
A Case-Based Reasoning Approach to Email
Response

James Morris

05-05-2017

1

Contents
1 Introduction 4

2 Background 4
2.1 Case-based reasoning . 4

2.1.1 Textual case-based reasoning 5
2.2 Term frequency-inverse document frequency (Tf-idf) 5
2.3 Latent semantic analysis (LSA) 5
2.4 Previous work . 6

3 Specification and Design 6
3.1 User requirements . 6
3.2 Usability . 7
3.3 User interface . 7
3.4 Data flow . 8
3.5 Design . 9

3.5.1 EmailLoader . 9
3.5.2 EmailSender . 9
3.5.3 Classifier . 9
3.5.4 Syntax parser . 10
3.5.5 LSA . 10

4 Implementation 10
4.1 Email . 10

4.1.1 Load emails . 10
4.1.2 Send email . 11

4.2 Training data . 11
4.3 Training data pre-processing . 11
4.4 Vectorising . 12
4.5 Classifier . 13
4.6 Syntax parser . 13
4.7 LSA . 14
4.8 Challenges . 15

4.8.1 Adapting whole emails . 15
4.8.2 Question identification . 15
4.8.3 Writing styles . 16
4.8.4 GUI development . 17
4.8.5 Measuring similarity/Creating vectors 17

5 Results and Evalution 18
5.1 Testing . 18

5.1.1 Parser testing . 18
5.1.2 Case base testing . 19
5.1.3 Lsa testing . 19
5.1.4 Response generator testing 20

2

5.1.5 Manual testing . 20
5.2 Evaluation . 22
5.3 Issues . 22

5.3.1 Context of conversation 22
5.3.2 Classification . 22

6 Future Work 23
6.1 Check responses to store . 23
6.2 Spelling correction . 23
6.3 Feedback to user . 24
6.4 Polish UI . 25
6.5 Support for more emails . 25
6.6 Paragraph vector . 25

7 Conclusion 25

8 Reflection 27

References 28

3

1 Introduction
Today email is one of the most prevalent forms of communication, spread across
a many societies and social groups and particularly predominant in business for
interaction whether it be between colleagues, customers or any other relevant
parties. Even despite the rise of social media email has still managed to maintain
its dominance in the market with 85% of citizens using the internet for email,
whereas 65% have said to use it for social networking [1]. Considerable time is
taken each day to respond to the vast amount of emails that could possibly be
received - with ”catching up on emails” being a staple in most peoples morning
routine. Can you imagine the time that could be saved and improve productiv-
ity if there was a way to support this process and make progress towards full
automation.

This project aims to explore case-based reasoning as an approach to provide
some level of automation to email response. Due to the retrieval based concept
of case-based reasoning, providing results to an open domain world would be
impossible and therefore assumes a closed domain will be looked at. Due to
the specific nature of some roles such as customer service, or in the case I have
focused on - a school admissions tutor, there is usually a small target domain
on which the emails will focus on. This allows a closed domain assumption to
still provide reasonably good results with time.

2 Background

2.1 Case-based reasoning
Case-based reasoning, put in simple terms is the process of constructing solu-
tions to unseen problems based on answers given to previous problems. The
main feature of case-based reasoning is the case base, which consists of cases.
Cases are made up of the past problem, the solution and any other information
that the user sees fit to store. A common approach used is to store the case as
a list of attributes. The process consists of four main parts:

• Retrieve - This is the process of selecting the most similar case or cases in
the case base to new problem. Different approaches can be used at this
stage, with different measures of similarity. It is up to the user to find the
best that fits their application.

• Reuse - This is the process of reusing the selected case(s) to solve the
problem.

• Revise - This is the process of adapting the reusable cases if necessary to
fit the new problem.

• Retain - The proposed solution is then stored as a new case in the case
base.

4

[16] One of the principles behind case-based reasoning is continual improvement.
As it solves more problems and stores more cases its range of knowledge and
quality of proposed solutions improves.

2.1.1 Textual case-based reasoning

A small subset of case-based reasoning which is particularly applicable to the
case of emails is textual case-based reasoning. This applies the same main
components as case-based reasoning, with the added complexity that all of the
cases are in a textual format [20].

2.2 Term frequency-inverse document frequency (Tf-idf)
This is a weight measuring how important a word is to a corpus. The weight
value will be:

• Largest when a word is in few documents but appears many times.

• Lower when a word is in many documents or appears few times.

• Smallest when a word is contained in nearly every document (will be 0 if
in every document).

[4]

The calculation is as follows:

tf(t) = Number of times t appears in the document / Total number of terms in
the document
idf(t) = log(Total number of documents / Number of documents containing t)

tf-idf(t) = tf(t) * idf(t) [17]

If there were 20 documents and the word "hello" appears in 4 of them and the
document we were looking had 30 terms and "hello" appears once the tf-idf
weight would be:

1
30 ∗ log(20

4) = 0.023

A document vector can be created using this measurement with a term for each
word in the vocabulary and its corresponding tf-idf weight.

