

Final Report
A System to Match Modern Language Partners

Michael Jarvis
Supervisor: Helen Phillips

Moderator: George Theodorakopoulos

Module Code: CM3203
Module Title: One Semester Individual Project

Module Credits: 40

Michael Jarvis C1433936

2

Abstract

The Cardiff University School of Modern Languages gives students the chance to learn a language for

free through the Languages for all programme. As part of that programme, students can register

their interest in meeting up with other people learning languages in their free time, so that they can

practice the languages they’re learning outside the classroom together.

The school tries to find suitable partners for people who register their interest in the programme. At

the moment, the process of finding suitable partners takes a very long time and is all done manually.

The aim of this project is to build a system that automates or assists in this matching process.

Michael Jarvis C1433936

3

Acknowledgements

A big thank you to everyone who supported me whilst I worked on this project. Special thanks to

Helen Philips for her guidance and advice throughout. Also; a special thank you to Vicky and Mark,

for patiently answering all of my questions.

Michael Jarvis C1433936

4

Table of Contents

1. Introduction ... 5

2. Background .. 7

3. Approach .. 8

 3.1 System Specification .. 8

 3.1.1 System Requirements ... 8

 3.1.2 Use Cases ...10

 3.2 Design ..11

 3.2.1 Design decisions ..11

 3.2.2 System architecture ..15

4. Implementation ...19

5. Results and Evaluation..29

 5.1 Test cases ..29

 5.2 User testing...30

 5.3 Further testing ..31

 5.4 Evaluation of my system..32

6. Future Work ...34

7. Conclusions ..36

8. Reflection on Learning ..38

9. Appendices ...39

10. References ... 51

Michael Jarvis C1433936

5

1. Introduction

The aim of the project that I’m working on is to develop a system to aid the Cardiff

University School of Modern Languages staff in picking students for participation in the

Languages Exchange programme. The system is primarily designed for one member of

staff who is tasked with matching partners for the language exchange programme, but
will also hopefully benefit students who wish to participate in the programme by

helping them be picked quicker and therefore be able to participate in the programme

sooner.

In am tasked with creating a system that can take the information provided by students

in an online survey and match them to other people who are interested in taking part in

the Language Exchange programme. I hope to create a system that can take the

information that the students provide and use it to match students with suitable
partners in a fast and automated manner. My main goal is to save the staff within the

school time and effort by replacing the current manual process that they have in place

at the moment.

My project scope covers the handling of the survey answers stored in a spreadsheet and

processing them in order to find suitable partners for people who have registered their

interest in the programme. My system also needs to output the results of the matching

process in a format that’s useful and convenient for the staff.

Michael Jarvis C1433936

6

2. Background

The Cardiff University School of Modern Languages gives all students studying at Cardiff

University the chance to learn a language in the school, free of charge, as part of the

Languages for All programme. This programme gives students who want to learn to

speak another language the chance to attend either weekly classes in the school or to
attend online classes. These classes are supplemented by assessments which give

students the chance to gain certification to prove their proficiency in the language

they’re learning. This programme is beneficial both to foreign students who want to

improve their English or to students who are looking to pick up a second (Or third)

language.

Alongside this programme, the school also offers something called the Language

Exchange programme. This is designed to be used by students who are already taking
part in the Languages for All programme, but it’s also possible to take part in the

Language Exchange programme without doing Languages for All. The idea of the

Language Exchange programme is that people are matched with other students who are
learning a language, and they can meet up in their spare time outside of the weekly

lessons to practice the languages they are learning by chatting with each other. For

example; if a French student wanted to improve their English, they could meet up with

an English student who is learning French. Both students can practice the language

they’re learning with someone who is fluent, and they would improve faster as a result.

The problem is that every time sign-ups for Language Exchange programme are made

available, between 400-500 students register their interest through an online survey. A
single member of staff is then tasked with looking through the responses of every single

student and manually matching them with other students who registered their interest.

The matching process is based on a number of criteria including:

• The languages that the students want to practice

• The languages the students can already speak (and thus offer in exchange)

• The proficiency of the students in the languages they want to practice AND the

languages they can speak

• The Gender of the students

• The preference of Gender the students would like to be matched with

• How many partners each student wants to be matched up with

This is an extremely time consuming process for the member of staff to carry out. It’s a

huge amount of work every time sign-ups open, and it can take a long time for students
to be assigned a partner. My aim is to create a system to automate this matching

process, in the hope that it will save the member of staff a huge amount of time, and also
help the students to start meeting up with their partners sooner. I also hope to

introduce additional matching criteria to the matching process in order to choose better

matches for the students.

Michael Jarvis C1433936

7

The various proficiency levels within the Languages for All programme are important
because people who are more proficient at a language that they’re learning will benefit

more from meeting up with a partner to practice the language, so they’re given priority
in the Language Exchange programme. The Languages for All programme covers

proficiency levels from complete beginners all the way up to people who are essentially
fluent [1]. The priority process for choosing students for the Language Exchange

programme is as follows:

First priority: Students who are on the Languages for All programme and taking courses
at a proficiency of Elementary, Intermediate, Higher Intermediate, Advanced, Further

Advanced or Post Further Advanced.

Second priority: Students who are on the Languages for All programme and taking

Beginners part 2 courses.

Third priority: Students on the Languages for All programme taking Beginners part 1

courses.

Fourth priority: Students who are not on the Languages for All programme.

The system I’m building will follow the same priority rules when it comes to choosing

students for the Languages Exchange programme. It’s important that the system I’m

building takes into account all of the criteria that are currently used to choose partners
for people, otherwise the pairings the system chooses may not be suitable, and the

system won’t be of any use.

Due to the problem being so specific, there aren’t any existing software solutions that
would be applicable here. However; I can take inspiration from other systems that

generate matches based on criteria such as dating sites. Though more complex, sites
that try and match people together based on the information they provide will have had

to solve similar problems that I will be facing as I design my system.

Michael Jarvis C1433936

8

3. Approach

I approached my project by treating the member of staff that I’m working with to

develop the system as a real client. The requirements of the system were based on the

information that she gave me, and any evaluation carried out by the client were taken

into account when I made changes for future iterations of the system.

I utilised the waterfall approach in my project, but I made sure that I asked for feedback

from my client at each stage of the process, as I didn’t want to make any assumptions or

decisions about the functionality of the system without consulting them. This should
alleviate the usual problems with the waterfall approach such as only having input from

the user at the end of the development process, thus making it difficult to implement

any changes that they want.

Throughout the development process I built multiple prototypes of my system. I did this
so that I could test any ideas I had about the system and see if I could use the

technologies I planned to build the system with the way I intended to. Whilst designing
my system architecture I made sure to build simplified prototype versions of the

various modules that I would be including in my design. I knew that I needed to check

that I would be able to handle the supplied data correctly and ensure that the student

data could be transitioned between the various stages of my system architecture
correctly. Building prototypes was also a good way of showing the client the vision I had

for the system as I was building it. I wanted to make sure that the system would be

designed in a way that would make it simple to use and have a useful outcome for the

client.

3.1 System Specification

3.1.1 System Requirements

Having initially met with the client before the start of my project, I did some research on

both potential solutions that I could make use of and the language programmes that the
school offers. Having met with the client for a few meetings and after asking them

various questions about the Languages for All programme and the Language Exchange
programme, I have managed to refine the requirements for the system, and have settled

on the following:

Must have:

• Users must be able to submit student data collected from the online survey to the
system.

• Users should be able to use the system to process the uploaded data in order to

find matches for the students.

• System must display the matches it has made so that the user can look over the
matches to see if they are appropriate.

• System must be able to match people to more than one partner, if a person
wishes to have more than one a partner.

Michael Jarvis C1433936

9

• The system must automate or at least heavily assist in speeding up the current
matching process.

• System must prioritise students based on their Languages for All level.

Should have:

• System should offer matches for students who are not on the languages for all

programme, but only as a last priority.

Could have:

• System should allow for additional matching criteria to be implemented into the
decision process in order to provide better matches for students on the

programme.

The system that I’m creating has a few important rules that it must follow when picking

partners for students on the language exchange programme. The following core criteria

should be met for every match chosen by the system:

• In a given pairing of students, each student must be able to speak the language
that the other student wants to practice to an advanced or fluent level.

• In each pairing, the gender of each student must be in line with the gender
preference that the other student gave when they signed up to the programme.

Students can request a male or female partner, or they could not give a
preference and be matched with either.

• A student can specify how many partners they are interested in having, up to a

maximum of three. The system should try and find them the number of partners

they want, but cannot match students with more partners than they requested.

There are a number of important constraints that need to be taken into account when I

am developing the solution to this problem. These include:

• The system must run on the computer systems currently in the school at no

additional cost.

• The software must also run without any maintenance or updates

• No technical expertise should be required to use the system.

