	
	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 26	

	
	

Figure	12	-	Sector	Validation	Example	

In	Figure	12,	the	blue	arrows	show	the	different	radii	of	the	8	sectors	from	the	center	node.	
	
After	considering	on	how	to	use	A*	search	for	this	validation	section,	it	was	decided	that	
computing	heuristics	would	be	too	computationally	expensive	for	this	method	since	the	
street	network	is	so	complex.	Simplifying	A*	search	to	just	evaluate	the	Euclidian	distance	to	
the	goal	node	had	to	suffice,	the	simplification	became	the	Greedy	Heuristic	Search	
algorithm.	See	below	for	the	algorithm	pseudocode	and	see	section	2.6	for	the	
modifications	that	took	place	to	derive	this	algorithm.	Using	this	greedy	algorithm	one	the	
other	hand,	means	that	it	can	be	subject	to	the	problems	mentioned	in	section	2.6	of	
impassable	areas.	However,	this	can	be	justified	as	acceptable	because	the	purpose	of	this	
search	algorithm	is	not	to	find	the	shortest	path	to	the	goal	node,	but	to	see	how	close	the	
search	gets	to	the	goal	node.		
	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 27	

	
Figure	13	-	Geographic	Obstacle	Example	2	

In	Figure	13,	the	Greedy	Heuristic	search	is	shown	to	get	stuck	in	the	geographic	obstacle.	
The	nodes	in	blue	are	the	nodes	that	it	has	checked	to	reach	the	goal	node.	The	red	node	
shows	the	node	that	was	closest	to	the	goal	node,	which	is	the	green	star	on	the	left	of	the	
diagram	(see	blue	arrow).	The	yellow	triangle	represents	the	node	where	the	algorithm	
terminated	when	it	achieved	its	termination	criteria	of	max	distance	traversed	(see	yellow	
arrow).	

	
If	this	depth	first	search	is	successful	in	reaching	the	outer	most	node,	a	sector	has	been	
successfully	approximated	without	having	to	traverse	through	all	nodes	in	a	depth	first	
search	manner	saving	computation	time.	If	the	algorithm	does	not	reach	the	outermost	
node,	two	node	locations	are	saved.	One	is	of	the	node	that	has	the	closest	Euclidian	
distance	to	the	outer	goal	node.	The	second	is	the	last	node	evaluated	before	the	search	
hits	the	max	distance	threshold.	The	algorithm	will	then	check	which	of	the	two	is	closer	to	
the	goal	node	and	whether	this	node	is	inside	the	sector	being	evaluated	(see	Figure	13).		
	
The	closest	distance	of	the	two	nodes	saved	will	be	used	to	calculate	the	new	radius	for	the	
sector	from	this	node	to	the	initial	node.	Further	to	this,	the	check	to	see	if	the	nodes	end	
up	inside	the	sector	will	help	determine	if	the	furthest	node	ended	up	being	close	to	the	
goal	node	but	only	by	going	through	another	sector.	This	will	change	the	shape	of	the	
sector,	shown	below	using	the	closest	and	last	node.	In	Figure	13,	the	distance	to	the	initial	
node	(see	green	arrow)	to	the	node	which	had	the	smallest	Euclidian	distance	to	the	goal	
node	is	quite	small.	If	this	distance	was	used	as	a	radius,	it	would	correctly	approximate	the	
nodes	in	that	sector.	However	if	the	Euclidian	distance	between	the	initial	node	and	the	
node	which	was	at	the	end	of	the	longest	graph	traversal	(see	yellow	arrow)	was	to	be	used	
as	a	radius	for	the	sector,	it	would	approximate	the	nodes	behind	the	geographical	obstacle	
which	would	be	incorrect.	
	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 28	

Once	each	sector	is	evaluated,	a	polygon	is	created	using	the	coordinates	of	the	arcs	of	the	
sectors	(the	two	ends	and	the	midpoint)	showing	the	bounds	of	the	approximated	area	that	
is	reachable.	The	nodes	that	lie	inside	should	be	added	as	reachable	to	the	initial	node.	A	
point	in	polygon	algorithm	is	used	for	this,	see	section	3.5.1.	Before	doing	this,	a	polygon	
smoothing	algorithm	is	utilised	(see	section	3.5.2)	to	remove	the	sharp	edges	that	are	
created	by	the	arc	coordinates	when	neighbouring	sectors	have	greatly	different	radii.	This	
has	been	added	because	the	shape	of	Dijkstra’s	algorithm	as	it	grows	spatially,	seen	in	the	
figure	below,	gives	the	reachability	graph	has	a	smooth	profile.	The	areas	covered	by	the	
sectors	after	they	have	been	validated	do	not	share	this	smooth	profile	characteristic.	The	
objective	is	to	emulate	Dijkstra’s	algorithm,	so	by	smoothing	the	polygon	there	will	be	sets	
of	nodes	that	will	be	included	as	reachable	and	sets	that	will	not	be	included.		

	
Figure	14	-	Polygon	Smoothing	Example	

In	Figure	14,	there	are	two	cases	where	the	smoothing	algorithm	is	a	positive	addition	to	the	
approximation	algorithm.	The	blue	arrow	points	to	a	location	where	before	smoothing	is	a	
obtuse	angle,	but	after	smoothing	the	polygon	will	now	include	extra	node	and	improve	the	
accuracy	of	the	approximation.	The	green	arrow	points	to	a	line	which	would	have	been	
straight,	but	the	smoothing	allows	the	shape	of	the	polygon	to	be	more	curved.	This	would	
add	a	few	additional	nodes.	
	
The	nodes	which	lie	under	the	corners	cut	which	are	pointing	outwards	from	the	centre	will	
not	be	included.	The	nodes	which	lie	next	to	the	corners	pointing	inwards,	will	be	added.	
	
Now	the	approximated	reachable	nodes	are	connected	to	the	initial	node	and	the	algorithm	
repeats	this	process	for	all	the	nodes	in	the	street	network	being	evaluated.	
	
In	approximating	the	reachability	graph,	there	are	several	stages	where	performance	can	be	
lost	due	to	the	extra	steps	in	refining	the	approximation.	The	polygon	smoothing	is	a	luxury	
but	can	improve	the	results.		
	
3.4 –	Dominating	Set	
The	calculation	of	the	dominating	set	uses	a	function	from	the	library	NetworkX.	The	
functionality	of	the	algorithm	is	described	in	section	2.3.1.		