2.3 Latent semantic analysis (LSA)
Latent semantic analysis is a way to try and understand the meaning behind a
given piece of text. It is used to analyse the relationships between a set of terms.
First a term-document matrix A is created using the bag-of-words model. Then
singular value decomposition (SVD) is performed. If we say B = ATA and

5

C = AAT then a SVD on A is equal to:

A = SΣUT

Where:

S is the matrix of the eigenvectors of B
U is the matrix of the eigenvectors of C
Σ is the diagonal matrix of the singular values obtained as square roots of the
eigenvalues of B. [18]

2.4 Previous work
An approach to email response using case-based reasoning was carried out by
Lamontagne and Lapalme [12]. This focused on the investor relations domain.
In this approach whole emails are stored which are then retrieved and reused
by removing unrelated information in the selected response. In the system I
have proposed the need for this step is omitted. As smaller questions and not
whole cases are stored, all information stored as the response will be relevant
to the question being asked. The quality of retrieval should also be improved in
my system. Matching email to email when multiple questions could be asked in
each, will result in emails containing small relevant passages, making similarity
hard to identify.

Google have proposed a solution - Smart Reply - that is currently in use in
Gmail inbox and 10% of mobile replies are being assisted by this system [2].
This approach focuses on short emails due to a study finding roughly 25% of
replies having 20 terms or less. To perform this they utilise the sequence to
sequence learning framework and long short term memory networks to predict
sequences of text. Here they present multiple choices for your response including
both positive and negative views. Obviously my resources are limited compared
to Google, and possible approaches they can take are greater due to them having
238 million training examples, but I can still present a key difference that may
be an advantage in some situations. It seems the system can only handle short
responses and from what I can see can handle one query. Although my system
requires storage of cases it presents a trade off between the types of input it can
handle.

3 Specification and Design

3.1 User requirements
• System must allow the user to load emails from their desired mailbox.

• System must allow the user to send their response to a given email.

6

• System must be able to identify similar questions to the given input.

• System must be able to identify if a sentence is in the form of a question.

• System must be able to extract the name of the sender.

• System must be able to identify the topic of a given sentence.

• System must be able to take an email as input and generate a suitable
response.

• System must allow the user to type in a desired email.

• System must allow the user to edit the response.

• System must allow the user to provide a response where the generator was
unsuccessful.

• System must allow the user to save responses to a given question.

• System must allow the user to save the topic of a sentence.

• System must allow the user to save the similarity threshold value.

• System must allow the user to edit their email signature.

3.2 Usability
The best case usability of the system would be to have a button added to your
existing email client to generate a response for the selected message. This could
be done in the means of an add on to your browser to work with your email
client. If this route was taken an add on would have to be created for each
potential browser and each email client, which would be very time consuming.
This is why I have chosen to create a standalone system. To improve familiarity
I have tried to keep the design and functionality as close to what we usually see
with the most common email clients.

3.3 User interface
I opted for a simple user interface design encompassing two text areas for the
input and response emails, a list view to load emails into and buttons to login
and generate a response. Settings and options to train will exist in menu items.
When a response cannot be found for a given question; text inputs and dropdown
fields will be dynamically added and removed when saved.

7

Figure 1: Wireframe of main screen

3.4 Data flow
• Username and password is passed to EmailLoader and EmailSender.

• List of loaded emails is returned to the users.

• Email is selected from list or input by user.

• Case base is loaded into ResponseGenerator.

• Input is tokenised into sentences.

• Each sentence is classified, topic and probability is returned.

• Each sentence is parsed - Penn Treebank tagged and NER is returned.

• Each sentence is classified as sentence or statement.

• Questions are combined with same topic statements.

• Each new piece of text is sent to Lsa.

• Most similar responses and unanswered questions are returned.

• Most similar responses are combined and returned to the user along with
the unanswered questions.

8

3.5 Design

Figure 2: UML class diagram of the system

3.5.1 EmailLoader

EmailLoader is responsible loading emails from a given mailbox into the pro-
gram. It makes use of the Internet Message Access Protocol (IMAP) to retrieve
mail from a given email server. The received email is converted to a more
friendly defined object for use within the system.

3.5.2 EmailSender

EmailSender handles the sending of the response message. It makes use of the
Simple Mail Transfer Protocol (SMTP) to send to a given server.

3.5.3 Classifier

The classifier implements a Stochastic Gradient Descent classifier using a log
loss function. It has two purposes within the system. The first classifier is used
to label a given sentence with a topic that it relates to. This is trained using
the cases that are stored in the case base. Depending on the amount of training
data you have, there is a possibility that a new sentence does not fit into the set
of labels. In this case I am looking at the highest label probability and checking
it meets a certain threshold value. If this is not met it is classed as no topic
given. This would then require the user the evaluate the sentence and provide
a new label. If enough training data is given to cover all topics this threshold
would not be necessary. The second is used to determine if a given sentence is
in the form of a question, if this cannot be determined from the syntax parser.

9

3.5.4 Syntax parser

Syntax parser uses the Stanford CoreNLP, using the parser and named entity
recognition tools. The parser is used as the first approach to determine if a
given sentence is in the form of a question, by looking at the Penn Treebank
tags given. The named entity recognition is used to extract the name of the
sender of the received email, to address them in the generated response.

