
Cardiff University, School of Computer Science and Informatics

Edge-driven Real-time Vehicular Services
Initial Plan
CM3203

Samuil Velichkov
C1418948

February 5, 2018

Supervisor: Prof. Omer Rana
Moderator: Dr. Bailin Deng

1



1 Project Description

The ever-increasing data usage in information and communication technology, es-
pecially with the growing popularity of the Internet of Things(IoT), is making it
challenging for existing cloud-based, centralised systems to draw actionable insights
in near real-time. In cloud-centric IoT applications, the sensor data is extracted, accu-
mulated and processed at the public or private clouds, leading to significant latencies.
This is a particularly relevant problem with the gaining popularity of connected and
autonomous vehicles which are predicted to generate and consume roughly 4 terabytes
of data, every eight hours of driving by 2020[1]. With the increasing feature set and
the vast number of connected vehicles predicted, a more decentralised approach is
necessary and it is “Fog & Edge Computing” which will be in the forefront of solving
this data deluge.

Instead of moving big data to cloud resources for processing, computation is brought
closer to the source, in micro data centres located at the edge of the network, closer
to the user. It is expected that such architecture will be integrated with established
communication infrastructures, in road-side radio towers and in the vehicles them-
selves. By doing this, communication latency will be reduced and real-time vehicular
services such as ride sharing, car sharing, navigation-related services and safety sys-
tems such as emergency assistance and any other car capabilities, which otherwise
rely on a cloud or back-office connection, would be greatly improved, leading to a
better quality of service(QoS). Connected and autonomous vehicles will be in the
center of the “Fog & Edge Computing” movement and will drive the improvement of
intelligent transportation systems.

In this project I will evaluate the advantages and limitations of using “Fog” and
“Edge” nodes by creating a functional internal car network which replicates a real
connected car’s CAN bus (Controller Area Network)[2] and address different com-
plexity and security challenges associated with this approach. The system will be
designed to collect or emulate numerous sensor information such as speed, accelera-
tion, proximity, location etc. and process this data locally using distributed nodes in
an attempt to reduce the amount of information relayed to cloud services and simu-
late as closely as possible a real CAN bus. Using the attained results, I will compare
and contrast the proposed architecture optimisation with a cloud-based approach. Is-
sues around security, such as potential attack patterns relevant to vehicles, privacy in
the context of this work and potential integration with Cardiff University’s “Formula
Student” race car will also be explored.

2



2 Project Aims and Objectives

To achieve the aim of the project, to simulate an internal car network, namely the
CAN bus, “Raspberry Pi” System on a Chip(SoC) boards will be used in conjunc-
tion with various types of sensors, in order to mimic a vehicle’s Electronic Control
Units(ECUs)[3]. An example of an ECU would be the ECU that takes sensor readings
from the powertrain, and sends them to the Instrument cluster, which itself does the
processing, interpreting and displaying of the data. The goal is to create a complete
simulator of the car network, with one “Raspberry Pi” acting as a Smart Connected
Vehicle Gateway(SCV) and multiple others(ECUs) relaying to it data collected from
sensors e.g. Fig 1. The SCV then uses this data and processes it locally, obtaining
concise, insightful information about the car’s e.g. speed, location, proximity to other
vehicles and more, thus acting as an “Edge” node.

Figure 1: Visualisation of Vehicle CAN bus with ECU Consolidation[4]

Some of this compiled and filtered information is then relayed to the appropriate
“Fog” nodes. In a real field test, these nodes would be represented by nearby cell
towers that contain small servers or micro data warehouses and gather information
from all “Edge” nodes (cars) on the road and process it further. They then send the
concise data to cloud services (e.g. improving geo-location data, traffic information,
accidents etc.).

3



• Research the topic of “Fog and Edge Computing”

– Fully understand what it is.

– What implications are there?

– How it affects current and future communications infrastructures?

– Use the attained knowledge to create the design and structure of the system
accordingly.

• Configure multiple Raspberry Pis

– Test the Automotive Grade Linux[5] distribution.

– Set up networking to communicate them with each other.

– Pick out sensors to attach to the boards.

• Implement a simulator of a car’s CAN bus, OBD(On-board diagnostics) and
ECU’s

– Research the workings of the CAN bus and how the in-vehicle components
communicate.

– Design an architecture mimicking the environment.

– Determine how many Raspberry Pis will be needed for a good overall
simulation of the active ECUs in a car.

– Use Java and any other necessary languages/frameworks to develop a
framework for simulating the separate ECUs and SCV gateway. Package
it appropriately so it can be extended in the future.

– Supplement the framework with a web-based interface to nicely visualise
the processed data from the individual nodes.

– Investigate the potential usefulness of implementing the car simulator with
the Cardiff University’s “Formula Student” race car project.

• Investigate Attack Surface and Privacy of the designed simulator

– Find possible weak points.