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 29	

	
3.5 –	Auxiliary	algorithms	
3.5.1 –	Point	in	Polygon	
Once	the	final	polygon	is	constructed	from	the	validation	process	of	each	sector,	the	nodes	
that	lie	inside	this	polygon	from	the	KD	Tree	ball	query	are	the	approximated	reachable	
nodes.	This	polygon	is	used	as	a	mask	over	the	nodes	which	is	processed	by	
matplotlib.contains_point	to	return	True	or	False	for	each	node.	If	True,	then	the	node	is	
added	to	a	set	of	reachable	nodes	which	can	then	be	used	to	connect	edges	from	the	initial	
node	to	these	nodes.	
	
The	code	implementation	for	this	is	provided	by	matplotlib.Path	library	which	has	an	
underlying	C	implementation.	This	helps	keep	the	computation	time	down	as	C	is	much	
quicker	than	Python.		
	
3.5.2 –	Polygon	Smoothing	
To	remove	the	sharp	corners	and	make	the	mask	smoother	and	similar	to	the	area	that	
Dijkstra’s	algorithm	would	cover	as	discussed	in	section	3.3,	a	smoothing	algorithm	has	been	
used.	The	algorithm	was	found	on	the	internet	called	Chaikin’s	Corner-cutting	Algorithm	
[15].	This	algorithm	is	used	as	it	is	simple	to	keep	computation	time	down.	
	
It	simply	takes	the	coordinates	of	the	neighbouring	coordinates	in	the	order	that	the	
algorithm	is	given	assuming	that	they	are	in	the	order	to	make	a	closed	set	of	edges.	The	
coordinates	of	the	polygon	given	to	this	algorithm	are	passed	in	order	so	this	is	not	an	issue.	
Before	Chaikin’s	algorithm	is	called,	the	first	coordinate	is	added	to	the	end	of	the	list	to	
ensure	there	is	a	closed	set	of	edges.	
	
Given	a	control	polygon	{𝑃E, 𝑃F, . . . , 𝑃H},	refinement	takes	place	by	deriving	a	new	sequence	
of	points	{𝑄E, 	𝑅E, 𝑄F, 𝑅F, . . . , 𝑄HLF, 	𝑅HLF}	that	are	of	a	fixed	ratio	from	the	control	points	P.	
These	points	are	defined	as:	
	

𝑄M = 	
3
4𝑃M +

1
4𝑃MPF	

𝑅M = 	
1
4𝑃M +

3
4𝑃MPF	

	
	

	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 30	

Figure	15	-	Chaikin's	Polygon	Smoothing	Diagram	[15]	

Figure	15	illustrates	points	Q	and	their	relative	location	between	the	control	points	Q	and	R.	
	
These	new	coordinates	will	be	the	new	smoothed	polygon	that	is	used	by	the	point	in	
polygon	algorithm	used	in	section	3.4.1.	Optionally,	this	algorithm	can	be	applied	repeatedly	
on	the	output	polygon	further	smoothing	the	polygon.	For	smoothing	in	this	project,	the	
algorithm	has	only	been	applied	once.	
	
3.6 –	Evaluating	the	results	of	the	two	algorithmic	implementations	
The	reachability	graphs	will	be	computed	for	the	target	street	networks,	followed	by	the	
dominating	sets	that	will	suggest	the	nodes	which	are	suitable	locations	to	place	electric	
charging	stations.	The	distance	that	will	be	used	for	reachability	needs	to	suit	the	criteria	
mentioned	in	section	1.2	where	the	stations	need	to	be	frequent.	This	means	that	the	
reachability	distance	cannot	be	70	miles	for	example,	as	this	would	make	the	stations	
infrequent	and	assume	that	the	use	of	the	vehicles	would	be	for	long	distance.	This	also	
includes	the	problem	of	congestion	in	the	stations	due	to	the	cars	requiring	a	minimum	
amount	of	time	to	charge	so	there	might	not	be	enough	charge	points	in	one	station.	
Therefore,	a	small	reachability	distance	needs	to	be	used.	In	this	project,	the	reachability	
graphs	will	be	computed	for	a	reachability	distance	range	of	3km	to	7km	in	500m	steps.		
	
The	reachability	graphs	for	the	modified	Dijkstra’s	method	will	have	their	dominating	sets	
examined	to	see	how	they	change	as	the	reachability	distance	increases.	Dijkstra’s	algorithm	
is	a	known	best	solution	to	compute	the	reachability	of	a	graph,	the	results	do	not	need	to	
be	compared	to	another	source.	On	the	other	hand,	to	evaluate	the	results	from	the	
approximation	method,	the	reachability	for	individual	nodes	need	to	be	compared	to	the	
modified	Dijkstra’s	method.	This	is	simply	a	comparison	of	the	nodes	that	the	modified	
Dijkstra’s	algorithm	has	computed	to	be	reachable	for	a	given	node,	then	see	if	the	
approximation	method	has	also	selected	the	same	nodes.	The	set	of	nodes	chosen	for	the	
approximation	method	can	then	be	checked	to	see	how	many	nodes	it	has	missed	if	it	under	
approximates	and	to	see	how	many	extra	nodes	it	has	approximated.	The	average	
difference	in	the	two	sets	can	then	be	measured	to	see	how	accurate	the	approximation	
method	is.	
	
There	is	one	downside	to	this	method	of	measuring	accuracy,	since	it	only	counts	the	
difference	in	nodes	as	a	number.	This	does	not	evaluate	the	accuracy	of	the	approximation	
algorithm	around	geographic	obstacles	and	how	well	the	validation	step	has	dealt	with	such	
obstacles	(see	section	3.3).	
	
3.7	–	Evaluating	the	performance	of	the	two	algorithmic	implementations	
The	complexity	of	the	two	algorithms	will	be	calculated	and	then	compared	to	real	test	
results.	The	timing	of	how	long	each	solution	takes	to	produce	the	reachability	graph	will	be	
recorded	for	the	two	different	variables	that	can	be	changed:	
	

• The	size	of	the	graph	(number	of	nodes)	
• The	reachability	distance	

	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 31	

Calculating	the	complexity	of	the	two	algorithms	will	be	specific	to	the	variable	that	is	being	
changed	above.	The	following	text	will	be	an	evaluation	of	the	code	implemented	and	how	
it	will	affect	the	respective	complexity.	
	