3.5.5 LSA

This class performs latent semantic analysis to find the most similar question(s)
in the case base to the ones extracted from the input email. This is achieved
by creating a tf-idf vector of the input question and then performing singular
value decomposition on this vector. I am then using cosine similarity to analyse
how closely related the input question is to each question in the case base. A
threshold value - that is editable through settings - is used as minimum level of
similarity that the most similar question has to reach. If this is not reached it is
assumed no question exists within the case base that could reasonably answer
the question. In this circumstance user input would be required to provide a
suitable response.

4 Implementation

4.1 Email
4.1.1 Load emails

To load emails I am making use of pythons built in imaplib library. To connect
to the host I am using the IMAP4 subclass IMAP4_SSL. This adds the secu-
rity of connecting over an SSL encrypted socket. Then logging in with the login
function. To search for mail a mailbox needs to be selected to look through, in
most cases this will be the inbox.

Now we need to loop over the mailbox to fetch all of the emails. To do this
we first need to get all of keys associated with each email. The imaplib has a
search function that we can use to search through the mailbox using a specified
search criterion. In our case where we want to grab every email we can just spec-
ify "ALL". To then have the most recent emails first we must reverse the list. [9]

10

Then we can loop over each key and fetch email for the given key specifying the
parts of the email we wish to return. The returned data is not very friendly to
handle so we can use the email module and function message_from_bytes to
help with this.

4.1.2 Send email

For sending emails python has another built in library that we can use - smtplib.
Specifying the host and port we want to connect to. To add a level of security
we can use starttls to put the connection in TLS mode. Every command that
follows this will be encrypted [10].

4.2 Training data
The training data for the topic classifier is the data we have stored in the case
base, only the response is omitted. A list of the questions and a separate list of
the corresponding topics is passed to the classifier.

The training data for the questions classifier is stored in a .csv file which com-
prises of a sentence followed by a label in this case either "Question" or "State-
ment". Below shows a possible example:

4.3 Training data pre-processing
Before any of the models are trained including both vectoriser and classifier the
training data is pre processed to improve the end performance. The first step

11

is to remove punctuation as after tokenising words with punctuation will be
treated as different by the classifier even though the meaning is the same for
example:

jump

jump.

jump,

Most words can have endings based on tense or if they are plural. Essentially
this is not going to have much effect on the meaning of the sentence but will
have an unnecessary effect when measuring similarity between two sentences.

jump

jumping

jumps

To fix this I stem the words using the porter stemmer as described earlier. This
helps reducing the chances that the classifier is encountering a new word that
it has not been trained on and reduces the probability space [14].

4.4 Vectorising
In both cases of the classifier and latent semantic analysis, operations cannot
be performed on the data in its current state. To solve this the sentences must
be transformed to the vector space. There are a few ways to do this such as the
standard bag-of-words model. This creates a vector with dimension |V| where
V is the vocabulary, where each value in the vector represents the number
of occurrences of a given word in the document [4]. In this case common,
unimportant words such as "a", "and", "the" are always likely to have the
highest frequency and important works have little effect on the similarity. To
solve this problem I have decided to use tf-idf as weighting for each word. This
improves the model by giving a higher value to words that are more important
and play a more significant part in the meaning of the document, and minimises
the effect of frequently occurring terms [19]. To perform this I am using sci-
kit learn TfidfVectorizer. To this I am passing a list of stop words - these are
commonly used words, like mentioned above that add no value to the meaning
of a sentence that I have chosen to ignore [7]. Then we can train the vectoriser
and return the transformed data using fit_transform.

12

4.5 Classifier
I have used a classifier for a few key features that support some of the key
functionality. For the classifier I have used sci-kit learn SGDClassifier. This
is a linear model using stochastic gradient descent learning [8]. I have chosen
to use this particular classifier as it is one of the only ones to provide me with
functionality to access the probability of a given class label. Given the specified
loss function this can either implement a support vector machine or probabilistic
classifier. In my case where I need the probability value for the given class I
have decided to use the log loss function. Then we need to train the model using
the fit function. This takes two lists - the training data and the target values.
In our case the data will be the questions in the case base to identify topics or
the question and statement data to identify a question. Before we can pass this
data to the function we must vectorise it. To do this I am using sci-kit learn
TfidfVectorizer as mentioned above. The resulting transformed data is what we
pass to the classifier.

As the amount of training data increases the time to train the models increases.
If we were to train the models each time we choose to generate a reply the system
will take a heavy performance hit. To fix this we can use model persistence.
This allows us to use a previously trained model without having to retrain.
To save the trained models I had to decide between using pickle or sci-kit learn
joblib. I ended going with joblib as it is more efficient when dealing with objects
that internally use large numpy arrays as is the case with the models I am using
[6].

Before being able to classify we must first transform the input text using the
vectoriser model we trained earlier. Then we can use the classifier predict func-
tion to predict the class. In some cases where we do not have enough training
data, the class label that should be given to a piece of text does not yet exist.
To check for this I am checking if the probability associated with the class label
meets a threshold. The predict_proba function returns the probability for each
label in the data, so the value I need to check against is the max value in that
list.

