
C1416263	

	

INITIAL	PLAN	–	COMPUTING	REACHABILITY	GRAPH	
Winston	Ellis	

Supervisor:	Padraig	Corcoran	

PROJECT	DESCRIPTION	
As	electric	vehicles	become	more	affordable,	they	will	one	day	be	as	popular	as	fossil	fuel	powered	
vehicles	on	the	road.	Petrol	stations	already	exist	but	there	is	no	real	widespread	equivalent	for	
electric	vehicles	yet.	One	shortcoming	of	electric	vehicles	is	that	one	battery	charge	will	not	last	as	
long	as	a	full	tank	of	petrol,	therefore	charging	stations	need	to	be	reachable	from	more	locations	so	
found	more	often	on	road	networks.	

Therefore	the	placement	of	the	charging	stations	needs	to	be	frequent	but	have	some	intelligent	
placement	in	order	to	lower	the	number	of	stations	due	to	cost	of	construction,	impractical	locations	
and	planning	permission	implications	etc.	The	reachability	of	these	stations	from	any	location	is	
important	so	that	an	individual	will	always	have	a	station	to	visit	for	their	long	journey	trip	planning	
purposes	or	in	case	of	a	battery	emergency.	

GOAL	OF	PROJECT	
The	aim	of	the	project	is	to	process	openly	available	street	map	data	to	create	a	highly	connected	
graph	network,	representing	which	road	intersections	and	dead	ends	can	reach	other	road	
intersections	and	dead	ends	of	up	to	3Km	using	a	modified	Dijkstra’s	algorithm.	This	graph,	which	is	
the	reachability	graph	will	then	have	a	greedy	algorithm	applied	which	will	select	the	nodes	with	
degrees	of	highest	connectivity,	that	will	be	used	to	suggest	the	optimal	locations	for	electric	charging	
stations.	I	will	cover	each	step	and	processes	to	be	used	below	in	more	detail.	

DATA	EXTRACTION	
The	data	that	I	need	is	provided	by	the	Open	Street	Maps,	this	is	an	openly	available	resource	of	
detailed	map	data[1].		The	only	pieces	of	data	from	the	street	network	data	that	I	need	are	the	
intersections,	dead	ends	and	the	length	of	the	streets.	This	process	will	be	handled	by	a	python	library	
called	OSMnx,	which	can	pull	the	data	from	the	OSM	servers	and	strip	the	unnecessary	attributes	that	
I	don’t	need	and	save	in	a	graphML	format	which	is	widely	used	for	storing	graph	representations.	
OSMnx	is	also	useful	for	visualising	the	graphs	that	are	produced	from	the	OSM	database	and	the	
reachability	graphs	that	I	will	produce	for	testing.		

COMPUTING	REACHABILITY	GRAPH	
To	compute	the	reachability	graph,	I	will	need	to	modify	Dijkstras	algorithm,	which	is	similar	to	the	
uniform	cost	search	algorithm	where	it	will	visit	neighbouring	nodes	updating	the	path	cost	to	each	
node	depending	on	the	edge	weights.	For	example,	after	assigning	each	unvisited	node	a	cost	of	
positive	infinity,	It	will	visit	the	initial	node	A	and	look	at	its	neighbours	to	find	the	distance	from	A	to	
each	neighbouring	node	by	edge	weighting.	It	will	update	each	nodes	distance	value	usually	from	



C1416263	

	

positive	infinity	and	pick	the	node	with	the	shortest	distance	from	A	to	travel	to	next.	Some	nodes	will	
be	neighbours	to	multiple	nodes	so	may	have	its	value	lowered	further,	hence	the	update	being	
usually	from	positive	infinity.	As	each	node	is	visited,	it	is	removed	from	the	unvisited	set	and	will	
never	be	visited	again.	This	will	continue	until	the	goal	node	is	found	or	until	all	nodes	are	visited,	
depending	on	how	you	want	to	use	the	algorithm.	[2]	

For	the	purposes	of	this	project,	I	do	not	have	one	goal	node.	Instead	I	theoretically	have	many	goal	
nodes,	every	node	that	is	reachable	from	the	initial	node	up	to	the	given	distance	threshold	is	a	goal	
node.	That	means	as	the	algorithm	goes	through	all	the	unvisited	nodes,	it	adds	each	one	to	a	set	of	
reachable	nodes	which	can	all	be	called	goal	nodes.	The	algorithm	should	then	stop	when	all	the	
unvisited	nodes	are	above	the	given	distance	threshold.	The	algorithm	does	not	need	to	explore	the	
rest	of	the	nodes	as	they	will	not	be	reachable,	unlike	the	traditional	Dijkstra’s	algorithm.	

The	set	of	reachable	nodes	can	then	be	added	to	the	original	graph	as	new	edges	from	the	initial	
node	to	all	the	reachable	nodes.	This	must	then	be	calculated	for	all	the	nodes	in	the	graph	to	
compute	the	full	reachability	graph.	

COMPUTING	OPTIMAL	CHARGING	STATION	LOCATIONS	
Once	the	reachability	graph	has	been	computed,	the	nodes	with	the	highest	degree	of	connectivity	
are	said	to	be	the	most	reachable	from	other	nodes.	These	are	the	most	important	nodes	as	they	are	
more	likely	to	be	a	good	spot	for	a	charging	station.	However	just	choosing	the	most	connected	nodes	
will	not	give	a	satisfactory	solution	as	they	aren’t	likely	to	be	distributed	evenly	across	a	street	
network.		