The	algorithms	will	be	tested	on	two	locations,	Cardiff	and	an	area	of	London.	The	area	of	
London	chosen	has	a	dense	street	network.	This	means	that	spatially	there	are	lots	of	nodes	
in	a	given	area.	Compared	to	Cardiff,	for	the	same	area	there	are	less	nodes.	Since	Cardiff	is	
a	small	city,	the	graph	quickly	turns	less	dense	as	you	leave	the	centre	with	more	housing	
and	green	nature	areas	away	from	Cardiff	city	centre.	Node	count	for	the	different	graphs	
used:	
	

• London	16km2	nodes:	18593	
• London	32km2	nodes:	62840	
• Cardiff	16km2	nodes:	9566	

	
This	allows	the	testing	of	how	well	the	two	algorithms	perform	with	different	reachability	
distances	depending	on	the	node	density.	It	is	expected	that	the	number	of	nodes	increases	
exponentially	as	the	reachability	distance	evaluated	increases.	The	complexities	of	the	
algorithms	are	predicted	below,	to	further	test	these	predicted	complexities	I	have	included	
the	only	a	larger	London	map	(32km2)	and	not	one	for	Cardiff	as	the	(32km2)	size	graph	did	
not	have	comparable	increase	in	nodes.		
	
Algorithm	Complexity	for	Graph	Size:	To	evaluate	the	complexity	when	changing	the	size	of	
the	graph,	the	reachability	distance	must	be	kept	constant.	The	complexity	of	both	
algorithms	should	be	𝑂(𝑁)	because	the	algorithms	will	always	traverse	through	a	fixed	size	
subset	of	the	graph	up	to	the	reachability	distance,	the	only	change	is	how	many	times	it	
performs	this.	Therefore,	for	this	section	the	complexity	predicted	for	each	algorithm	are:	
	

• Modified	Dijkstra’s	Algorithm:	𝑂(𝑁)	
• Approximation	method:	𝑂 𝑁 	

	
Algorithm	Complexity	for	Reachability	Distance:	To	evaluate	the	complexity	when	changing	
the	reachability	distance,	the	graphs	used	must	be	kept	the	same.	The	changing	factor	that	
will	determine	the	complexity	of	these	algorithms	is	how	far	and	how	long	the	algorithms	
have	to	traverse	a	graph.	
	
Firstly,	the	modified	Dijkstra’s	algorithm	which	is	a	breadth	first	search	will	exhaustively	
traverse	all	the	levels	in	a	tree.	This	means	that	the	number	of	nodes	it	traverses	will	grow	
exponentially	as	the	reachability	distance	increases.	In	the	algorithm	implementation,	all	the	
code	that	is	required	to	compute	the	reachability	graph	to	produce	a	complexity	term	in	Big-
O	notation	has	been	evaluated.	After	removing	all	the	constants,	the	complexity	remains	as	
𝑂(𝑁@).		
	
Secondly,	the	approximation	method	was	designed	to	behave	like	a	depth	first	search.	
There	are	steps	in	this	algorithm	which	will	add	a	base	constant	time	to	the	algorithm,	these	
should	be	removed	from	Big-O	notation	but	is	quite	apparent	in	the	results,	see	section	4.4.		

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 32	

In	the	code	implementation	of	this	algorithm,	there	are	many	sections	of	code	that	will	
always	run	𝑁	amount	of	times	independent	of	the	reachability	distance.	The	sections	of	
code	that	do	depend	on	the	reachability	distance	are	the	Greedy	Heuristic	Search	and	the	
Point	in	Polygon	algorithms.	The	Greedy	Heuristic	Search	will	be	performed	8𝑁	times	per	
initial	node	and	the	Point	in	Polygon	algorithm	will	also	be	performed	8𝑁	times.	This	results	
in	𝑂(8𝑁 + 8𝑁),	simplified	in	steps:	
	

Ø 𝑂(8𝑁 + 8𝑁)	
Ø 𝑂(𝑁 + 𝑁)	
Ø 𝑂(2𝑁)	
Ø 𝑂(𝑁)	

	
Therefore,	for	this	section	the	complexity	predicted	for	each	algorithm	are:	
	

• Modified	Dijkstra’s	Algorithm:	𝑂(𝑁@)	
• Approximation	method:	𝑂 𝑁 	

	
The	approximation	method	is	expected	to	outperform	the	modified	Dijkstra’s	method.	
However,	as	mentioned	previously	the	approximation	method	has	a	base	constant	runtime.	
Due	to	this,	the	approximation	method	is	expected	to	be	slower	in	less	dense	graphs	or	with	
a	small	reachability	distance.		
	
	
	
	
	
	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 33	

4 –	Experimental	Results	and	Evaluation	
During	testing	of	the	algorithm	to	obtain	results,	the	algorithms	were	giving	inconsistent	
timings	that	ranged	in	up	to	2	hours	to	compute	the	reachability	graph	for	the	street	
network	of	London	with	a	bounding	box	of	16km2	with	a	reachability	distance	of	3km	and	up	
for	both	algorithm	implementations.		
	
To	find	the	problem,	the	algorithms	were	first	checked	to	see	where	they	were	slowing	
down.	Initially,	the	algorithms	were	performing	fast	then	slowing	down	when	computing	the	
reachability	of	a	single	node.	The	nodes	where	the	algorithms	slowed	down	were	checked	
to	see	if	they	caused	any	loops	in	the	logic,	which	was	not	the	case.	Individually,	the	
reachability	for	these	nodes	was	computed	and	it	was	found	that	it	was	not	slow.	This	also	
lead	to	the	discovery	that	the	nodes	which	were	problematic	were	not	always	the	same	for	
every	run.	Checking	the	memory	usage	of	python	lead	to	the	discovery	that	Python	was	
using	many	gigabytes	of	memory,	up	to	50GB.	The	computer	being	used	to	test	the	code	
only	has	8GB	of	memory.	To	make	sure	that	it	was	not	inefficient	code	or	any	bugs,	the	code	
was	extensively	debugged	and	variables	cleared	such	as	the	list	of	active	nodes	for	each	
search	once	completed,	were	deleted	to	free	up	memory.	This	did	not	resolve	the	problem,	
so	knowing	that	there	are	millions	of	edges	being	added	to	the	graph,	the	creation	of	edges	
onto	the	graph	was	disabled.	The	memory	usage	was	then	smaller	and	compatible	with	the	
computer’s	physical	memory,	which	therefore	allowed	the	algorithms	to	run	very	quickly	
without	memory	bottlenecking	the	performance.	The	problem	lies	in	the	implementation	of	
NetworkX	due	to	it	using	memory	heavy	data	structures	to	load	graphs	onto	memory.		
	