4.6 Syntax parser
The parser is used as a first step to identify questions and to perform named
entity recognition on each sentence. All of these tools are available through the

13

Stanford Core NLP suite. As the library is written in Java this posed a problem
as I am using Python. Fortunately as part of the package there is a server that
you can run to accept POST requests. I used a handy library py-corenlp that
handles these requests nicely. To run the server the command below is executed:

java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 9000
-timeout 15000 [11]

To create the library object the url of the running server must be passed.

Now we can use the annotate function passing the sentence and the list of an-
notators. In our case we need "parse" and "ner".

From "ner" we get a list of json objects for each word in the sentence with a
"ner" name field to indicate the entity value or 0 for no entity. From this list I
then needed to extract the full name of any persons. To do this I just iterated
over the list adding consecutive words tagged as "PERSON" to a list to enable
me to easily extract the first name.

4.7 LSA
Before we vectorise the text to improve the results I will using the pre processing
steps described above.

Here again I am using the TfidfVectorizer.

14

A key phase of latent semantic analysis is singular value decomposition, to per-
form this I am using sci-kit learn TruncatedSVD.

The similarity measure I used is the cosine similarity, this is most commonly
used in information retrieval.

This measures the similarity between two vectors. More precisely it is the angle
between the vectors. The calculation is a follows:

The dot product of two vectors a = (a1, a2, a3, ..., an), b = (b1, b2, b3, ..., bn)

a.b =
∑n

i=1 aibi = a1b1 + a2b2 + a3b3 + ... + anbn

The magnitude of a vector a

||a|| =
√

(a1)2 + (a2)2 + (a3)2 + ... + (an)2

cos = a.b
||a||||b|| [5]

4.8 Challenges
4.8.1 Adapting whole emails

Initially my idea was to store whole emails and match the whole input to the
most similar. If there was a guarantee that each email was about one topic and
asking one question then this approach would have been satisfactory, but this is
no guarantee. A key part of case-based reasoning is the adaption phase. In the
case of textual case-based reasoning this is even more tricky. Unlike case-based
reasoning where adaption has been researched, after doing considerable research
on textual it seems adaption have been focused on structural cases, I therefore
decided that this was not the most appropriate choice to take. As part of this
research I came across a few other approaches that others have taken instead
of trying to adapt when using textual case-based reasoning. The approach I
decided on is composition as seen above which comprises of filling the case base
with questions and responses and matching questions in the input to them.

4.8.2 Question identification

The part of an email that dignifies a response is generally the fact that a ques-
tion has been asked. Using the approach of composition the identification of

15

what sentences are in the form of a question is a key aspect required to allow
the system to start working on response. Due to the different ways in which
people ask questions this is not a straight forward task. A simple way to check
would just be the presence of a question mark, but there is no guarantee that a
sender will use correct grammar or punctuation, so therefore the focus needs to
be on the words written. Regarding the words another simple approach would
be to check if the sentence starts with what/why/when, but again questions can
be written in many ways with different word ordering, so this will only pick up
a fraction of cases.

After going with the Stanford parser and checking the penn treebank tags, there
are cases where SQ and SBARQ do not cover all questions. In particular indi-
rect questions are picked up in SBAR tags, but thats not all SBAR tags pick
up. In many circumstances sentences that are not indirect questions are labeled
as SBAR if we look at what the tag represents we can see why:

"SBAR is used for relative clauses and sub ordinate clauses including indirect
questions." [3]

As I do not have the required knowledge to understand the technical structure
of questions it was difficult for me to derive a way to distinguish between a
question or statement that is tagged as SBAR. After doing research in the area
I am not sure if it is even possible to determine this based on just the tags. To
get around this I trained a classifier to handle the cases where only SBAR exists
to determine if the sentence is a statement or question.

4.8.3 Writing styles

My initial way of thinking was to tokenise the input email into sentences, just
take the questions and find the most similar in the case base, disregarding all
of the statements. However because of the different styles of writing each indi-
vidual possesses this has many flaws. if we look at the example below:

I am studying maths, physics and chemistry, do you accept these A-levels for
entry?

If written in this way all required information will be picked up by using my
first approach. Another way of writing this could be:

I am studying maths, physics and chemistry. Do you accept these A-levels for
entry?

The same as the first but split into two sentences. Now if we just take the ques-
tion, we are missing crucial information that is necessary to successfully answer
the question. A simple solution would be to take the question and the sentence

16

before it. But if we have:

I am studying maths, physics and chemistry. I am from Cardiff. Do you accept
the A-levels mentioned for entry?

or

Do you accept these A-levels for entry? I am studying maths, physics and chem-
istry.

In a lot of circumstances the sentence before could be completely unrelated.
With the addition of more questions and statements adding to the complexity
of an email there is no pattern of ordering that exists for all cases. Therefore
given all of the separate sentences of an email I needed a way to work out what
statements, if any, are related and required to be able to answer each of the
questions being asked. To do this again I have used a classifier to determine the
topic of all the sentences in the input and then match questions to the sentences
where the topics are the same.