During one of my meetings with the client, she mentioned that she wanted some
additional features which she hadn’t initially asked for at the start of the project. She

informed me that in order to contact the students on the programme, she would create
a mail merge in Microsoft Office. She informed me that in order to use the matches my

system had chosen; she would need the information to be laid out in a format that was

compatible with the mail merge tools in Office. This wasn’t something I’d planned for,

but I knew I would be able to add these features on to the system. I took on board what

she said and added these additional requirements to my system specification:

Michael Jarvis C1433936

10

• The system must output match data into a sheet that is format compatible with
the mail merge tools in Microsoft Office.

• The system must output the data of students without matches into a sheet that

can be used to create a mail merge in Microsoft Office.

3.1.2 Use Cases

I have outlined some use cases that the system will be designed for. These use cases will

be used later on during testing to ensure that the system is functioning correctly.

Use Case ID: 1
Use Case Name Upload student details to system

Actor(s) Admin staff

Description The user is presented with a page asking them to upload the information
about the students looking for partners to the site. This information will be
processed and stored on the system.

Pre-conditions User must have accessed the site

Flow of Events 1. The user selects “Browse for file” on the webpage.
2. User finds the file containing the student data and selects it.
3. User presses the “upload file” button.
4. The file is uploaded to the system and the data in the file is imported into
the system.

Post-conditions Information about students is now stored, ready for retrieval during the
matching process.

Alternative Flow User does not have the file in a valid format
The system will not be able to process the file. The user information will not
be stored and the system will display an error message explaining that the
file needs to be in a suitable format.

Use Case ID: 2
Use Case Name Find matches for students

Actor(s) Admin staff

Description The user is going to try and find matches for the students who have signed
up for the language exchange program.

Pre-conditions User must have accessed the site and must have uploaded the student
information so that the system can store the student data.

Flow of Events 1. User will select the “find matches” button.
2. System will select students and try to find valid matches for them.

Post-conditions Students will be matched with one or more partners and the results of the
matches will be stored on the system.

Alternative Flow Student information has not been uploaded to the system
There will be no students to match and the system will show an error
message explaining that the user needs to upload the student data first.

Use Case ID: 3
Use Case Name Download matches from system

Actor(s) Admin staff

Michael Jarvis C1433936

11

Description The user is going to download the file containing the matches for the
students so that the matches can be stored on the user’s machine.

Pre-conditions The user must have uploaded the data about the students to the site and
then gone through the system’s matching process so that all the matches
are on the system.

Flow of Events 1. User will press the “find matches” button.
2. A file will be downloaded which shows which students are matched
together, along with some basic information about the students such as
email address.

Post-conditions The matches that the system chooses will be saved in a spreadsheet for the
user to refer to at a later date.

Alternative Flow Matches have not yet been performed
The system will give the user a message saying there are no matches to save
and the user must upload student data and perform the matches.

The system that I am building should greatly increase the speed at which the staff

within the school are able to carry out the matching process for the students on the
Language Exchange programme. My main aim is to save the staff time and help the

students by giving them partners sooner.

3.2 Design

3.2.1 Design decisions

Having done some initial research on the subject, I decided that a database-based system

would be best suited to the problems that I am trying to solve. The nature of the data that

I’m dealing with means that Structured Query Language (SQL) would be best suited for

comparing and sorting the student data that I’m dealing with in an effective an efficient

manner. As a result of this realisation; I decided to develop a web-based system.

I decided to create a simple user interface for my system using HTML and CSS, as this

was a fast and effective way of creating the visual functionality that my system needs
without having to write my own in depth GUI code or build by own interface from

scratch using a less defined approach. Using these languages also means that my
interface is extremely extensible and I would be able to alter it easily if I wanted to

change how the user interacts with the system. At the start of my project and before I
started working on any prototypes, I created some mock up designs of how I anticipated

my system would look, these designs are available under appendix 1.

 The final interface of the system was actually a really stripped down version of the
initial designs I came up with, mainly due to the fact that I deviated from the original

system design in terms of how much automation I wanted the system to have.
Originally, I intended for the system to simply suggest suitable matches, and for the user

to actually select the ones they thought would be best. After carrying out extensive
testing using past student data I realised that, in most situations, the suggestions chosen

were equally suitable, based on the core matching criteria that I mentioned in my
system specification. The only differences between suggestions were the free text fields

Michael Jarvis C1433936

12

where students could say a bit about themselves. I believed that the final matches would
not be much better as a result of the client having to pick out the best suggestions

manually from the system, so I made the system pick automatically instead. There were

two significant outcomes that came about because of this change:

1. The amount of human interaction with the system was significantly decreased,

thus rendering the “main menu” and “matching page” designs obsolete, along
with any functionality those pages would have provided.

2. The matching process is entirely automated once the user has uploaded the

student data. This saves the client a huge amount of time.

I also came up with a “Stats page” design. I originally intended to have a page similar to

this (perhaps with more details) displayed at some point in the matching process. I
instead decided to have the stats displayed in an output file that’s given to the user
along with the match data. I chose to do this because of the approach I ended up taking

towards persistent data storage, which I will talk about in more detail in the

implementation section of my report. The final version of my system interface was

based on the “upload page” and “help page” designs showed in my appendix.

When coming up with my interface designs I made sure that I followed the usability

principles that should be considered when creating a human computer interface (HCI).

Below is a table showing how my system follows each of Nielsen’s ten usability

heuristics [6]:

Heuristic Why my interface is suitable

Visibility of system status

Instructions on the interface clearly show
when the system is waiting for user input.
During the matching process the web
browser being used will show that the
server is running the matching code.

Match between system and the real world

It’s clear how the user is meant to
interact with the system, and the output
of the system is a simple file download,
which the user can place wherever they
want.

User control and freedom

There is only one step in the matching
process, and the users can easily repeat
that step at any time with different data.

Consistency and standards

The interface is very consistent with
other web based interfaces, so everything
should seem familiar to the user.

Error prevention

The system checks the type of files being
submitted by the user, and gives a
warning if the file is not in the correct
format. This prevents errors during the
data processing and matching stages.

Recognition rather than recall

Options are clearly visible, and
instructions in the centre of the screen
tell the user exactly what to do. The user

Michael Jarvis C1433936

13

 is also instructed to click on the help icon
if they do not remember how to use the
system.

Flexibility and efficiency of use

Efficiency of use is very high. Human
interaction and effort is kept to an
absolute minimum. All the user has to do
is select a file and press a button. The rest
is automatic.

Aesthetic and minimalist design

Very minimal interface with no
unnecessary clutter. There are no visual
distractions and the colour scheme is
pleasing to the eye, with no contrasting
colours or page elements.

Help users recognize, diagnose, and
recover from errors

In the event that the users make a
mistake whilst interacting with the
system, the system will tell the user if the
file they’ve submitted is not compatible
with the system.

Help and documentation

The instructions in the centre of the
screen direct users towards the help
page. The help page describes the step-
by-step process of making sure that
student data is in the correct format,
before uploading the data to the system
so that matches can be found.

I decided that the code that I would be creating to process and handle the student data
submitted to my system would be written in PHP, a reasonably low-level server side

scripting language with extensive functionality and fantastic built in support for SQL.
The data that I’m working with will be well structured and fairly uniform, so it’s fairly

simple to convert the data that is uploaded to the system and insert it into a database in

a fast and efficient manner.

I arranged a meeting between me, the client and a member of the IT staff within the

languages school in order to discuss the environment that I would be deploying my

system into. Due to the constraints that were placed on my solution, I needed to know
what infrastructure the school already had in place so that I could come up with a way

not only to build the system to solve the problem, but also a way to actually deploy the

system for use in the real world. I expected the school to have a selection of hosting

slots available for school projects and sites, as the school of Computer Science does. This
was not the case. The head of IT within the school informed me that the school didn’t

actually have access to any servers or systems that they were in control of other than
the machines they used in the office. He informed me that any web hosting that the

school needed to do was done using either:

1. Squiz

2. Wordpress

Michael Jarvis C1433936

14

I wasn’t at all familiar with Squiz, so I asked him for more information about the
platform, as well as doing some of my own research, and found that Squiz is a content

management system designed to organise and store an organisations documents and
other digital information [2]. I have realised that Squiz is not the kind of hosting solution

I was looking for, as it’s actually a fairly closed off system designed for people who want
a way to create and host web content without needing much technical expertise or

understanding. Their site offers little to no information or support for third party

developers looking to work with Squiz, and it seems to be more of a marketing and

analytics tool than an actual hosting solution, so I knew it wasn’t suitable.