To	work	out	how	much	memory	the	algorithm	needs,	the	current	implementation	file	sizes	
were	investigated.	The	.graphml	file	for	the	16km2	area	of	London	is	21.4mb	with	around	
47,000	edges.	The	algorithm	when	it	finished,	added	around	120	million	edges	so	working	
out	how	many	megabytes	it	takes	to	save	one	edge	and	multiplying	it	by	120	million	will	
mean	the	graph	requires	50,000MB	or	50GB	of	storage	to	save	the	reachability	graph	as	
text.	This	value	can	be	compared	to	the	memory	requirements	of	NetworkX,	since	it	stores	
most	the	graph	data	as	a	String	datatype	inside	Dictionaries	which	requires	much	more	
memory	than	if	they	were	stored	as	integers.	The	IDs	for	the	nodes	are	around	9	characters,	
if	these	are	saves	as	Strings	then	each	ID	will	take	up	a	byte	per	character	so	9	bytes	in	bits	
is	72bits.	If	these	were	represented	as	numbers,	then	9	digits	should	take	up	30	bits	if	it	was	
999999999.	In	addition	to	this,	NetworkX	also	stores	metadata	such	as	length	and	
directionality	which	also	adds	to	the	space	required	to	store	each	edge.	Assuming	the	
savings	in	moving	from	a	String	to	numbers	applies	to	the	metadata	then	the	graph	would	
take	much	less	space,	however	the	size	would	still	be	large	and	would	still	cause	problems	
when	trying	to	compute	even	large	reachability	graphs.	The	size	of	the	graph	being	used	is	
16km2	and	the	whole	of	London	is	1,572	km².	In	the	future	work	section,	methods	on	how	
to	solve	this	storage	requirement	problem	will	be	discussed.	
	
The	following	test	results	for	performance	only	measure	how	long	it	takes	for	the	algorithms	
to	find	all	the	reachable	nodes,	not	adding	the	edges	to	the	graph	additionally.	After	
investigating	the	memory	usage	for	NetworkX,	it	seems	that	this	is	a	limitation	of	the	
implementation	of	NetworkX	as	it	stores	lots	of	information	using	dictionaries.	
Improvements	to	this	memory	usage	shortcoming	will	be	discussed	later.	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 34	

4.1 –	Reachability	Graph	Computation	Evaluation	
The	following	analysis	contains	figures	with	red	stars.	The	red	stars	are	nodes	that	are	part	
of	the	dominating	set.		
	
Modified	Dijkstra’s	–	London	–	16km2:	Firstly,	the	reachability	graphs	computed	by	the	
modified	Dijkstra’s	algorithm	as	mentioned	in	section	3.6	will	produce	accurate	results	as	
Dijkstra’s	algorithm	is	the	known	best	solution.	The	dominating	sets	produced	by	the	
reachability	graphs	will	be	visually	examined.	As	the	reachability	distance	increases,	it	is	
expected	that	the	distance	between	the	dominating	nodes	will	increase	and	the	number	of	
these	dominating	nodes	will	decrease.	
	

	
Figure	16	-	Dominating	Set	for	London	-	Dijkstra's	-	Reachability	3km	

	
Figure	17	-	Dominating	Set	for	London	-	Dijkstra's	-	Reachability	5km	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 35	

Comparing	Figure	16	and	Figure	17,	there	are	a	few	similarities	such	as	the	location	of	some	
dominating	nodes.	Some	of	these	are	in	the	same	place	in	both	figures.	These	nodes	are	
clustered	on	the	top	right,	where	it	also	seems	to	be	a	denser	street	network	area.	Another	
observation	is	that	in	the	center,	the	distance	between	the	dominating	nodes	is	bigger	in	
Figure	17,	confirming	that	the	nodes	had	more	reachability.	In	addition	to	this,	there	are	less	
nodes	on	the	perimeter	of	the	map.	
	
The	nodes	in	the	street	network	which	lie	on	the	boundary	for	the	map	will	only	have	their	
reachability	calculated	towards	nodes	in	the	center.	This	is	a	shortcoming	of	calculating	the	
reachability	for	all	nodes	in	the	map.	This	means	the	nodes	at	the	top	of	the	graph	will	only	
have	half	it’s	reachability	computed.	This	goes	for	all	nodes	near	the	edge	of	the	street	
network.	Using	a	bigger	street	network	or	only	evaluating	the	nodes	in	the	street	network	
which	have	a	Euclidian	distance	to	the	edge	of	the	map	that	is	greater	than	the	reachability	
distance.	
	
Approximation	Method	–	London	–	16km2:	For	the	same	map	as	modified	Dijkstra’s	
method,	the	reachability	graph	has	been	computed	using	the	approximation	method.	The	
dominating	sets	will	be	visually	examined	to	see	if	they	are	similar	to	those	chosen	by	the	
dominating	set	of	modified	Dijkstra’s	method.	See	below	in	the	section	(Reachability	Graph	
Comparison	Using	a	Sample	Node)	to	evaluate	the	accuracy	of	approximation	method.		
	

	
Figure	18-	Dominating	Set	for	London	-	Approximation	-	Reachability	3km	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 36	

	
Figure	19	-	Dominating	Set	for	London	-	Approximation	-	Reachability	5km	

The	first	observation	that	can	be	made	when	comparing	Figure	18	and	Figure	19	is	that	for	
the	bigger	reachability	distance,	the	distance	between	the	dominating	nodes	in	the	middle	
is	very	large.	There	are	only	4	in	the	middle	for	5km	reachability	whereas	there	are	around	
10	for	the	reachability	of	3km.	Comparing	these	to	the	modified	Dijkstra’s	method	shows	
that	the	dominating	sets	computed	are	quite	different.	However,	they	both	share	one	
property	of	having	bunches	of	dominating	nodes	on	the	outside.	This	is	due	to	the	nature	of	
the	computation	of	the	dominating	set.	Referring	to	the	dominating	set	algorithm,	the	
nodes	are	taken	randomly	and	then	nodes	are	added	and	removed	as	fit	until	the	
dominating	set	criteria	has	been	met.	The	algorithm	does	not	check	to	stop	bunching	of	
nodes	in	the	dominating	set.		
	