4.8.4 GUI development

Due to my inexperience with creating graphical user interfaces using python, or
any language for that matter it took longer than I initially thought to create
the user interface and the workings behind it. First I had to decide what GUI
package to use. I had briefly used tkinter before and not really liked it so
I decided to use PyQt as it seemed to be another popular choice that had
good documentation. To gradually build the interface I utilised tutorials and
examples online to gain knowledge of the widgets and layouts available within
the package and how to use them correctly.

4.8.5 Measuring similarity/Creating vectors

Measuring the similarity between the input and case base is crucial to the quality
of the response that is given. A simple method I initially went with was to use
the classic bag-of-words model, but as the number of words that are added
to the corpus is increased the vectors move towards having a majority of zero
entries, which tends towards making all vectors appear similar to each other
even though in real terms of the sentence they are not. All words also have an
equal value of weight in terms of measuring similarity, even words that do not
have an effect on the meaning of the sentence, which is clearly not optimal. To
improve this I decided to use latent semantic analysis, this uses tf-idf vectors as
described above.

17

5 Results and Evalution

5.1 Testing
To perform most of my testing I have written a set of unit tests using the Python
unittest module. Having these tests allows me to know what parts of the system
are still working after changes have been made. The advantage of this is I can
make all of these checks without having to manually run through the system,
which can be very time consuming.

To test the accuracy of my classifier I have used a small test set of sentences
and compared the predicted label to the expected label.

The accuracy of the questions classifier was 0.7

The question classifier was trained on a set of 38 statements and 15 questions.
As you can see the amount of training data is quite small here and therefore the
accuracy of the classifier should not be taken to seriously.

5.1.1 Parser testing

The Stanford parser itself I am assuming testing is being handled on their end
so felt there was no need to test the responses I am receiving from it. What I am
testing here are the functions I have written to extract data from the responses
I am receiving.

get_names

This test verifies that the get_names function is correctly retrieves the full
names from a sentenced returned from the parser. The test uses different sce-
narios to make sure all bases are covered and that all names will always be
found. This includes:

Bob Ford is my name.
This sentence has no name.
Lilly Nixon met with Brooke Carey for a coffee.
Do you know Rosie Farrell?

Each of these covers different situations including; one name at the start, no
name at all, two names and one name at the end. If any other scenarios are

18

brought up they can easily be added. This test covers the requirement must be
able to extract the name of the sender.

5.1.2 Case base testing

The case base testing focuses on making sure the functions are retrieving the
correct information from the cases. First a case base has to be created with
cases added that we can retrieve information from. It is unnecessary here to
retrieve values from the database as this is not what is being tested.

get_topics

This test makes sure the correct list of all topics is returned from the case base.

get_unique_topics

This test makes sure a correct list of unique topics is returned form the case
base.

5.1.3 Lsa testing

The Lsa testing makes sure that the correct question is being selected as the
most similar and the correct response is being returned. Again here a case base
must be created to measure similarity against.

get_most_similar

This test verifies that the correct most similar question is matched and the cor-
rect response is returned.

get_most_similar_threshold

This test is the same as above apart from it is checking that if the threshold is
not met then no response is returned.

These tests cover the requirement must be able to identify similar questions to
the given input.

19

5.1.4 Response generator testing

Testing of the generate_response method I believe is unnecessary here as this
function mainly makes call to functions that have already been tested. I have
therefore just written a test for is_question.

is_question

This test is to verify that the function is correctly identifying a statement from
a question. Multiple tests have been written here to test for multiple types of
questions and statements. The benefit of doing this is it will enable us to see
what types of questions are not being correctly identified which will allow us
to make improvements to the classifier more efficiently. This test covers the
requirement must be able to identify if a sentence is in the form of a question.

5.1.5 Manual testing

Obviously in this case parts of the system cannot be tested using automation
such as the quality of the responses being generated. Below are tests carried
out manually and focus on requirements that were not easy to check using au-
tomated unit testing.

System must allow the user to load emails from their desired mailbox.

Below shows screenshots of the login dialog and emails loaded into the list view
after a successful login attempt.

20

System must allow the user to save responses to a given question.
System must allow the user to save the topic of a sentence.

Below shows a screenshot of an unanswered question being displayed to the user
for input.

System must allow the user to save the similarity threshold value.
System must allow the user to edit their email signature.

Below is a screenshot of the settings dialog that allows the user to save a signa-
ture and similarity threshold.

21

5.2 Evaluation
From the tests carried out and the results of all the tests passing we could say
that the project has been a success. Although all of the requirements have been
met, what is more difficult to measure through the ability to pass a require-
ment is the systems capabilities to provide responses to a wide range of emails.
Yes right now it will identify a statement as a question in some cases, which
will incorrectly ask the user to provide a response for it. This could add incor-
rect statements into the case base and pollute it with bad data while the case
is built up. To combat this problem I have suggested below that checkboxes
should be added to allow the user to select the responses they wish to store. A
key characteristic of the system is it should improve as it is given more data.
The question classifier should identify questions with better accuracy, the topic
classifier should identify the topic of a sentence with better accuracy and the
more questions in the case bases the more responses it could retrieve without
requiring user input. As I do not have this data it is hard to say how well the
system would perform.