Wordpress is something that I’m much more familiar with, but in my experience it’s

mainly used, again, by people who are looking for a simple web hosting solution. I did

some research, and I’ve found various plugins that would allow me to insert PHP code
into a Wordpress site [3]. However; Wordpress is a content management system coded

in PHP, and not a proper hosting solution. I felt that I would often run into design

constraints because of this, and that a number of development options would not be

available to me due to the nature of the system. Wordpress has much better support for
developers than Squiz, but I believed it would still hinder the development process

significantly, so I didn’t think it’s suitable.

Looking at the options that were available to me and doing my own research led me to

the conclusion that I should use a new system to host the site. One where I wouldn’t be
restricted and I could have complete control over the solution, but would still be fast,

easy to work with, and not cost anything for the school. I decided to use Apache, a free
and open-source web server solution that also happens to be the most popular web

server software in the world [4]. By installing Apache on the client’s desktop machine, I

would have complete control over the web server, and there wouldn’t be any

restrictions on the development options that are available to me. This solution also cost
nothing, as it’s hosted on existing infrastructure, and the client can simply access the

system by navigating to the locally hosted server on the web browser of the machine

that the system is hosted on. Placing the server on one machine that is not accessible to

other machines on the network also means that any stored student data would be more

secure, though I didn’t intend to store any data long-term.

During my meeting with the member of IT staff within the school I also decided to take a

closer look at how the school was collecting the student data and discuss it with the
client. At the start of the project I was informed that the school made use of the Bristol

Online Survey (BOS) tool to collect student data. While speaking with the client she
informed me that she actually took the resulting data from the survey and re-arranged it
a significant amount, going through multiple spreadsheet arrangements before

arranging the data in an easy to read layout on a spreadsheet built from the initial data.

She would then read through the spreadsheet she’d created and look for matches

manually. I knew that any inconsistencies in the type or structure of the data that my
system was fed would cause severe problems, and that a long multi-stage reformatting

process like this carried out on hundreds of records would almost always introduce

some kind of human error.

Michael Jarvis C1433936

15

This wouldn’t have mattered when the matches are chosen by a human, but a computer
would not be able to predict these kind of data entry mistakes. When I raised this

concern, the member of IT staff within the school suggested migrating the survey to a
newer and more convenient platform. His suggestion was Microsoft Forms [5], a modern

and efficient survey platform that collects responses to surveys and automatically
generates an Excel spreadsheet that aggregates all the responses. This spreadsheet has

all the column headers corresponding to the questions that are asked, and the tool

supports a wide variety of response formats. This is an excellent alternative to use with

my system for a number of reasons. The main reason is that the data is stored in a
correctly formatted spreadsheet without the member of staff having to make any

arrangements or alterations to the data. This saves the client time and means that there

can be no human error introduced other than from the people filling out the survey.

Even the potential for human error from the people filling out the survey is reduced due
to the fact that questions previously answered with free text fields are now answered

using multiple choice tick boxes, so the responses are much more consistent. The user

will be able to feed the resulting spreadsheet to the system almost directly, making the

entire process almost completely automatic. Not only that, but Microsoft Forms is
included as part of an Office 365 Education subscription [5], so the constraint of having

no additional costs for the school is still adhered to. I have included screenshots of the

new survey in appendix 2.

3.2.2 System architecture

Having settled on a suitable method of deployment and after addressing the concerns I
had with how student data was collected, as well as choosing what technologies I would

be using in my system, I came up with an architectural design for my system.

There are three main types of module within my system. The first group of modules

handles the submission of the student data by the user and the processing required to

convert the data into a more suitable format for querying. These modules convert the

data from the submitted spreadsheet into a database. These are the processing modules.

The second type of module is responsible for performing queries upon the various

students in the database and finding suitable matches based on the criteria mentioned

in my specification. These are the matching modules.

The third type of module in my system is designed to find the matches generated by the

matching modules and collect any data related to matched students in order to generate

an output for the user to refer to when looking at the matches the system has chosen.

These are the output modules.

The database that my system uses contains two tables. The student table contains all the
data about the students on the Language exchange programme, and the matches table

contains pairs of database keys (DBIDs) corresponding to records in the student table.
These pairs of keys represent matches, and they’re generated during the matching

process. The database is an SQLite based database, meaning that a single database file is
stored on the server. This makes interaction with the database very simple, and I can

Michael Jarvis C1433936

16

make sure that all of the data being used is stored in one place. It’s also easy to move
databases in this format to other locations if I want to carry out any kind of backup

procedure.

As I previously mentioned, I decided to build my interface using HTML and CSS. I
wanted to ensure that the process of finding matches would be as automated as

possible, so I decided to avoid any kind of manual data entry to the system by having the
user upload a file containing student data directly to the website. In order to achieve

this, I created a minimal web-based interface with a file upload dialogue. Screenshots of
this interface are available in appendix 3 of this report. I then wrote a PHP script to

check the file that the user submits before uploading it to the web server directory. This

uploading script is the first processing module. By checking the file before uploading it, I

could ensure that the system would be trying to process a suitable file and that no

errors would be encountered.

After the file is initially uploaded to the server, the data needs to be converted into a

more suitable format. To do this I wrote a PHP script which converts the submitted

spreadsheet data and inserts it into the student database table. Records corresponding
to students are given a unique ID value so that that student data can be pulled from the

table easily. Once I’d done this initial processing, the data was stored in a database table

and ready to be queried so that matches could be found.

In order to match the students within the database I created a matching module that

would carry out SQL queries in order to narrow down the potential partners for people
on the programme. The query script that I created took into account all of the criteria

that needed to be considered when choosing suitable partners for people. As matches
are chosen student data is written to an output file in real time. This output file can be

used to examine the matches chosen by the system. As well as writing to an output file,
the query script also keeps a record of all the matches by creating a separate table and

logging every single chosen match. People within the match table are distinguishable by

their unique DBID (Database Identification) value that’s generated by the processing

modules. The query script also checks the matches table in real-time in order to make
sure that matches are not being duplicated. For example; if person A picks person B,

person B cannot pick person A. I needed to do this to ensure that the number of

partners for each person had were accurately tracked.

After the matching module had finished, the data needed to be presented to the user in

multiple formats, in addition to the output file that was already generated in the

matching module. I created a number of output modules to deal with this. The first

module that I created is a PHP script that generates a sheet that the client can use to

create a mail merge using Microsoft Office. This mail merge would allow the client to
email all of the students on the programme who a partner had been found for in one go,

thus saving the client a huge amount of time and effort. This was important because it
addressed one of the requirement changes mentioned in the specification section of this

report. The script that I wrote looked up the matches stored in the matches table that

was generated by the matching module, before pulling the data related to the ID’s in the

matching table from the student table. The data pulled from the student table was then

Michael Jarvis C1433936

17

output in rows to the mail merge sheet. The client can use this sheet to send blanket

emails to everyone on the programme who a partner had been found for.

The next output module that I created was similar to the previous one, in that it

generates a sheet for the client to use in a mail merge. The purpose of this second mail
merge module was to collect the details of everyone on the programme who a partner

had not been found for. This script searches the student table for people with zero
partners, and places matches into a spreadsheet. The client can use this spreadsheet to

create a mail merge and blanket email all the people on the programme who a partner

could not be found for.

The next output module I created was a small PHP script which generates some stats

about the student data and matching process that’s just taken place. A screenshot of this

stats file is available in appendix 4.

The final output module that I created was a PHP script that aggregates all of the output

files that are generated during the process and places all of them in a single zip file. The

user of the system is then prompted with a download dialogue asking them where they
want to save the zip file. The zip file contains the output file generated by the matches

script, the mail merge sheets generated by the mail merge scripts, and the stats file

generated by the stats script.

I have created a table to summarise all of the modules my system is comprised of:

Module group Module name Purpose of module

Processing modules
Upload Upload submitted file to server, check file is in correct

format.
Process Insert data from submitted file to database table.

Matching modules Query Find matches for students from submitted data.

Output modules

Mail merge Create mail merge sheet for students with matches.
No matches
merge

Create mail merge sheet of students with no matches.

Stats Generate stats file for supplied student data.
Zip Place all output files in zip and prompt user to

download.

I have also created a data flow diagram to illustrate the architecture of my system in

more detail, this is available under appendix 5.

The design that I’ve come up with suitably meets all of the requirements that I laid out
in my specification. The architecture I’ve created allows the user to easily upload

student data. This data is then processed in order to find matches, and these matches

are presented to the user in a variety of useful formats. The system supports finding

multiple partners for people on the programme, and the entire process is completely

automated. The additional requirements mentioned by the client are also satisfied, as

the system produces mail merge so that the client can send emails to students quickly

and easily.

Michael Jarvis C1433936

18

The design that I’ve come up with also adheres to all the constraints laid out in my
specification. The system runs on the existing school systems without any paid or

proprietary software. No maintenance or updates need to be carried out on the system,
unless there are changes to the Language Exchange programme itself (for example,

different proficiency levels being added). The system also requires absolutely no

technical expertise to use, the user simply uploads a file.