Modified	Dijkstra’s	–	Cardiff	–	16km2:	The	following	two	figures	illustrate	the	dominating	
sets	for	the	street	network	of	Cardiff.	The	obvious	difference	of	the	two	networks	can	be	
seen	visually	as	Cardiff	is	much	smaller.	In	section	4.2,	the	performance	of	the	search	
algorithms	are	analysed	as	the	network	size	increases	but	shows	that	the	increase	in	
runtime	decreases.	The	figures	below	show	how	the	density	of	the	nodes	decreases	around	
Cardiff.	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 37	

	
Figure	20	-	Dominating	Set	for	Cardiff	-	Dijkstra's	-	Reachability	3km	

	
Figure	21	-	Dominating	Set	for	Cardiff	-	Dijkstra's	-	Reachability	5km	

The	nodes	chosen	to	be	the	dominating	nodes	for	3km	reachability	are	generally	closer	
together	when	compared	to	the	nodes	for	5km	reachability.	There	is	some	clustering	of	the	
nodes	in	both	Figure	20	and	Figure	21,	due	to	the	approach	of	the	dominating	set	algorithm.	
The	clustering	in	the	map	of	Cardiff	seems	to	be	greater.	This	might	be	because	Cardiff	has	
several	subgraphs	that	are	not	very	connected	to	the	rest	of	the	graph(circled	in	blue).	
These	subgraphs	only	have	a	few	nodes	that	connect	them	to	the	rest	of	the	graph.	
	
Approximation	Method	–	Cardiff	–	16km2:	The	final	two	figures	show	the	dominating	set	
computed	for	Cardiff	using	the	approximation	method.		
	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 38	

	
Figure	22	-	Dominating	Set	for	Cardiff	-	Approximation	-	Reachability	3km	

	
Figure	23	-	Dominating	Set	for	Cardiff	-	Approximation	-	Reachability	5km	

Similar	to	Figure	19,	there	is	a	fair	bit	of	bunching	on	the	outskirts	of	the	map.	Clustering	is	
not	as	prevalent	in	the	smaller	reachability	distance	of	3km.	It	seems	that	this	clustering	is	
an	unfortunate	drawback	of	the	approximation	method.	This	clustering	may	be	caused	by	
the	approximation	algorithm	not	working	correctly	at	the	borders	of	the	map.	However,	in	
the	center	of	these	two	figures	show	that	changing	the	reachability	does	change	the	
distance	between	the	dominating	nodes.	
	
Reachability	Graph	Comparison	Using	a	Sample	Node:	A	random	sample	node	has	been	
chosen	to	illustrate	the	different	reachability	graphs	produced	by	both	algorithms.	The	node	
was	taken	from	the	Cardiff	street	network.		

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 39	

	

	
Figure	24	-	Reachability	Graph	For	Sample	Node	-	Modified	Dijkstra's	

	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 40	

	
Figure	25	-	Reachability	Graph	For	Sample	Node	–	Approximation	

Figure	24	shows	the	nodes	that	the	modified	Dijkstra’s	algorithm	marked	as	reachable	as	red	
stars.	The	black	star	in	the	middle	is	the	center	node	where	the	algorithm	started	its	search.	
Figure	25	shows	the	equivalent	nodes	approximated	to	be	reachable	from	the	same	initial	
node.	These	figures	show	an	example	of	where	there	is	a	geographical	obstacle	blocking	the	
path	to	the	nodes	beyond	this	obstacle,	preventing	them	being	reachable.		
	
For	this	sample	node,	modified	Dijkstra’s	method	created	a	reachability	graph	with	1715	
nodes.	The	approximation	method	created	a	reachability	graph	with	1495	nodes.	The	
algorithm	has	under	approximated	the	actual	reachable	nodes.	The	approximation	method	
added	94	nodes	that	the	modified	Dijkstra’s	method	did	not	add.	The	approximation	
method	did	not	add	314	nodes	that	the	modified	Dijkstra’s	method	added	(shown	as	the	red	
nodes	on	Figure	26	around	the	blue	nodes).	Therefore,	for	the	nodes	that	were	correct,	it	
was	only	missing	5.48%	of	the	nodes	and	added	an	extra	18.31%	of	nodes.		
	

	
Figure	26	-	Reachability	Graph	For	Sample	Node	-	Approximation	and	Modified	Dijkstra’s	

Superimposed	

Figure	26	shows	the	reachability	graphs	superimposed	to	see	how	the	approximation	
method	has	performed.	At	first	sight	it	seems	that	a	lot	of	nodes	have	been	missed.	
However,	the	accuracy	of	the	approximation	method	is	acceptable	because	if	most	the	
nodes	are	correctly	marked	as	reachable,	combined	with	the	reachability	graphs	of	the	
other	nodes	in	the	graph,	the	total	reachability	graph	of	all	nodes	combined	(the	single	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 41	

highly	connected	graph)	will	still	produce	similar	dominating	sets.	Therefore,	the	inaccuracy	
is	not	as	apparent	in	a	large	scale.		
	
The	blue	arrow	on	Figure	26	points	to	a	cluster	of	nodes	that	has	been	included	by	the	
approximation	method	that	are	not	included	by	the	modified	Dijkstra’s	method.	Note	that	
the	validation	process	has	been	mostly	successful	in	not	adding	too	many	nodes	that	should	
not	have	been	added,	overall	the	approximation	covers	the	same	shape	as	the	modified	
Dijkstra’s	method.	
	
The	following	data	are	some	statistics	for	the	street	network	of	Cardiff	on	how	much	the	
approximation	method	over	and	under	approximated	the	reachability	graphs.	(Note:	Over	
approximated	is	the	measure	of	extra	nodes	that	aren’t	in	the	correct	set,	under	
approximated	is	the	measure	of	number	of	nodes	that	have	not	been	added	but	should	
have	been).	
	

Ø Average	over	approximated	nodes:	12.6%	
Ø Average	under	approximated	nodes:	27%	

	
These	average	over	and	under	approximation	show	that	the	algorithm	is	more	likely	to	not	
mark	nodes,	making	the	reachability	graph	smaller.	In	the	larger	scale	when	considering	all	
the	reachability	graphs	put	together,	the	dominating	set	computed	will	have	more	nodes.	
Having	more	dominating	nodes	means	more	suggested	electric	charging	stations,	which	
would	be	preferable	over	not	having	enough	charging	stations.	However,	27%	means	that	
the	algorithm	still	needs	improvements	in	its	approximation.	
	
In	summary,	the	modified	Dijkstra’s	method	has	been	successfully	applied	to	compute	
reachability	graphs.	In	comparison,	the	approximation	method	however	has	been	relatively	
successful	in	generating	a	reachability	graph	of	the	same	shape	as	that	of	the	modified	
Dijkstra’s	method,	including	most	of	the	correct	nodes.	Improvements	can	be	made	to	the	
algorithm	at	a	cost	in	run	time,	the	next	section	will	see	how	much	faster	the	approximation	
method	performs	which	will	then	show	if	there	is	much	scope	to	add	extra	features	to	
improve	the	approximation.		
	