– Uncover and list potential attack patterns relevant to vehicles.

– Research virtualisation possibilities of separate components in the system.

• Evaluate the advantages and limitations of using “Fog” and “Edge”, distributed
architecture

– Clearly state the benefits and drawbacks of such an approach referring to
the results of the simulation.

– Show the implications and potential opportunities this approach gives rise
to.

4



3 Work Plan

On a weekly basis, short meetings will be scheduled with my supervisor for guidance
and tracking of the progress on the project. Depending on the availability of the su-
pervisor and necessity or urgency, meetings may be altered to fortnightly ones. Each
week I will be working on a set of tasks which lead up to milestones and I have set the
appropriate deliverables. During progression with the project I will be taking notes
and compiling them into a report. Using the following weekly plan, my aim is to keep
track of said tasks, milestones, deliverables and special review meetings:

Week 1: Jan 29 - Feb 4

– Investigate existing Fog & Edge computing solutions and how they affect cur-
rent and future communications infrastructures

– Complete Initial Plan

– Meet with supervisor to discuss Initial Plan

– Amend Initial Plan if necessary

Week 2: Feb 5 - Feb 11

– Submit initial Plan

– Research existing in-vehicle, connected car communications solutions

– Background research on Fog & Edge computing hardware solutions

– Background research on Fog & Edge computing simulators (iFogSim)

Week 3: Feb 12 - Feb 18

– Background research on Fog & Edge computing infrastructure

– Begin designing the architecture for the proposed system

– Milestone: Finalize requirements for the simulator, e.g. sensors to use, Rasp-
berry Pi count, processing to be done on central node, potential virtualisation
of components

Week 4: Feb 19 - Feb 25

– Setup Raspberry Pis with Automotive Grade Linux distribution

– Set up networking to communicate them with each other

– Pick out sensors to attach to the boards and make sensor probes

– Take pictures of the devised system

Week 5: Feb 26 - Mar 4

– Create a GitHub repository to store the developed scripts and framework

– Create first draft of the simulator framework

– Collect sensory data from the ECUs

5



Week 6: Mar 5 - Mar 11

– Test and record the network throughput and efficiency of this first revision

– Store compiled sensory information locally into logs/NoSql database

– Improve framework as necessary

– Update repository

Week 7: Mar 12 - Mar 18

– Improve framework as necessary

– Test and record new iteration throughput and efficiency

– Update repository

Week 8: Mar 19 - Mar 25

– Improve framework where necessary

– Milestone: Finalise simulator, which by this point should be mostly complete

– Record results from testing the throughput and efficiency

– Review Meeting with supervisor to check whether simulator is sufficient

Week 9: Mar 26 - Apr 1

– Develop a web-based interface which extends the framework

– Collect data from sensors to display on the interface

Week 10: Apr 2 - Apr 8

– Compare created solution to existing vehicle systems and locate potential se-
curity vulnerabilities and state where it has been improved

– Investigate attack surface of possible existing in-vehicle communications solu-
tions and devise attack methods

– Investigate the potential usefulness of implementing the car simulator with the
Cardiff University’s “Formula Student” car

Week 11: Apr 9 - Apr 15

– Use the notes and information taken from the design, development and testing
to write the report

– Whilst writing the report, reflect back on the development process and find
where improvements can be made and adjust if necessary

Week 12: Apr 16 - Apr 22

– Continue writing the report evaluating the product as progressing

– Review Meeting with supervisor to go over the overall report and simulator

Week 13: Apr 23 - Apr 29

– Continue tweaking and improving the report

– Based on the supervisor feedback, adjust the report or the simulator if needed

6



Week 14: Apr 30 - May 6

– Milestone: Adjust and add finishing touches and make a complete review of
the report

Week 15: May 7 - May 11

– Deliverable: Submit the final report and program source code

7



References

[1] ’Automobilia LA’ - Brian Krzanich [ONLINE]
Available at: https://automobilityla.com/speaker/brian-krzanich/
[Accessed 22 Jan 18].

[2] ’CAN bus’ - Wikipedia, the Free Encyclopedia [ONLINE]
Available at: https://en.wikipedia.org/wiki/CAN bus
[Accessed 23 Jan 18].

[3] ’Electronic control unit’ - Wikipedia, the Free Encyclopedia [ONLINE]
Available at:
https://en.wikipedia.org/wiki/Electronic control unit
[Accessed 23 Jan 18].

[4] ’The Smart and Connected Vehicle and the Internet of Things ’ - Flavio Bonomi
[ONLINE]
Available at:
https://tf.nist.gov/seminars/WSTS/PDFs/1-0 Cisco FBonomi ConnectedVehicles.pdf
[Accessed 21 Jan 18].

[5] ’Automotive Grade Linux’ - The Linux Foundation - Automotive Grade Linux
[ONLINE]
Available at: https://www.automotivelinux.org/about
[Accessed 24 Jan 18].

8