I think the design I’ve come up with strikes a good balance between simplicity and

utility. It’s easy to operate the system but the user is given a detailed output arranged in

a format that is genuinely useful to them.

Michael Jarvis C1433936

19

4. Implementation

The final version of my system is comprised of seven PHP scripts and one SQLite file

containing two tables (Students and matches). I have created an entity relationship

diagram to show the structure of my database. This diagram is available in appendix 6. I

originally came up with a design that was a flat file database, meaning that all of the
data in the database is in one table [7]. This is why the student table has so many

attributes. I intended to make use of a flat file design because I believed it would be

easier to filter the students for suitable matches if all of the student data was contained

in one table. I ended up having to use a relational design for my system due to the fact
that I needed a way to keep track of the matches that had been chosen, in order to make

sure that matches were not duplicated and so that I could generate the mail merge sheet
for students with partners. The matches table only contains two columns because each

column serves two purposes; it stores the DBID value of a student in a pairing and it
denotes whether the student was the one who matches were being searched for, or if

they were a match that was found. For example; if person 1 picks person 2, person 1
would appear in the FirstPerson column and person 2 in SecondPerson. If person 2

picked person 1 then it would be the other way around.

I gave a high-level description of my architectural design in the previous section of my

report, and in this section of my report I will be describing how these modules work in a
finer level of detail. I will be attempting to highlight how I handled the data at various

stages of the code, and why I made certain decisions in regards to the implementation
methods that I ended up using. The module summary table at the end of the previous

section may be of help if a reminder is needed of the overall architecture of the system.

The upload script is the first module that makes up the linear flow of my system

architecture. When I came up with my system design I knew that I wanted to keep user

interaction to an absolute minimum. The nature of the data collection method I used
(outlined in the previous section) meant that the data being supplied to my system will

be very consistent, both in its content and in its format. This makes handling the data
much simpler. I knew that any problems that could arise during the matching process

would almost always come from the human interaction with the system. In theory:
unless there are changes to how the data is collected, there should be no combination of

inputs or data from students that the system is not equipped to deal with (within

reason, I will talk about this further in the “Future Work” section of my report). My ideal

solution would have been to create a system where the user simply downloads the

spreadsheet of student data directly from the Microsoft Forms website and then
submits that spreadsheet to my system. My system would then find matches using that

data.

Unfortunately, the implementation I have created involves another extra step, in which

the user must open the spreadsheet containing the results of the survey and manually

re-save the file as a new CSV (Comma Separated Values) file. The reason that my system
involves this extra step is because I could not successfully build a version of my system

that could reliably handle inputs in the form of Microsoft Excel spreadsheets. Writing
code to handle data in the form of CSV files was very simple due to the fact that PHP

Michael Jarvis C1433936

20

natively supports the format and contains numerous functions designed to interact with
data in this format. CSV is universally compatible with all modern programming

languages, and I had no trouble with files in this format. Excel spreadsheets, on the
other hand, are not natively supported in PHP. This is because .xlsx is a proprietary

Microsoft format, and common PHP functions such as “fopen” are not compatible with
these files. Having done some research, I found a third party PHP library built to allow

the reading and handling of xlsx files by a PHP script [8]. However, I did not find this

until fairly late on in the development process, and I could not successfully implement

this library into my system in the time I had left. Various errors came about as a result
of me trying to use this library to convert Excel spreadsheets into associative arrays in

PHP, and I could not narrow down the problem beyond the library itself. I’m not sure if I

misunderstood how the functions from the library were supposed to be used or if the

library itself was not working. Upon examination of the GitHub page [8] for the library, I
noticed reports of critical errors on various builds of the library on all versions of PHP,

so I wasn’t actually that confident that the functions would work even if I’d followed the

documentation correctly.

As a result of using CSV files instead of xlsx files, I added a basic file type check to my

upload script to make sure that the file the user uploads is in CSV format:

if($fileType != "csv") {

 echo "Sorry, only csv files are allowed, please consult the help page

if you do not know how to convert your student data into a text file!";

 $uploadOk = 0;

}

The $uploadOk variable was simply a boolean used to decide if the file should be

uploaded to the server. Whilst this will give the user a clear warning in the event that
they try to upload a Microsoft Excel spreadsheet directly to the system, this check does

not prevent someone being able to deliberately trick the system into allowing them to
upload a file in a different format. It’s possible to append a second false file extension to

a filename in order to trick the system into thinking a non CSV file is of the correct
format. However, I don’t think this is an issue, as this check was designed to help the

user if they forgot to convert the student data before uploading it. There are no security

issues that are brought about as a result of a file of the wrong format being uploaded.

Once the file has been uploaded to the system by the user, the processing script that I
have written is used to insert the data in the file into a database. This script performs

SQL insertions directly into the students table in the database. One of the problems that

I found straight away is that the database would preserve data from previous insertions.

I originally solved this by flushing the table before each set of insertions, but the table
features an auto-incrementing primary key field which is used to distinguish students in

the table. This field would not reset when the table was flushed, and they key values
would quickly spiral out of control. This didn’t actually affect the operation of the

system in any way, but I still wanted to fix the problem. My solution was to drop the
students table every time a batch of insertions is going to be performed. I would then re-

construct an identical table and perform insertions into the new, clean and empty table.

Like so:

Michael Jarvis C1433936

21

//This is the section where the student table is dropped and re-constructed

$dbh->exec("DROP TABLE StudentInfo;");
$dbh->exec("CREATE TABLE 'StudentInfo' ('DBID' INTEGER PRIMARY KEY

AUTOINCREMENT NOT NULL, 'FirstName' TEXT, 'LastName' TEXT, 'StudentNumber'

TEXT, 'Priority' INTEGER, 'Nationality' TEXT, 'Gender' TEXT, 'Email' TEXT,

'StudentType' TEXT, 'School' TEXT, 'AreYouTakingLFACourse' TEXT,

'LanguageToPractice' TEXT, 'LevelInPractice' TEXT, 'FirstLanguageToOffer'

TEXT, 'LevelInFirst' TEXT, 'SecondLanguageToOffer' TEXT, 'LevelInSecond'

TEXT, 'ThirdLanguageToOffer' TEXT, 'LevelInThird' TEXT, 'Preference' TEXT,

'MaxPartners' INTEGER, 'CurrentPartners' INTEGER, 'WhyLearning' TEXT,

'BestFriendDescribe' TEXT, 'FavThings' TEXT, 'WhenFinishUni' TEXT,

'BestThingDone' TEXT, 'AnythingToAdd' TEXT);");

This solved the problems I had with data from previous uses of the system, and made

sure that there were no inconsistencies because of old student data.

In order to actually read the data from the CSV file that the user uploads I made use of
the fgetcsv() function. I used a while loop to convert each row of the file into an indexed

array in PHP. I would then assign each element of this array to a variable in PHP. Each of
these variables corresponded to a table header in the student table, and I called the

variables in the SQL insertion. The SQL insertion would continue to execute until the
variables were of type NULL, i.e. there were no more students to insert into the

database. In order to ensure that students are given the correct priority based on their

Languages for All level (as mentioned in specification section), I made sure that when
student data is inserted into the database, each student is assigned a priority value

based on their Languages for All level. This value is based on the priority process
outlined in the background section of my report, and I assigned it with some if

statements in order to generate a value from 1 to 4, like so:

if ($takingLFA == "No"){$priority = 4;}

if ($takingLFA == "Yes" And $levelInPractice == 'Beginners part 1/ CEFR

level A1'){$priority = 3;}

if ($takingLFA == "Yes" And $levelInPractice == 'Beginners part 2/ CEFR

level A1'){$priority = 2;}

if ($takingLFA == "Yes" And ($levelInPractice !== 'Beginners part 1/ CEFR

level A1' And $levelInPractice !== 'Beginners part 2/ CEFR level

A1')){$priority = 1;}

1 represents top priority students with high proficiency levels, 4 represents bottom

priority students who are not on the languages for all course. Although this is simplistic,

the consistent data format from the survey should mean that this method is sufficient.

However, changes in the names of the proficiency levels on the programme would cause

problems with my system.

After the data has been successfully inserted into the database, the next stage is to
actually use the data to find partners for students on the programme. The query script

that I have written serves three purposes:

1. It chooses the pairings based on the student data that has been uploaded to the

system.

Michael Jarvis C1433936

22

2. It generates the matches table.
3. It outputs these pairings to the “matches.csv” output file as the matches are

chosen.

There are two important SQL statements in my script. The first one selects the row
representing the student that is being matched. The second query selects suitable

matches based on that row.