4.2 –	Performance	Evaluation	
Changing	the	reachability	distance	for	the	two	algorithms	has	shown	their	expected	
behaviours	on	complexity.	Changing	the	street	network	used	has	also	shown	the	expected	
behaviour.	Comments	will	be	made	on	the	data	produced	in	the	timings	and	review	the	
predictions	made	in	section	3.7.	The	data	recorded	has	had	its	R	squared	values	placed	on	
the	graph	to	see	the	fit	of	the	values	and	how	closely	they	compare	to	the	function	of	
complexity	through	their	trend	lines.	
	
Changing	the	Size	of	the	Graph:	The	results	for	the	modified	Dijkstra’s	algorithm	are	
different	between	the	two	different	geographic	locations.		
	
	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 42	

	
	

Figure	27	-	Reachability	Graph	Computation	Time	For	Cardiff	With	Variable	Street	Network	Size	

For	Cardiff,	the	computation	time	did	not	increase	linearly	as	the	size	of	the	graph	
increased.	This	is	because	as	the	maps	became	larger,	the	node	count	did	not	increase	at	
the	same	rate.	When	the	algorithm	uses	the	nodes	on	the	countryside	around	Cardiff,	the	
tree	that	it	must	traverse	is	much	smaller	(map	of	Cardiff	illustrated	in	Figure	20	and	Figure	
21).	Therefore,	the	runtime	for	the	algorithm	decreases	as	you	move	away	from	the	centre.	
This	is	similarly	shown	in	Figure	27,	at	street	network	size	9km	the	increase	in	the	algorithm	
runtime	slows	down	with	increasing	street	network	size.		
	
An	extra	note	on	the	street	network	of	Cardiff:	since	the	city	is	on	the	coast	there	will	not	be	
any	nodes	in	the	body	of	water.	Therefore,	this	also	causes	the	node	count	for	the	larger	
graphs	to	not	increase	proportionately	as	there	is	more	of	the	sea	included	as	the	graph	size	
increases.		
	

R²	=	0.91374

R²	=	0.90596

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000 16000

Ti
m
e	
(s
)

Street	Network	Size	(m2)

Reachability	Graph	Computation	Time	For	Cardiff	With	
Variable	Street	Network	Size

KD

Dijkstra's

Linear		(KD)

Linear		(Dijkstra's)

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 43	

	
	

Figure	28	Reachability	Graph	Computation	Time	For	London	With	Variable	Street	Network	Size	

	
For	London,	the	computation	time	increased	linearly	as	expected.	The	London	map	has	a	
consistent	increase	in	number	of	nodes	as	the	map	became	larger.	This	shows	that	the	
algorithm	computation	time	was	essentially	the	same	for	each	node	in	the	graph.		
	
Figure	30	and	Figure	31	below	show	the	linear	relationship	of	changing	the	size	of	the	graph	
on	the	complexity.	Comparing	the	time	to	compute	the	reachability	between	the	16km2	
London	network	and	the	32km2	for	all	points	shows	that	by	increasing	the	geographical	area	
by	4	times,	the	time	to	compute	the	reachability	also	increases	4	times.	For	example,	the	
modified	Dijkstra’s	method	takes	around	2000	seconds	for	the	16km2	network	and	8000	
seconds	for	the	32km2	network	with	a	reachability	distance	of	7km.	
	
Changing	the	Reachability	Distance:	The	data	very	clearly	shows	how	and	when	the	
approximation	method	takes	over	in	being	the	more	optimal	algorithm	for	computing	
reachability	in	Cardiff.	
	

R²	=	0.99668

R²	=	0.99439

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000 12000 14000 16000

Ti
m
e	
(s
)

Street	Network	Size	(m^2)

Reachability	Graph	Computation	Time	For	London	With	
Variable	Street	Network	Size

KD

Dijkstra's

Linear		(KD)

Linear		(Dijkstra's)

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 44	

	
	

Figure	29	-	Reachability	Graph	Computation	Time	for	Cardiff	16km2	Area	With	Variable	Reachability	
Distance	

	
In	Figure	29	the	reachability	distance	between	3km	and	6km	can	be	more	quickly	computed	
using	the	modified	Dijkstra’s	method.	For	the	approximation	method,	the	higher	base	time	
shows	that	there	are	not	enough	nodes	in	the	reachability	distance	to	make	using	the	
approximation	algorithm	worthwhile.	At	6.5km	however,	the	time	that	the	modified	
Dijkstra’s	method	requires	to	run	for	this	reachability	distance	starts	to	show	it’s	𝑂(𝑁@)	
complexity.	The	trend	lines	cross	at	this	point	and	now	the	approximation	method	becomes	
the	more	optimal	method	in	computing	the	reachability.	
	
Comparing	the	change	in	time	for	the	modified	Dijkstra’s	method,	the	change	in	time	stays	
consistent.	This	is	because	the	approximation	method	is	not	dependant	on	how	many	nodes	
there	are	to	traverse	in	a	tree	like	Dijkstra’s	algorithm.	Since	it	does	not	perform	a	breadth	
first	search,	the	time	is	used	in	computing	the	validation	process	of	the	sectors.	The	
validation	time	is	constant	since	there	are	a	predetermined	number	of	steps	that	need	to	be	
carried	out,	including	the	short	depth	first	search	by	the	Greedy	Heuristic	algorithm.	This	
will	cause	an	insignificant	change	to	the	total	time	even	though	it’s	runtime	is	proportional	
to	the	reachability	distance.		
	
The	following	two	Figures	illustrate	the	timings	for	London.		

R²	=	0.99543

R²	=	0.99073

0

50

100

150

200

250

300

350

400

450

500

550

0 1000 2000 3000 4000 5000 6000 7000 8000

Ti
m
e	
(s
)

Reachability	Distance	(m)

Reachability	Graph	Computation	Time	For	Cardiff	16Km2

Area	With	Variable	Reachability	Distance

KD

Dijkstra's

Linear		(KD)

Expon.		(Dijkstra's)

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 45	

	
	

Figure	30	-	Reachability	Graph	Computation	Time	For	London	16km2	Area	With	Variable	Reachability	
Distance	

Figure	30	shows	the	reachability	times	for	the	same	size	street	network	in	distance	but	
denser	in	nodes.	The	first	observation	shows	that	the	modified	Dijkstra’s	method	from	the	
start	has	a	higher	computation	time.	This	shows	that	the	modified	Dijkstra’s	method	is	
traversing	more	nodes	for	the	same	reachability	distance	when	compared	to	Cardiff’s	16km2	
street	network.		
	