This	problem	is	solved	by	finding	the	dominating	set	of	a	graph.	This	is	simply	stating	that	all	nodes	
are	either	part	of	the	subset	of	this	dominating	subset	or	is	a	neighbour	to	a	node	in	this	subset[3].	
That	means	that	no	nodes	can	be	a	neighbour	of	a	neighbour	or	even	more	disconnected	than	that.	
(Definition	7.1	in	reference	3).	

This	problem	is	considered	to	be	an	NP-hard,	due	to	the	large	amounts	of	possible	combinations	of	
nodes	in	a	dominating	set	growing	exponentially	as	you	add	more	nodes	and	edges	to	the	original	
graph.	To	solve	this	kind	of	problem,	you	need	approximation	algorithms.	The	definitive	algorithm	to	
be	used	will	still	be	researched	during	the	project	in	order	to	find	which	is	the	most	suitable	for	the	
type	of	graph	that	I	produce.	

Once	I	have	a	dominating	set	calculated,	I	can	then	suggest	the	optimal	location	for	charging	stations	
for	a	given	street	network.	

TIMELINE	
For	the	12	weeks	that	I	have	been	given	to	complete	this	project,	I	have	a	rough	timeline	of	
milestones	that	I	wish	to	achieve.	This	has	been	planned	out	to	give	myself	reasonable	time	to	
research	the	tools	that	I	will	be	using,	to	then	test	out	implementations	on	a	simplified	task	and	
reduced	data	sets,	to	finally	implementing	the	functional	implementation	on	the	real	data	set.	
Depending	on	the	success	of	the	functional	implementation,	I	will	hopefully	even	have	time	to	
optimise	the	implementation.	Due	to	the	nature	of	this	project	and	the	large	number	of	individual	



C1416263	

	

pieces	of	data	that	must	be	processed	in	a	worthwhile	street	network	size,	optimisations	will	go	a	
long	way	in	reducing	the	times	for	testing	on	the	full	size	street	networks.	

I	will	give	myself	a	buffer	at	the	end	of	the	implementation	timeline	in	order	to	be	used	as	extra	time	
to	complete	work	that	I	have	struggled	with	or	hopefully	to	implement	further	ideas	and	functionality	
to	the	project.	I	have	listed	the	potential	further	work	that	I	have	thought	of	so	far	at	the	end	of	the	
plan.	

WORK	PLAN	
Week	1	–	23rd	Jan	

• Complete	Initial	Plan	
• Consider	potential	modifications	to	Dijkstras	algorithm	

Week	2	–	30th	Jan	

• Obtain	Open	Street	Map	data	
• Familiarise	with	OSMnx	library	
• Use	OSMnx	library	to	process	data	and	to	understand	the	data	structure	

o Think	about	ways	I	can	modify	the	data	structure	to	ease	use	and	visualisation	for	
later	in	the	project	

• Supervisor	meeting	to	discuss	libraries	and	research	start	points	

Week	3	–	6th	Feb	

• Familiarise	with	graph	handling	libraries	in	python,	choose	suitable	library	
• Research	Dijkstras	algorithm	
• Formalise	suitable	modifications	to	fit	project	criteria	
• Document	findings	

Week	4	–	13th	Feb	

• Research	into	dominating	sets	and	respective	algorithms	
• Small	scale	testing	on	proposed	algorithm	using	test	data	
• Familiarise	with	using	more	complex	graphs	with	code	
• Supervisor	meeting	to	discuss	if	research	is	going	in	right	direction	

Week	5	–	20th	Feb	

• Small	scale	testing	on	simplified	Dijkstra’s	problem	with	test	data	
• Implement	fully	modified	algorithm	using	proposed	changes	on	full	dataset	to	produce	

reachability	graph	
• Document	work	

Week	6	–	27th	Feb	

• Find	suitable	way	to	visualise	the	reachability	graph	



C1416263	

	

• Start	creating	program	to	contain	all	the	separate	modules	of	project	into	one	program	for	
Viva	demo	

• Supervisor	meeting	to	discuss	progress	and	visualisation	

Week	7	–	6th	March	

• Implement	full	scale	algorithm	on	reachability	graph	to	produce	dominating	set	of	nodes	to	
represent	electric	charging	stations	

• Document	work	

Week	8	–	13th	March	

• Find	suitable	way	to	visualise	the	dominating	set	graph	
• Merge	algorithm	and	visualisation	into	the	single	program	

Week	9	–	20th	March	

• Assess	if	the	data	output	is	suitable	
• Supervisor	Meeting	to	discuss	validity	of	results	
• Start	analysis	and	report	writing	

Week	10	–	27th	March	

• Focus	on	report	writing		
• Some	attention	on	making	sure	all	code	implementation	works	under	the	single	encapsulating	

program	if	needed	

Week	11	–	3rd	April	

• Supervisor	meeting	to	discuss	direction	of	report	
• Work	on	report	
• Assess	if	there	is	time	to	implement	further	work	

Easter	Break	10th	April	–	30th	April	

• Buffer	period	used	to	either	catch	up,	optimise	implementations	or	start	adding	extra	
functionality	

• Work	on	report	

Week	12	–	1st	May	

• Finalise	report	for	submission	

	

	 	



C1416263	

	

REFERENCES	
1. Open	Street	Map	data	info	https://www.openstreetmap.org/about	
2. Dijkstras	algorithm	basis	https://www.cs.auckland.ac.nz/software/AlgAnim/dijkstra.html	
3. Dominating	set	http://www.inf.usi.ch/faculty/kuhn/teaching/netalg/lectures/chapter7.pdf	

	