In order to select the row being queried I selected one row at a time using the SQL
LIMIT function, and I used the OFFSET function in order to make sure that I selected a

different row each time. I also used the ORDER BY function to make sure that high

priority students were selected for matching first:

$rowResult = $dbh->query("SELECT * FROM 'StudentInfo' ORDER BY Priority

LIMIT 1 OFFSET '{$currentRowNumber}'");

After the matching process for that row has been completed, the current row number

variable increments, and the query executes again, this time on the next row. This query
is placed inside a while loop and will continue to execute until the row number variable

matches the total row count of the student table, meaning that each student has the

matching process performed for them exactly once.

The process of actually finding matches for each row is slightly more complex. Before
looking for matches for the current row I would need to know the existing matches for

that row, in order to make sure that matches are not duplicated. For example; if person
1 picked person 2, and person 2 picked person 1, the system would think each of them

has 2 partners, even though they only have 1. This could cause a lot of problems when

trying to find the right number of partners for people. In order to check the existing

matches, I would query the matches table asking for the “DBID” values from rows that

contained the DBID of the row I was currently trying to find matches for. I would then

assign the results to variables, like so:

$existingMatchResults = $dbh->query("SELECT FirstPerson from Matches WHERE

SecondPerson = '{$rowDBID}';");

$existingMatchArray = $existingMatchResults->fetch(PDO::FETCH_NUM);

$firstMatch = $existingMatchArray[0];

if(!$firstMatch){$firstMatch = 0;}

$secondMatch = $existingMatchArray[1];

if(!$secondMatch){$secondMatch = 0;}

$thirdMatch = $existingMatchArray[2];

if(!$thirdMatch){$thirdMatch = 0;}

This meant that I would be able to know the DBID values of students who had already

chosen the current row, and I could exclude those rows in my matching query. I needed
to assign the value 0 to variables without values in order to make sure that the null

value would not cause problems when I used them in the matching query. I could then

Michael Jarvis C1433936

23

use these variables in the matching query along with statements used to make sure that

the matches chosen met the criteria laid out in the specification section of my report:

$rowMatchResults = $dbh->query(

"SELECT * FROM StudentInfo

WHERE (FirstLanguageToOffer = '{$currentLanguageToPractice}'

OR SecondLanguageToOffer = '{$currentLanguageToPractice}'

OR ThirdLanguageToOffer = '{$currentLanguageToPractice}')

AND (MaxPartners > CurrentPartners)

AND (Preference ='{$currentGender}' OR Preference = 'It doesnt matter')

AND (LanguageToPractice ='{$currentFirstOffer}' OR LanguageToPractice =

'$currentSecondOffer}' OR LanguageToPractice = '{$currentThirdOffer}')

AND (Gender = '{$currentPreference}')

AND (DBID != {$firstMatch})

AND (DBID != {$secondMatch})

AND (DBID != {$thirdMatch})

ORDER BY Priority

LIMIT '{$partnersToFind}';");

The variables in parentheses are the ones pulled from the original row selecting query.
The $partnersToFind variable is worked out by subtracting the number of partners the
current student has from the number of partners they want. If the current row

represents a student who has no preference about the gender of their partner, the

“Gender = ‘{$currentPreference}’” line is removed from the query.

After each of the matches for the current row are selected, they need to be recorded in

the matches table. I do this by inserting a row into the matches table containing the
DBID of the row being matched, and the DBID of the match that is selected. The matches

table only contains two columns, but this is all I need to keep a track of who is matched
with who. The rest of the student data related to the matches (names etc) can be pulled

from the original students table using the DBID values in the matches table as a

reference. This is the section of code that records the matches in the matches table:

$dbh->exec("INSERT INTO 'Matches' ('FirstPerson','SecondPerson') VALUES

('{$rowDBID}','{$matchDBID}')");

After each match is recorded in the matches table, the partner counts for the students

who have just been matched need to be updated. I do this with some incrementation

queries for both the row student and the matched student:

Michael Jarvis C1433936

24

//This section updates the partner count for each match that is selected

for the current student.

$matchDBID = (int)$rowArray[DBID];

$sth = $dbh->prepare("UPDATE StudentInfo SET CurrentPartners =

(CurrentPartners + 1)

WHERE DBID = :DBID");

$sth->bindParam(':DBID', $matchDBID);

$sth->execute();

//This section updates the partner count for the current student that

matches are being chosen for.

$sth = $dbh->prepare("UPDATE StudentInfo SET CurrentPartners =

(CurrentPartners + 1)

WHERE DBID = :DBID");

$sth->bindParam(':DBID', $rowDBID);

$sth->execute();

The final function of the query script is to write the chosen matches to an output file in

real time. I originally did this as a way of checking my matches, and I intended to change

how the main output file would be generated, due to some problems with how matches

are displayed in this output file. In the end, I did not have time. The problem with the
method currently in place is that the output is based on the results of the matching

queries carried out on each row. Matches that are selected are merged into one array
and the array is output to the file. The issue is that these output arrays do not query the

matching table, so the output arrays do not always reflect the matches of each row
correctly. For example: If person 1 picks person 2, person 2 will show up in the

matching row of person 1. However: When the matching query is done for person 2, the

duplication check that I’ve created will exclude person 1 from the query results, due to

the fact that there is already a match between person 1 and 2. As a result, person 1 will

not show up in the matches row of person 2, even though they are matched.

In real world use this doesn’t actually matter that much, as it’s easy to search through
the sheet by simply searching for the name of the people in each match row and

jumping to any other places in the sheet where their name shows up. I would, however,
have liked to fix this. I think I could have changed the matching query so that it didn’t

exclude rows of existing matches, and then added a check on the section of the code that
increases partner counts. I could have simply not increased the partner counts for the

students if the row that’s selected is a duplicate of an existing match. This should fix the
wrongly displayed matches on the main output sheet. An example of the output sheet is

available in appendix 7.

After the matches have been chosen and the initial match sheet has been generated, the
mail merge script I have written outputs the matches in a format that is suitable for use

with a mail merge. I used a similar method to the one I came up with in the query script
in order to retrieve the data that I would be outputting to the file row by row. I would

select one row at a time and offset by the current row number. For each row that I
output I would find the matches for the student on that row by querying the matches

table. I would use the DBID for the current row to search the matches table. I would

then retrieve the DBID’s of any students that appeared in rows containing the DBID of

the current row.

Michael Jarvis C1433936

25

$MatchResults = $dbh->query("SELECT SecondPerson FROM Matches WHERE

FirstPerson = '{$rowDBID}'

UNION

SELECT FirstPerson FROM Matches WHERE SecondPerson = '{$rowDBID}';");

I could then use each of the retrieved DBID’s to find the information about the students

who’ve been matched with the current student:

$dbh->query("SELECT

FirstName,LastName,Email,LanguageToPractice,FirstLanguageToOffer,SecondLang

uageToOffer,ThirdLanguageToOffer,WhyLearning,BestFriendDescribe,FavThings,W

henFinishUni,BestThingDone FROM 'StudentInfo' WHERE DBID =

{$firstMatchDBID};");

 I would then simply merge the fields of the matches with the fields of the current row,

then output the merged array to the output sheet under the correct headers. This is an

example of the mail merge output sheet:

Each row on the sheet has a large number of columns, but this format is perfect for

creating a mail merge in Microsoft Office.

The next output file that’s generated is the mail merge sheet for students on the

programme who matches have not been found for. The mail merge script for students
with no matches is much simpler than the previous script, I simply need to select the

students from the students table where the “Current Partners” field contains a value of

0. I then output the information of the students that meet that criterion to a sheet with a

similar format as the previous one, only with far fewer columns:

Michael Jarvis C1433936

26

Both of these files allow the client to create a group email for the students on the

languages exchange programme. This means that the client can email all of the students

with the information specific to them without having to write each email individually.

The final output file that my system generates is a simple stats file. The stats script

simply counts the number of DBID’s in the student table in order to work out how many

students are on the languages exchange programme in total. The script writes the total
number of students to the stats file, before working out how many of the students have

partners. I calculated this by counting the number of DBID results where the current

partner count is greater than 0. As soon as I knew how many students had matches, I

could work out how many didn’t by subtracting the number of matched students from
the total number of students. The script then works out the percentage of students that

have a partner, before writing all of the calculated stats to the output file.

The final script in my system simply adds all of the output files that have been
generated by the system to a single zip folder, and then prompts the user to download

the file. I felt that having one prompt with a single file was more user friendly than

making the user download every single file separately as the scripts run.