R²	=	0.99401

R²	=	0.98763

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 1000 2000 3000 4000 5000 6000 7000 8000

Ti
m
e	
(s
)

Reachability	Distance	(m)

Reachability	Graph	Computation	Time	For	London	16Km2

Area	With	Variable	Reachability	Distance

KD

Dijkstra's

Linear		(KD)

Expon.		(Dijkstra's)

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 46	

	
	
Figure	31	-	Reachability	Graph	Computation	Time	For	London	32km2	Area	With	Variable	Reachability	

Distance	

Figure	30	and	Figure	31	both	show	the	same	relationship	between	the	two	algorithms	on	how	
they	scale	with	reachability.	The	approximation	method	is	the	same	speed	between	
reachability	distances	3km	and	4km	but	the	𝑂(𝑁@)	complexity	shows	beyond	these	
reachability	distances.	For	reachability	4.5km,	it	is	slightly	anomalous	but	the	R	squared	
value	is	still	close	to	1	so	this	deviation	is	not	too	great.		
	
Calculating	when	the	Approximation	method	is	faster:		
The	modified	Dijkstra’s	method	will	have	a	cut	off	where	it	becomes	slower.	In	Figure	31	the	
trend	line	for	the	modified	Dijkstra’s	method	starts	to	separate	from	the	trend	line	of	the	
approximation	method	at	around	4.5km	reachability	distance.	The	average	node	count	for	
4.5km	reachability	distance	was	found	to	be	4206	nodes.	Therefore,	reachability	graphs	
bigger	than	this	size,	the	approximation	method	becomes	more	efficient.	
	
In	summary,	it	shows	that	the	modified	Dijkstra’s	method	starts	to	slow	down	and	show	its	
𝑂(𝑁@)	with	a	large	enough	reachability	distance.	This	comes	down	to	breadth	first	search	
not	being	able	to	scale	well	when	the	number	of	nodes	it	needs	to	traverse	becomes	too	
large.	Even	though	the	approximation	method	is	faster	after	a	certain	reachability	distance,	
it	has	some	accuracy	limitations.	Making	the	approximation	more	accurate	would	slow	
down	the	algorithm	by	adding	extra	steps	of	validation.	However,	if	the	reachability	distance	
was	required	to	be	much	larger	than	currently	being	used,	then	the	modified	Dijkstra’s	
method	would	be	unfeasible	to	use	due	to	the	size	of	the	list	of	active	nodes	in	its	search.	
	
	In	Figure	31,	if	you	extrapolate	the	trend	line	for	the	modified	Dijkstra’s	method	to	a	
reachability	distance	of	8km	then	the	time	to	compute	the	reachability	graph	would	become	

R²	=	0.99868

R²	=	0.99253

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1000 2000 3000 4000 5000 6000 7000 8000

Ti
m
e	
(s
)

Reachability	Distance	(m)

Reachability	Graph	Computation	Time	For	London	32Km2 Area	
With	Variable	Reachability	Distance

KD

Dijkstra's

Linear		(KD)

Expon.		(Dijkstra's)

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 47	

excessive.	Further	to	adding	a	more	accurate	approximation,	if	the	trade-off	in	getting	a	
very	good	approximation	equalled	to	a	constant	1000	seconds	being	added	to	the	time	for	
all	reachability	distances,	the	approximation	method	would	still	become	more	efficient	at	
around	5.5km	reachability	distance.			
	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 48	

5 –	Future	Work	
The	scope	of	the	project	can	be	increased	in	many	ways,	taking	into	consideration	other	
factors	that	impact	the	computation	of	reachability	or	further	improve	the	accuracy	of	
reachability.	The	factors	that	influence	the	accuracy	of	the	reachability	computed	can	be	
static	and	dynamic	data.		
	
To	improve	the	accuracy	of	the	reachability	computed,	dynamic	data	could	be	taken	into	
consideration	such	as	traffic.	Traffic	is	time	dependent	on	street	networks,	this	means	that	a	
reachability	graph	could	be	calculated	for	different	hours	of	the	day	and	different	days	of	
the	week.	Considering	traffic	is	already	a	factor	using	in	efficient	route	planning	[2]	for	bus	
routes	as	the	timetable	for	busses	changes	throughout	the	day	which	is	important	when	
users	need	to	plan	their	routes	on	bus	times.	This	would	change	reachability	from	being	a	
distance	to	a	distance	that	can	be	travelled	in	a	set	time.	Considering	traffic	is	an	important	
factor	because	electric	vehicles	will	lose	charge	even	when	stationary,	they	will	not	
consume	a	consistent	amount	of	power	when	repeatedly	starting	and	stopping	in	congested	
traffic.	This	style	of	driving	is	not	efficient	and	would	decrease	the	range	a	vehicle	could	
drive.		
	
Static	data	can	also	be	considered,	an	example	of	this	would	be	to	consider	height	maps	of	a	
street	network	to	determine	the	slopes	of	roads.	Electric	vehicles	can	optimise	their	use	of	
battery	charge	by	using	their	reduced	power	consumption	when	driving	downhill.	There	is	
also	the	possibility	to	use	the	energy	gained	from	acceleration	downhill	to	charge	the	
battery.	However,	this	also	works	the	other	way	where	driving	uphill	requires	more	energy.	
Another	example	of	static	data	could	include	no	build	areas	or	area	that	require	less	
charging	stations	due	to	factors	such	as	urban	areas	that	do	not	have	space	or	cannot	have	
stations	built,	affluent	areas	that	would	not	want	charging	stations	due	to	traffic	increase	or	
potential	negative	attention	and	Greenfield	sites	that	should	not	be	built	upon.	Further	to	
Greenfield	sites,	Brownfield	sites	should	be	considered	more	as	reusing	already	built	upon	
land	would	conserve	Greenfield	areas	and	even	reduce	build	costs.	
	
In	section	4.1,	the	graphs	illustrating	the	dominating	sets	for	the	approximation	method	
show	that	the	algorithm	might	not	work	well	at	the	border	of	the	street	network.	The	
algorithm	seemed	to	not	have	a	problem	in	computing	reachability	in	the	middle	of	the	
graph.	A	potential	fix	for	this	problem	would	be	to	use	a	larger	graph	but	only	compute	the	
reachability	for	the	nodes	in	the	centre,	where	the	Euclidian	distance	of	the	node	to	the	
border	was	equal	to	or	more	than	the	reachability	distance.	
	