Even if we had this extra data the system in its current state will still make
mistakes. This is due to the issues described below, although the issue of clas-
sification could be solved by having extra data.

So does it help with email automation? At this stage with the amount of data
the system has and the amount of emails I have to test it is hard to say how well
the system works as a tool to automate email response. Only through extended
use to provide more data could we begin to truly given an honest answer to this
question.

22

5.3 Issues
5.3.1 Context of conversation

One problem that the system has is it is not aware of the context of the email
conversation, as in it is not aware of any emails in the chain before the one
it has just received. This is fine for the first email sent as nothing has come
before it so no further information apart from what is in the current email is
required. When an email is referencing the previous email sent the information
being referenced is sometimes critical to being able to answer the question. For
example below:

Thank you for your assistance on this matter. Could you please clarify which
documents you need from me and I will send them over to you ASAP.

The response given and stored for this was written when the context was known
and full knowledge of what documents were required was known. It would
be possible for a similar email to be received with different context of what
documents are required and in this case the wrong response would be given.

5.3.2 Classification

Initially my original assumption was whole emails would be stored and a single
most similar email would be picked and completely adapted to an appropriate
response. This entailed an assumption that an email would be about one topic
and asking a singular question response. I realised this was not not the correct
thinking as I could not have any assumption really about what an email could
contain, only something that would dignify a response. Then I moved to realise
adapting just one email is likely to be impossible as not all the relevant informa-
tion is certain to be contained in the stored response. The similarity between
two text passages would also likely be less accurate and harder to determine. I
then moved to retrieving multiple emails and adapting them together to form
a response. Again here identification of the relevant pieces was difficult and
providing the user with pieces that needed their input was tricky. Classifica-
tion here has no guarantee that even if the topic is the same question is not
guaranteed to be the same. Similarity is hard to measure as there could be
additional text that provides no importance in the grand scheme to the email
but will impact the similarity, so removal of this was key. All of the above lead
me towards storing the individual questions. Here the classification matching is
improved over the case above as there is a good chance they will relate to the
same thing. Of course this will not work 100 percent of the time. In the case
below:

I have studied maths. Do you accept this as an A-level subject? I would also
like to enquire as to whether a computing foundation year course from another
university would be accepted as a means of entry to the Computer Science with

23

Security and Forensics course?

The last two sentences would be identified as questions and all topics would
be identified as "Qualifications". The first sentence would be combined with
each question and searched for most similar. Of course this is wrong, only the
first question should be attached with the sentence. A way to work around this
would be to make the labels more specific, but currently with amount of data I
had this would not be feasible.

6 Future Work

6.1 Check responses to store
Starting with the initial use of the system, unless the user already has data
built up that they can use, the data stored will be minimal, which will cause
the system to initially make mistakes. These mistakes mentioned above will
lead to a build up of bad data in the case base which will cause the system to
never function correctly. Therefore it is vital that something is put in place to
stop this from happening. My way to solve this would be to add a checkbox for
each sentence the system has decided is a question and let the user check what
responses they wish to store in the case base.

6.2 Spelling correction
As with any system we should be anticipating that the user will make some
mistakes. Whether it be the original message sender or the current user of the
system. In our case, as we are working with text, trying to classify, parse and
identify similar text blocks, mistakes here can have a large impact on the over-
all quality of the end result. The key mistake and most common mistake I am
referring to is spelling mistakes. As the vectors used in most features of the
system are created using the words in the sentence, a mistake in these vectors
will impact the similarity between two vectors and could have an impact on the
classification given.

Say we have 20 questions in total including the one below and the one to compare

What are the minimum qualifications that need to be met?

and we have two examples to compare one with a spelling mistake and one
without.

Are there any minimum qualifications that I will need to meet?
Are there any minmum qualifications that I will need to meet?

24

If we convert them to possible tf-idf vectors we could have:

1 [0.022, 0, 0, 0.23, 0.19, 0.016, 0, 0, 0.07, 0.01, 0, 0.06, 0.022, 0.105, 0.161, 0]

2 [0.02, 0.015, 0.073, 0.209, 0.172, 0.015, 0.005, 0.039, 0.063, 0.01, 0.146, 0, 0,
0, 0, 0]
3 [0.02, 0.015, 0.073, 0, 0.172, 0.015, 0.005, 0.039, 0.063, 0.01, 0.146, 0, 0, 0, 0,
0.272]

The cosine similarity between 1 and 2 is 0.716.
The cosine similarity between 1 and 3 is 0.278.

So we can see here what a different one spelling mistake can make, this will
be the difference between a correct response being selected or not. The way
to minimise this would be to implement some kind of spelling correction that
could handle mistakes when loading in emails and when free typing.