I also decided to change my approach to persistent data storage in my system. I
originally had the student data sitting on the server at all times, but I realised that the

data is confidential, and I should do something to protect it. Having done some research,
I realised I had two options; I could either encrypt the data, or I could simply not store

any confidential data. I knew that having encryption in my system could potentially

decrease performance, due to the overhead processing cost of encrypting and

decrypting large amounts of student data. I also knew that it could potentially take a lot
of time to implement. Not only this, but the way my system is built means that there is

actually no benefit whatsoever to storing data for future use. The data that is used for

matches is processed and submitted every time, the system does not support matches

for existing data (I didn’t believe this would be very useful, as there are no real-world

Michael Jarvis C1433936

27

situations where the matches would need to be done more than once, unless there are
changes to how manual alterations are handled). As a result, I simply appended this

small section of code to my zip script:

//This section of code empties out the database on the server

$dbh = new PDO('sqlite:../Databases/Students') or die("cannot open the

database");

$dbh->exec("DROP TABLE StudentInfo;");

//This section of code deletes all the files in the zip folder

if ($zip->open("Matches.zip") === TRUE) {

 $zip->deleteName('Matches.csv');

 $zip->deleteName('Matches mail merge.csv');

 $zip->deleteName('No matches merge.csv');

 $zip->close();

}

I added it on to the zip script because it’s the last module that runs during the matching

process. By simply deleting the students table and emptying out the zip file, I can get rid
of any confidential data on the server, without compromising the matching process in

any way.

Whilst I was building my system I encountered a problem that I had not anticipated. I

originally intended to have the user manually select matches for partners, as can be

seen from my “matching page” screen design in appendix 1. I eventually decided against

this, as I believe that a more automated process is more suitable in this situation.

However; I still intended to have a similar system in place in order to support manual

alterations in the event that the user is not happy with the matches that the system
chooses automatically. The implementation of the query script that I created actually

prevented me from being able to do this. I could not successfully create any kind of
system that would support manual alterations due to the fact that all of the matches are

chosen in one go, and the system has already chosen all the matches it can find by the

time the user is shown the results. In order to support a manual alteration mechanic

similar in style to the one in my design, I would need a way to store the input of the user
in order to take the users feedback into account. For example, if person 1 was matched

with person 2, but the user believed that person 1 should be matched with person 3

instead, then I would need a way to store this input, before running the entire matching

process again, but this time checking which pairings the user had said they didn’t like,

and which ones they did.

I believe that I could keep track of the matches the user wasn’t happy with by adding an

extra field to the student table and then listing the DBID values of students that the user

had told the system they didn’t want the student on that row to be matched with. I could
update this field with an SQL update when the user specifies that they don’t like a

match. This would allow me to check that a potential match is not in the list of bad
matches when the query is run again. I tried various implementations based on this idea

but the performance never scaled well. Even if it had worked it would not have been

that useful, because I would only have been able to track the matches the user DIDN’T

like. I could not come up with a similar method to store the matches the user did like,
due to the structure of my selection queries (as previously shown). There is a possibility

Michael Jarvis C1433936

28

that I could have another extra field on each row with a list of DBID’s corresponding to
students that the user DOES want each person to be matched with. I could then have

performed queries for rows in the student table using the values in that column in order
to select the manual matches for each row before the automatic matching process

continues. I believe that if I had more time I may have been able to construct a solution
using a method similar to this, but in the time I had, I could not solve the inherent

performance problems introduced by nesting multiple queries on huge data sets.

Another problem that I encountered whilst building my system was that the system was
not able to process files containing student data if the file name had a space in. I

discovered this problem during my user testing phase. In order to open the file in the

processing script I would need to know the exact name of the file that the user had

uploaded. The reason the system had a problem was because of the way I passed the file
name from the upload script to the processing script. When I looked at the actual file

name on the server the space was preserved in the name when the file was submitted.

However; when I used the PHP POST method to pass the file name variable from the

upload script to the process script, the file name would be stripped of all spaces. This
meant that the filename that the processing script was looking for didn’t exist if the

original name had any spaces in. I could not alter the POST method to stop it from

removing the spaces in the file name, so I simply renamed the file in the upload script

after it was placed on the server directory. I can now simply take the original file name
and strip it of any spaces, before using the rename function on the uploaded file. This

would mean that the file name on the server would match the file name variable passed

to the processing script:

$oldUploadFileName = $_FILES['fileToUpload']['name'];

$newUploadFileName = str_replace(' ','', $oldUploadFileName);

if (move_uploaded_file($_FILES["fileToUpload"]["tmp_name"], $target_file))

{
echo "The file ". basename($_FILES["fileToUpload"]["name"]). " has been

uploaded.";
rename($target_dir.$oldUploadFileName, $target_dir.$newUploadFileName);
 header("Location: process.php?fileName = $oldUploadFileName");
 exit();
 }

Michael Jarvis C1433936

29

5. Results and Evaluation

In this section I will be evaluating the system that I have created over the course of this

project. I will be trying to evaluate the extent to which I achieved the goals I set myself

at the start of the project, as well as the results of the tests I carried out. In order to

ensure that the student data I was testing with was representative of real-world
situations I copied the data I had been given in the form of an old spreadsheet from a

previous sign-up. This meant that the system was developed and tested using real-

world student data, albeit not in its original format, and with some arbitrary changes to

some rows so that they were more in line with the new spreadsheet syntax. The student
file that I used to test my system contained a total of 472 students with a variety of

languages and proficiencies. It’s important to make sure that a system is not designed
and tested around cherry-picked data that’s easier to work with, so I knew it was

important to make sure I used real student survey answers.

5.1 Test cases

I have created a table of the requirements I laid out at the start of my project, and for

each one I have written a small test case methodology along with the results of the test:

Requirement Test methodology Result Pass
(Y/N)

Users must be able to
submit student data
collected from the online
survey to the system.

Attempt to upload a file
containing student data
to the system.

The file is
successfully
uploaded and
stored on the
server.

Y

Users should be able to use
the system to process the
uploaded data in order to
find matches for the
students.

Use the system to
process a file that has
been uploaded to the
system by selecting “find
matches”

Matches are found
for students and
stored in output
files.

Y

System must display the
matches it has made so that
the user can look over the
matches to see if they are
appropriate.

Tell the system to find
matches and evaluate
whether the output is in
a suitable format for
evaluation of the chosen
matches.

User is given match
results in multiple
structured output
files.

Y

System must be able to
match people to more than
one partner, if a person
wishes to have more than
one a partner.

Check that the system is
assigning people to
multiple partners if they
want more than one and
matches can be found

Many students on
the matches sheet
have multiple
partners.

Y

The system must automate
or at least heavily assist in
speeding up the current
matching process.

Evaluate as objectively as
possible whether the
user actively benefits
from using the system

The process is
significantly
quicker than before
whilst matches are

Y

Michael Jarvis C1433936

30

 still of a good
standard.

System must prioritise
students based on their
Languages for All level.

Check the order that
matches are being
chosen in and see if
higher level students are
chosen first.

Students on output
sheet appear in
priority order
based on
proficiency levels

Y

System should offer
matches for students who
are not on the languages for
all programme, but only as
a last priority.

Check that non LFA
students are being
matched, but at a lower
priority than LFA
students.

Non LFA students
appear last on the
output sheet

Y

System should allow for
additional matching criteria
to be implemented into the
decision process in order to
provide better matches for
students on the
programme.

Look at which criteria
are used to match
students and see if any
additional ones are used
on top of the original
criteria specified by the
client.

Only the original
criteria are used to
select students
during the
matching process.

N

I chose to test the requirements using these test methods because I believe that,

although the tests seem rather simplistic in nature, they are the best (and perhaps only)
way to accurately judge whether the system I have created has the functionality to

correctly meet the requirements that I laid out at the start of my project.

5.2 User testing

I also carried out some user testing with my client during the development process, in

order to ensure that I received some feedback from the user which I could implement

into my development process. User testing is important because the user that you’re

designing your system for could end up with a number of different problems that a
person developing the system may not have thought of. I decided to let my client

perform a “blind” test the first time I showed her one of the prototypes of my system,
meaning that I did not give her any instructions on how to interact with the system

before she started using it. This is an effective way of testing whether an interface
makes sense to the target userbase and if the system follows common usability

guidelines. Here is the record I kept of the client’s actions whilst she used the system:

1. User clicks upload file and selects the Student spreadsheet. She does not notice

the message on the main page informing her that the file needs to be in CSV

format. The file she uploads is in the wrong format as it needs to be converted to

a CSV file, so an error message is displayed informing her that she needs to

upload a CSV file, and she can click on the help icon if she does not know how to

do this.

2. The user goes back to the main page.
3. The user clicks the help icon.

Michael Jarvis C1433936

31

4. The user reads the instructions and re-saves the spreadsheet as a CSV file.
5. The user uploads the CSV file.

6. The user presses “find matches”.

7. The user saves the matches.zip file to her desktop and opens it.

Whilst the client was trying out the system a second time, the system froze and did not

present her with any matches. No error messages were displayed and the page had to
be reloaded. Upon further investigation, I found that the issue was related to having

spaces in the file names of the CSV files being uploaded to the system, as mentioned in

the implementation section of my report.