To	improve	the	computation	of	the	reachability	graph,	there	are	many	ways	to	approach	the	
speed	of	computation.	The	main	issue	in	this	project	is	an	inefficient	data	structure.	This	
problem	also	suggests	that	the	language	Python	might	not	be	a	suitable	language	for	
computing	reachability	graphs	when	the	scale	becomes	large.	Some	of	the	algorithms	
implemented	by	libraries	used	are	coded	in	C	with	a	Python	wrapper	which	I	access.	Taking	
the	same	approach	of	implementing	the	data	structure	and	algorithm	used	in	C,	but	using	
Python	to	handle	the	simple	tasks	could	greatly	improve	runtime.	An	example	of	where	C	
would	provide	improvements	would	be	in	using	binary	arrays	for	all	data,	which	would	
utilise	the	smallest	amount	of	memory	space.	
	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 49	

Another	technique	that	could	be	used	to	improve	the	speed	of	computing	the	reachability	
graphs	would	be	to	use	a	distributed	system	to	parallelise	the	computation.	The	
computation	of	the	reachability	graph	for	each	node	is	independent	of	other	nodes,	so	
there	is	no	need	for	complex	parallelisation	techniques.		
	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 50	

6 –	Conclusion	
In	this	project,	reachability	graphs	have	been	computed	for	two	different	geographically	
located	street	networks	using	two	different	algorithms	to	suggest	suitable	locations	for	
electric	vehicle	public	charging	stations.		
	
A	modification	to	Dijkstra’s	algorithm	was	used	initially	to	compute	the	reachability	graphs	
and	it	was	found	to	be	accurate	but	did	not	scale	well	with	network	size,	resulting	in	slow	
computing	time.	A	solution	was	developed	using	approximation	methods,	creating	
algorithms	which	assisted	the	computation	of	reachability	that	scale	better	with	network	
size.	The	solution	involved	the	KD	Tree	data	structure	to	quickly	find	nodes	in	2-dimensional	
space.	It	also	involved	a	greedy	heuristic	path	finding	algorithm	to	be	used	with	the	output	
of	the	KD	Tree	to	determine	an	approximate	area	for	the	reachability	graph.	The	greedy	
algorithm	was	used	to	keep	the	complexity	of	the	problem	in	linear	time	to	allow	the	
solution	to	scale	better	with	network	size.		
	
This	solution	was	successful	for	the	following	situations:	
	

• When	the	reachability	distance	covers	many	nodes	
• A	highly	connected	street	network	is	used	
• Large	graphs	(large	street	network)	
• When	a	lower	accuracy	of	results	is	acceptable	e.g.	start	of	a	project	which	only	

needs	a	general	reachability	and	dominating	set	(feasibility)	
	
However,	the	solution	was	less	successful	in	the	following	situations:	
	

• Small	graph	(small	street	network)	
• Lots	of	small	subgraphs	with	low	connectivity	
• Accuracy	of	reachability	is	a	necessity	

	
One	major	issue	was	the	data	structure	implementation	of	a	library	used,	which	involved	a	
very	large	and	inefficient	use	of	computer	memory.	It	was	necessary	to	test	the	algorithms	
without	saving	the	reachability	graphs.	When	the	reachability	graphs	were	saved,	the	
algorithms	ran	considerably	slower	due	to	memory	inefficiency.	
	
	
	 	

C1416263	–	Cardiff	University	–	School	of	Computer	Science	and	Informatics	
	

	 51	

Bibliography	
	
[1]		 Car	Buyer,	"Best	electric	cars,"	[Online].	Available:	

http://www.carbuyer.co.uk/reviews/recommended/best-electric-cars.	
[2]		 B.	Tesfaye	and	N.	Augsten,	"Reachability	Queries	in	Public	Transport	Networks,"	

[Online].	Available:	http://ceur-ws.org/Vol-1594/paper20.pdf.	[Accessed	19	4	2017].	
[3]		 University	of	Maryland,	"Graph	Definitions,"	[Online].	Available:	

https://www.csee.umbc.edu/portal/help/theory/graph_def.shtml.	
[4]		 Grinnel	College,	"Outline	of	Class	49:	Reachability	and	Shortest	Path	Algorithms,"	

[Online].	Available:	
http://www.math.grin.edu/~rebelsky/Courses/152/98S/Outlines/outline.49.html.	

[5]		 University	of	Lugano,	"Network	Algorithms	(Spring	2011),"	[Online].	Available:	
http://www.inf.usi.ch/faculty/kuhn/teaching/netalg/lectures/chapter7.pdf.	[Accessed	
25	01	2017].	

[6]		 Geographic	Information	Technology	Training	Alliance,	"Dijkstra	Algorithm:	Short	terms	
and	Pseudocode,"	[Online].	Available:	
http://www.gitta.info/Accessibiliti/en/html/Dijkstra_learningObject1.html.	

[7]		 A.	Patel,	"Heuristics,"	[Online].	Available:	
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html.	

[8]		 Utrecht	University,	"Geometric	Algorithms,"	[Online].	Available:	
http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf.	

[9]		 Clemson	University,	"Lecture	13:	Nearest	Neighbour	Search,"	[Online].	Available:	
http://andrewd.ces.clemson.edu/courses/cpsc805/references/nearest_search.pdf.	

[10]		V.	Lavrenko,	"kNN.15	K-d	tree	algorithm,"	[Online].	Available:	
https://www.youtube.com/watch?v=Y4ZgLlDfKDg.	

[11]		OpenStreetMaps,	"Projections/Spatial	reference	systems,"	[Online].	Available:	
http://openstreetmapdata.com/info/projections.	

[12]		Spatial	Reference,	"EPSG:27700,"	[Online].	Available:	
http://spatialreference.org/ref/epsg/osgb-1936-british-national-grid/.	

[13]		Geokov,	"Map	Projections	-	types	and	distortion	patterns,"	[Online].	Available:	
http://geokov.com/education/map-projection.aspx.	

[14]		University	of	Wisconsin	Madison,	"Complexity	and	Big	O	Notation,"	[Online].	Available:	
http://pages.cs.wisc.edu/~vernon/cs367/notes/3.COMPLEXITY.html.	

[15]		University	of	California	Davis,	"On-Line	Geometric	Modeling	Notes,"	[Online].	
Available:	http://graphics.cs.ucdavis.edu/education/CAGDNotes/Chaikins-
Algorithm.pdf.	

[16]		H.	Bast,	"Efficient	Route	Planning,"	[Online].	Available:	http://ad-wiki.informatik.uni-
freiburg.de/teaching/EfficientRoutePlanningSS2012.	[Accessed	10	2	2017].	

	
	

	
	

	