6.3 Feedback to user
As the amount of training data increases the amount of time to train the model
increases. On selecting the button to train there is no current feedback to the
user to let them know that training is taking place or in what stage of the process
it is at. All users will want to know the state of the system so they know when
they can carry on using it. As the amount of cases stored also increases the
time to generate the response will also increase as it will have more questions
to measure similarity against. Both of these stages should provide feedback to
the user. This could be a waiting wheel at minimum, but preference would be
a progress bar, as it gives more indicating on the amount of time remaining.

6.4 Polish UI
The look and feel of the system is very import as it is what the user sees and
interacts with. A poor user interface can make or break a system and can even
go as far as stop people from using it no matter how good the functionality. To
improve what I currently have I believe the email list view could be improve
to replicate more of what we see in an email client. I do not believe any of
the current widgets in PyQt can give us this look so a custom widget will have
to be created. Things start to get a bit messy when unanswered questions
are rendered in the window, particularly when they are longer. It seems other
widgets are made smaller to make room in the window. Some sort of fixed sizing
here would be preferable.

6.5 Support for more emails
In most cases more options for the user is always preferable. In the cases of
emails there is a vast amount of options in terms of accounts. With people

25

having personal and work emails often from different providers it would be nice
for them to be able to use any account within the system. Currently the only
supported account is Outlook Office 365 as it was easy to test through my
university email account, but obviously popular options such as gmail should
be added. Google actually has a gmail API available that would be used to
implement this feature. Options for other accounts could allow users to input
IMAP and SMTP server addresses and ports.

6.6 Paragraph vector
As stated one of the most important features is the find the most similar question
in the case base. The problem with the bag-of-words tf-idf model is the ordering
of the words is lost and the semantics of the words are ignored. Trying different
approaches here would be nice to see if we can produce better results. Google
have proposed an unsupervised learning algorithm here [13] called Paragraph
Vector. The way it works is using prediction of the next word to appear in
the paragraph given the context. This is achieved by using a combination of a
matrix of trained paragraph vectors and word vectors in the current context.
Observed results have shown that it outperforms many other techniques for
representing text. On text classification such as what I am using it has given
improvement of around 30%. Using this approach improves on the two issue
mentioned above that the bag-of-words model has.

7 Conclusion
Email is one of the key forms of communication today and an automated tool
would put us in a position to save time and increase productivity. To make
strides towards this I have proposed a system that utilises natural language
processing and machine learning techniques that continually improves as it re-
ceives more emails to generate responses from.

The main aim for the project was to try and add some level of automation
to email response, to go about achieving this I have focused on a case based
reasoning approach where previous emails and responses are stored and used to
respond to new messages. My area of focus was the role of an admissions tutor
due to the availability of data that I could have access to.

To achieve this I have had to address a few challenges:

• The identification of questions which was established by parsing each sen-
tence and looking for SBARQ and SQ tags if this could not be found and
their exists an SBAR tag then a classier is used to determine at question
or not.

• The adaption of emails is a difficult task and not a well researched area.
I have used a different approach where I am splitting down emails and

26

using composition to build a response from a list of previous responses.

• The approach above introduced a new problem of the different styles of
writing people have and relating important information to each question.
This was solved by classifying each sentence and combining matching top-
ics.

• The key aspect is the way to measure how similar documents are to one
another. To do this I am using latent semantic analysis to create vectors
from the sentence and using the cosine similarity to obtain a similarity
value.

To test the system I have made use of a combination of automated unit testing
and manual testing. The unit tests can be run to make sure the inner workings
of the system are functioning correctly and the manual tests handle the user
interface and functionality behind loading and sending emails - common work
flows that a user would easily notice problems with.

Although all requirements have been met the quality of the system is hard to
analyse from a short testing phase. Even though the system does make mistakes
at this stage in the identification of questions and topics, this is likely due to
the small amount of training data the system has used.

I have proposed a list of future enhancements to the system which both aid
in the fixing of some of the key issues identified, improving the usability and
performance. This includes:

• Adding checkboxes to allow the user to select what responses to store.

• Adding spelling correction to stop user error effecting similarity compari-
son.

• Providing feedback to the user to improve usability.

• Updating the UI to improve the familiarity and usability.

• Adding support for more emails to provide more flexibility to users.

• Implementing paragraph vectors to check for improved vector construction

Overall the system provides some level of automation to email response but
initially will require a lot of input from the user. Provided the email is the first
in the conversation it is possible for a reasonable response to be given. To work
for all cases a way for the system to remember the context of the conversation
would need to be implemented.

27

8 Reflection
In this stage of my career most projects will pose a range of difficulties that I
will have not encountered before and present challenges and learning that takes
time. Most of the assumptions made at the start of the project had in fact
changed drastically throughout which made a big impact on the way the system
worked.