When the client had finished trying out my system for the first time, she informed me

that she would want to use the matches chosen by the system to create a mail merge in
Microsoft office, as mentioned in the specification section of my report. I took this
feedback onboard and added additional functionality to my system, which I described in

detail in the design and implementation sections of my report.

5.3 Further testing

After I observed the user carrying out the matches, I decided to test the run-time of the

system. This is something that’s important to test because the real-world usability of a

system depends heavily on the run-times that the system produces. When the system
was used on the user’s machine to process a file containing nearly 500 records the

system uploaded, processed, matched and output the student data in just over 25

seconds. When the system was used on a file containing just over 100 records, the

system finished the matching process in about 5 seconds. I think that this demonstrates

that the system scales very well, and is suitable for real-world use.

I also wanted to check how many matches the system had actually managed to find.
When I started this project, the client informed me that the majority of students do not

have partners assigned to them, due to the disparity between the number of people who

want to learn English and the number of people who can speak English and want to

learn a language that a person learning English can speak. For example: There a huge
number of Chinese students who are on the programme because they want to improve

their English. These students can usually only offer Mandarin as a language that they

can speak, meaning that they would need to be matched up with someone who wants to

learn Mandarin and can already speak English fluently. Unfortunately; hardly anyone
actually wants to learn Mandarin. When I asked the client to estimate how many people

she would usually find matches for, she guessed that around a quarter of the people
who signed up for the programme would be given one or more partners. When I

uploaded the student data from last year, my system managed to match 29% of the
students, as can be seen in the stats file in appendix 4. I think this is well in line with the

client’s estimations and I’m happy with the results.

The next thing I wanted to test was how good the matches that the system chose were.

This is somewhat harder to test due to the subjective nature of this evaluation, but I

decided to try anyway. When I looked over the matches that the system had chosen, all

of them met the matching criteria that they were supposed to, and there were no “bad”

Michael Jarvis C1433936

32

matches in the sense that any given pairing was suitable. As for determining the quality
of the matches, I could not make any real consistent evaluation of what makes a match

good, other than that there is nothing in a match which would make it not suitable. I’m

happy with the matches my system chose.

5.4 Evaluation of my system

I think that the testing methods I have utilised provide a complete and thorough

coverage of my system that allowed me to effectively find and correct any problems
with the system. The client was able to give me feedback on how the system performed

and what else she wanted it to do, which allowed me to fix any problems and add some

additional functionality later on in the development process.

The results of my testing show that all but one of the requirements are met by my
system, as I was able to verify that every other test for all the other requirements was

successful. I think these results show that the system I have created is close to the one I

originally envisioned. I also believe that these results demonstrate that the system is

suitable for real-world use by the client, and that the system should save them a huge
amount of time by automating the entire matching process. I did not manage to

implement any additional criteria into the matching process, but I think the way that my

system is designed would make it reasonably easy to implement a more detailed

matching process with additional criteria further down the line.

I think I have achieved the goals that I set myself for this project. My main goal was to

save the client time, and my system does that very well. I would have perhaps liked to

have the user more involved in the matching process by having support for manual

alterations in the system and by changing some of the back-end systems to support such

functionality. Whilst this wouldn’t have had a very big effect on the actual end matches
that are chosen, I think that the real-world usability of the system would have been

much better. As it stands, the user has to make any changes on the matching sheet

manually, which is not what I wanted. I think that it would have been much easier for

the client if changes could be made at a system level. Despite this, I think that the system

I have created saves the user a huge amount of time, due to the fact that it’s so good at
filtering data in the way it needs to in order to decide which students are suitable

matches.

In order to gain further confidence in my system, I would need to see it used on new
student data that’s collected through the new online survey. I have only tested the

system with a couple of different data sets, both of which were ported over from old
spreadsheet formats in order to be compatible with the new format. In theory, the

structured nature of the online survey used for data collection should mean that the
system always knows how to process all the student data provided to it. However; I

would like to see data from the new survey used, just to make sure that there are no
format/syntax errors that I have not considered. I also want to see what percentage of

students the system can consistently find matches for, it would be interesting to see if
the number of students with matches is always around the same level as the sets I

tested (25-30%).

Michael Jarvis C1433936

33

I think one of the key strengths of my system is its usability. The minimal interface is
more than sufficient to support all the user interaction my system needs, and it does so

in an aesthetically pleasing and efficient way. There is virtually nothing that a user
needs to learn before using this system, the most complicated step is to convert the

spreadsheet to a CSV format file, and the instructions on how to do this are provided on
screen. I think another key strength of my system is its scalability. The difference in time

taken to process all the students in a file from when there were around 100 students to

around 500 demonstrated that the system scales in a linear fashion along with the

number of inputs it receives. This is important for a couple of reasons:

1. The system needs to be able to effectively handle large data sets in the event that

a huge number of students sign up, and a system that scales badly can greatly

increase the amount of time that the user has to wait for a response.
2. Implementing additional matching criteria further down the line would probably

slow the system down, due to the additional computational cost of performing a

more thorough matching process that considers more variables. It’s important

that the system in its current base state is already fairly fast, because it will be
much easier to ensure that the system is still suitably responsive after additional

functionality has been added.

Looking at the project as a whole, I believe that my methodology and choices were

effective. I knew that the traditional waterfall approach can have a number of
drawbacks, such as not doing any user testing until the end of the development process.

My methodology was based on the waterfall approach, but I would ask for client
feedback at almost every stage of development, meaning that I had a constant feedback

from the end user whilst I was developing the system. Anything that the client needed to

communicate to me such as problems with the system or additional functionality

requests would be received in good time, and I was not too rushed at any point of the
development process. I managed my time well, and I managed to do most of the things I

set out to do.

As for my choices on the architecture that I have gone with, I believe that I also made
the right decisions there. The majority of my project is built in PHP, and I found that the

excellent built-in functionality of the language combined with the extensive online

documentation helped me to solve problems very effectively. The structured nature of

the data my system is designed to use combined with the built-in functions of PHP made
the development process very efficient. I also believe that SQLite was the right choice

when it came to choosing an implementation method for SQL. The database performs
brilliantly and the functions that SQLite provides were easily sufficient for the data

processing needs of my system.

If I was going to do the project again, I would build the system so that it natively

supports manual user-input in the matching process. This would likely involve a fairly
large re-design of how the matching process is carried out and how data is stored.

Overall, however, I’m very happy with what I’ve achieved.

Michael Jarvis C1433936

34

6. Future Work

I think that my system has come a long way since the start of my project, but there are

still a couple of extra things that I would add to the system or change if I was to carry on

developing it.

One of the first issues I would want to address is actually a security issue. The survey

that is used to collect the student data has a number of free text fields which students

can use to write about themselves, so that their partner can find out a little bit about

them before they meet. The problem with these fields is that they can contain any input.
This means that, despite the filtering I have in place, it may be possible to trick the

system into executing malicious SQL statements. This could actually give an attacker the

chance to attack the system by finding the link to the survey and then inputting

something like “DROP TABLE ‘Student’. Although this would not cause any kind of
confidential data being released, it would cause the matching process not to complete

properly, and the system would not have the capability to deal with these errors. Having

done some basic testing with malicious inputs, the filtering I perform on the text fields
seems to prevent anything bad from happening, but If I was working on the system in

the future I would like to look at this issue in more detail in order to make sure that this

is not a potential threat.

In the future, I would also like to change the structure of my database in order to make

it more relational. The structure that I have in place now was originally going to be a flat

database structure with one table, but I added an extra table in order to store the

chosen matches. If I was to continue working on this project I would split the data into
more tables in order to better facilitate the manipulation and retrieval of data. For

example: assigning ID values to matches could be something that allows me to

effectively implement user input into the matching process. I could then use the match

ID’s as a foreign key in the student table so that it’s easier to look up which people are
matched with which students, without having to perform a full query on the matching

table. This could save a lot of computing overhead during the matching process and thus
reduce the runtime of the program. Splitting the tables up more could also help facilitate

the use of additional matching criteria in the matching process. If I was to have separate
tables for students in different degree areas I could fine tune the matching process to

include additional criteria such as similar degree subjects, based on the school they are

in.

When working on the system I would also eventually like to alter the interface so that

it’s more responsive and can support some of the additional functionality that I would

want to implement. Currently, whilst the system is performing the matching process

after the user has presses the “find matches” button, the web page simply hangs whilst a

loading icon appears at the top of the web browser window. I would like to change the

interface so that it better reflects the status of the system in real time whilst the

matching process is underway. Something like a loading bar or a percentage complete
indicator would help re-assure the user that the system is working as intended and has

not stopped working. However, this would require some method of actually quantifying
the progress by keeping track of how far through the student file the matching script is.

Michael Jarvis C1433936

35

This could be difficult because the matching code would be running server-side and the
interface showing the user how far along the process is would be running client side, so

it could be fairly complicated to design a way of feeding the data back to the user in real
time. In the very distant future I would perhaps like to implement some form of web-

app style interface to my system. As it stands, the site I’ve created is only there so that
the user can submit data and retrieve the results. I could, however, have some kind of

web-based UI that the user can use to support something like the manual alterations

functionality that I have talked about. I could potentially use features such as drag and

drop elements so that a user can place people into pairings just using a mouse. This is all
completely theoretical, however, and would likely require a complete re-structuring of

the entire system.

If I was to change the system so that it could take Excel files instead of CSV files, it could
be possible to set up an automated data retrieval from the Microsoft Forms website so

that the student data is automatically imported to the system, and matches are found for

the users as they sign up. I don’t know if this is something the client would want, and

the retrieval process would only actually be running as long as the clients machine is
running. It would perhaps be best to set the system to retrieve the data once at a chosen

time, perhaps when sign-ups for the programme close. If the system performed the

retrieval and matching process automatically, it could be possible for the system to

match the students as soon as the sign-ups close, then send the matches files to the
client via email, which she could then use to contact the students. It would probably

even be possible to make the system email the students automatically, but I think that it
would be best if the client looks over the matches themselves to make sure that they are

okay. The base functionality that I’ve created is fairly easy to expand upon and I feel like

this would be an area to consider in future development.

Michael Jarvis C1433936

36

7. Conclusions

My main goal with this project was to change the way that the Cardiff University School

of Modern Languages deals with the administration tasks involved with finding

students for the Languages Exchange programme. The existing system that was in place

was time consuming and inefficient, with all of the work being done manually. I knew
that the nature of the task leaned itself well to automation, especially due to the number

of students who sign up. I knew that the more automation I could introduce into the

system, the easier it would actually be for the client to get the job done. The vast

majority of the process is simply organising the data from the survey answers into a
format that is suitable for lots of quick comparisons, then performing these

comparisons and choosing appropriate matches. This all takes a huge amount of time

when done by hand, but is by no means an inherently difficult task.

As soon as I managed to get a system that simply improved how the data was collected

and performed all of the formatting, I already knew that I’d saved the client a huge

amount of time. Having introduced a fully automated matching process, I’ve cut the
matching process time from a couple of weeks, down to about 10 minutes (allowing for

time to send emails to the students using a mail merge). Saving time was the reason this

system needed to exist, and I’m really happy that it’s turned out as well as it has.

The interface is perhaps not as slick as I would have liked it to be, I went for a safer

minimal approach, mainly because I am not too confident in my ability to design front-

end interfaces. I think that future iterations of the system would benefit from more

integration of features like mail merge generators or match alterations. Features like
that would transform my system from a tool to organise the data, to a full system

capable of carrying out the entire process from start to finish. However; I don’t actually

know if this is something the client ever wanted, and I don’t know if it’s something she’d

actually prefer over what she already has in place.

I feel that the system is of a good standard on a technical level, and it performs the tasks

it needs to in an efficient manner. The structure of the database is perhaps not optimal,
and is one of the first things I would consider changing in future versions of the system,

but it definitely serves all the purposes that I need it to, and any changes would

probably not make any real-world difference to the user until the re-structuring of the

data storage is actually utilised to introduce additional features.

My biggest disappointment with the system is that there is an additional step in which

the user must re-save the student data as a CSV file. This takes less than a minute, and

it’s not difficult, but it’s the only thing that stops this being a completely automated
process. I should perhaps have looked more into existing PHP libraries that would have

allowed me to remove this step, but it’s not something I felt I had time to implement by

the time I realised that it was a possibility.

I feel like this project has definitely been a worthwhile endeavour, and I think the
decisions I made were the right ones. The client should be able to use this system when

sign-ups for the programme open up again at the start of the next school year. I’m

Michael Jarvis C1433936

37

hoping it will save her a huge amount of time, and the students can be given partners

much sooner as a result.

Michael Jarvis C1433936

38

8. Reflection on Learning

When I started this project I only had a small amount of experience working with PHP,

and this was in a simple web-applications project in my first year of university. I feel

that my understanding of the languages that I used in this project has greatly increased

from when I started, and my grasp of developing software for a web-based environment
as a whole has greatly improved. Seeing a project like this through from start to finish

brought to light a number of things that I have not considered before, and I feel that I’ve

learned a lot about problem solving as a result.

I’ve also learned a lot about working with a real client. Having to communicate with a

person in order to work out what they want the system to do and how they want it to

work is a challenge in itself, and it’s not something I’d really thought about before I

started this project. Having all the information that you need from the client is essential
if you’re going to have a solid foundation to come up with the requirements of your

system, and it took me quite a long time to work out what I needed to know form the

client.

The lack of constraints in terms of the language to use and the environment to build the

system in was also something that I hadn’t considered to be a challenge, but was

actually something I had to put a great deal of thought into. Simply being told what the
system should do and not what kind of system the client wanted left me with a lot of

options, and it was actually quite intimidating to choose an approach. I knew that

choosing the wrong approach could mean that I would invest a lot of time developing a

system that couldn’t support the functionality I wanted or would not be suitable for the
environment that it would be used in. For example; I didn’t actually know if I would

even be able to develop a web-based system, because I didn’t know if there was any way

I would actually be able to deploy the system when it came to real-world use.

I think that this project has taught me the importance of communication with any

stakeholders in a project. Making assumptions can lead to solutions that don’t fit the

user’s needs, so it’s important to clarify anything that you’re not sure about.

Michael Jarvis C1433936

39

9. Appendices

Appendix 1: Initial interface designs

Main menu

Help page

Michael Jarvis C1433936

40

Upload page

Stats page

Michael Jarvis C1433936

41

Matching page

Michael Jarvis C1433936

42

Appendix 2: Screenshots of the new survey used to collect student data

Michael Jarvis C1433936

43

Michael Jarvis C1433936

44

Michael Jarvis C1433936

45

Michael Jarvis C1433936

46

Appendix 3: Screenshots of the system interface

Michael Jarvis C1433936

47

Appendix 4: Stats file

Appendix 5: Data Flow Diagram

Key:

Michael Jarvis C1433936

48

Michael Jarvis C1433936

49

Appendix 6: Database entity relationship diagram

Michael Jarvis C1433936

50

Appendix 7: matches output sheet generated by query script

Michael Jarvis C1433936

51

10. References

[1] Languages for all: Assess your level

https://intranet.cardiff.ac.uk/students/your-study/learn-a-language/languages-for-

all/assess-your-language-level

Last accessed 19/04/17

[2] Wikipedia: Squiz

https://en.wikipedia.org/wiki/Squiz

Last accessed 19/04/17

[3] Insert PHP to Wordpress plugin

https://wordpress.org/plugins/insert-php/

Last accessed 19/04/17

[4] Wikipedia: Apache HTTP Server

https://en.wikipedia.org/wiki/Apache_HTTP_Server

Last accessed 19/04/17

[5] Microsoft Forms

https://forms.office.com/Pages/DesignPage.aspx#FormId=MEu3vWiVVki9vwZ1l3j8vG

S9Tj_tcwlNmfQ6GGrUL51UNFZFQUtXT0NESUpLUkg2NUVERjhRRVBVMi4u

Last accessed 20/04/17

[6] Nielson’s Usability Heuristics for User Interface Design

https://www.nngroup.com/articles/ten-usability-heuristics/

Last accessed: 22/04/17

[7] Flat file database vs relational database design

http://www.databasedev.co.uk/flatfile-vs-rdbms.html

Last accessed: 30/04/17

https://intranet.cardiff.ac.uk/students/your-study/learn-a-language/languages-for-all/assess-your-language-level
https://intranet.cardiff.ac.uk/students/your-study/learn-a-language/languages-for-all/assess-your-language-level
https://en.wikipedia.org/wiki/Squiz
https://wordpress.org/plugins/insert-php/
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://forms.office.com/Pages/DesignPage.aspx#FormId=MEu3vWiVVki9vwZ1l3j8vGS9Tj_tcwlNmfQ6GGrUL51UNFZFQUtXT0NESUpLUkg2NUVERjhRRVBVMi4u
https://forms.office.com/Pages/DesignPage.aspx#FormId=MEu3vWiVVki9vwZ1l3j8vGS9Tj_tcwlNmfQ6GGrUL51UNFZFQUtXT0NESUpLUkg2NUVERjhRRVBVMi4u
https://www.nngroup.com/articles/ten-usability-heuristics/
http://www.databasedev.co.uk/flatfile-vs-rdbms.html

Michael Jarvis C1433936

52