From the start I had assumed I would be developing the system using Java, as
this is what I had most experience with using it for most programming modules
throughout the course. I had knowledge that there were machine learning and
natural language processing libraries that could help with some of my tasks.
Most of these libraries exist for Python but not Java. So I had the decision of
using Java and writing all of the code myself or using Python. I have very little
experience using Python, only a module in first year, so initial time to brush
up on my skills would be required. I decided to use Python as I believed it to
be unnecessary to re implement features just because of a language preference,
so deemed Python more suitable. This gave me an appreciation of selecting an
appropriate tool to perform a task and not just sticking to what I am familiar
and comfortable with. Being out of our comfort zone is a good way to enhance
learning [14] and widen our knowledge areas. Hence giving me more options in
my ?comfort zone? for later projects.

As my approach evolved the identification of questions became key to the in-
ner workings of the system. As an email has been sent I am assuming that a
question will always be in there, otherwise there would be no need to send the
email in the first place. The different approaches mentioned above in challenges
outlines the different methods attempted to provide the most accurate discovery
of questions. Each step taken has removed an assumption about how questions
will be written until we get to the stage where there are no assumptions in place.
This is a way of looking at and sort of breaking down a problem that I had never
used before and gives me a new way to solve problems that I never thought of
using before. This task is difficult to achieve and still the method used does not
100% guarantee that just questions will be identified. For the time constraints
on the project sometime compromises have to be made and I believe this is the
best I could have got it. Problems like this helps you understand that some-
times perfection is not achievable due to restriction that are in place or to the
difficultly of the problem, but getting as close as possible is what we can hope
to achieve. This has also shown me another area to which classification can be
applied.

A less substantial part of the project is the UI and took up more time than
perhaps it should. This time could have been spent elsewhere improving the
quality of the email response itself. Usability is a key factor here but what the
UI was written in is not. Possibly creating a web application instead may have
been a better decision as I have more experience in this area. In reality there

28

was no thinking behind the approach I took which was a mistake on my part.
The case of using Python is a bit different to what we have here as Python
was selected due to the libraries available and the functionality used there was
crucial to the workings of the system. In the case of the UI selecting something
that I could work with quickly would have been the better choice. In the future
this will help me thinking about my options before getting straight to coding.
It will also help me make better decisions by analysing the current situation
including time constraints and important parts of a project.

References
[1] I. G. P. A?airs. Interconnected World: Communication and Social Net-

working. url: http://www.ipsos-na.com/news-polls/pressrelease.
aspx?id=5564.

[2] Anjuli Kannan et al. “Smart Reply: Automated Response Suggestion for
Email”. In: (2005).

[3] Ann Bies et al. “Bracketing Guidelines for Treebank I I Style Penn Tree-
bank Project”. In: (1995).

[4] Hinrich Schutze Christopher D. Manning Prabhakar Raghavan. Introduc-
tion to Information Retrieval. Cambridge University Press, 2008.

[5] Cosine Similarity. url: https://en.wikipedia.org/wiki/Cosine%5C_
similarity.

[6] scikit-learn developers. Model persistence. url: http://scikit-learn.
org/stable/modules/model%5C_persistence.html.

[7] scikit-learn developers. sklearn.feature_extraction.text.TfidfVectorizer. url:
http://scikit- learn.org/stable/modules/generated/sklearn.
feature%5C_extraction.text.TfidfVectorizer.html.

[8] scikit-learn developers. sklearn.linear_model.SGDClassifier. url: http:
//scikit-learn.org/stable/modules/generated/sklearn.linear%
5C_model.SGDClassifier.html#sklearn.linear%5C_model.SGDClassifier.

[9] The Python Software Foundation. imaplib IMAP4 protocol client. url:
https://docs.python.org/3/library/imaplib.html.

[10] The Python Software Foundation. smtplib SMTP protocol client. url:
https://docs.python.org/3/library/smtplib.html.

[11] Stanford CoreNLP Group. CoreNLP Server. url: https://stanfordnlp.
github.io/CoreNLP/corenlp-server.html%5C#api-documentation.

[12] Luc Lamontagne and Guy Lapalme. “APPLYING CASE-BASED REA-
SONING TO EMAIL RESPONSE”. In: ().

[13] Quoc Le and Tomas Mikolov. “Distributed Representations of Sentences
and Documents”. In: ().

29

[14] Andy Molinsky. If You?re Not Outside Your Comfort Zone, You Won?t
Learn Anything. url: https://hbr.org/2016/07/if- youre- not-
outside-your-comfort-zone-you-wont-learn-anything.

[15] Ibrahim Naji. 10 Tips to Improve your Text Classification Algorithm Ac-
curacy and Performance. url: http://thinknook.com/10-ways-to-
improve-your-classification-algorithm-performance-2013-01-
21/.

[16] Maja Pantic. Introduction to Machine Learning & Case-Based Reason-
ing. url: https://ibug.doc.ic.ac.uk/media/uploads/documents/
courses/syllabus-CBR.pdf.

[17] Tf-Idf. url: http://www.tfidf.com.

[18] Alex Thomo. “Latent Semantic Analysis”. In: ().

[19] Jana Vembunarayanan. Tf-Idf and Cosine similarity. url: https : / /
janav.wordpress.com/2013/10/27/tf-idf-and-cosine-similarity/
/.

[20] Rosina O Weber and Kevin Ashley. “Textual Case-Based Reasoning”. In:
(2005).

30

