Towards an Understanding of Human Persuasion and Biases in Argumentation

Pierre Bisquert, Madalina Croitoru, Florence Dupin de Saint-Cyr, Abdelraouf Hecham

INRA & LIRMM & IRIT, France

July 6th 2016

Objectives

- Why are "good" arguments not persuasive?
- Why are "bad" arguments persuasive?
- How can we prevent these negative processes?
- \Rightarrow General aim: improve the quality of collective decision making

Persuasion in Al

• Interactive technologies for human behavior

- Persuade humans in order to change behaviors [Oinas-Kukkonen, 2013]
- ⇒ Health-care [Lehto and Oinas-Kukkonen, 2015], environment [Burrows et al., 2014]

• Dialogue protocols for persuasion

- Derived from logic and philosophy [Hamblin, 1970], [Perelman and Olbrechts-Tyteca, 1969]
- ⇒ Ensure rational interactions between agents [Prakken, 2006]

Argumentation theory

- Abstract and logical argumentation [Dung, 1995], [Besnard and Hunter, 2001]
- ⇒ Dynamics and enforcement [Baumann and Brewka, 2010], [Bisquert et al., 2013]
- etc.

Our Approach

- Our approach: how does it "work"?
- Link between persuasion and cognitive biases [Clements, 2013]
 - Computational analysis of cognitive biases
- \Rightarrow Explain why an argument has been persuasive or not
- \Rightarrow Understand better human persuasion processes
- \Rightarrow (Hopefully) Allow people to prevent manipulation attempts

Outline

1 Computational Model and Reasoning

- Dual Process Theory
- S1/S2 Formalization
- Reasoning with the Model

2) Argument Evaluation

3 Conclusion

Dual Process Theory

- Based on the work of **Kahneman** (and **Tversky**) [Tversky and Kahneman, 1974]
- System 2 (S2)
 - Conscious, thorough and slow process
 - Expensive and "rational" reasoning
- System 1 (S1)
 - Instinctive, heuristic and fast process
 - Cheap and based on associations
- Biases (generally) arise when S1 is used
 - fatigue, interest, motivation, ability, lack of knowledge

Our take on S1 & S2

• S2 is a logical knowledge base

- Beliefs
 - "Miradoux is a wheat variety", "wheat contains proteins"
- Opinions
 - ★ "I like Miradoux", "I do not like spoiled wheat"
- S1 is represented by special rules
 - "PastaQuality is associated to Italy"
- Biases arise when S1 rules are used instead of S2 rules
 - Cognitive availability

But how do we build them?

- Knowledge base: Datalog +/- ([Arioua et al., 2015])
 - "Miradoux is a wheat variety":
 - "Wheat contains proteins":
 - "I like Miradoux":
 - \Rightarrow Denoted **BO**
- Associations: obtained thanks to a Game With A Purpose
 - Allows to extract associations for different profiles
 - Associations are (manually) transformed
 - ▶ (PastaQuality, Italy): $\forall X \text{ highQualityPasta}(X) \rightarrow madelnItaly(X)$
 - \Rightarrow Denoted **A**
- Each rule has a particular cognitive effort
 - function e

wheat(miradoux) $\forall X \text{ wheat}(X) \rightarrow \text{proteins}(X)$ like(miradoux)

Example

	<i>B</i> ₁ :	wheat(miradoux)	10
	<i>B</i> ₂ :	spoiled_wheat(miradoux2)	10
	<i>B</i> ₃ :	$spoiled_wheat(X) \rightarrow low_protein(X)$	10
BO	<i>B</i> ₄ :	$low_protein(X) \land has_protein(X) \rightarrow \bot$	10
	<i>B</i> ₅ :	$wheat(X) ightarrow has_protein(X)$	10
	<i>B</i> ₆ :	$has_protein(X) ightarrow nutrient(X)$	10
	<i>O</i> ₁ :	dislike(miradoux2)	5
	<i>O</i> ₂ :	$\textit{like}(X) \land \textit{dislike}(X) \rightarrow \bot$	5

$$\begin{array}{rrr} A_1: & \textit{nutrient}(X) \rightarrow \textit{like}(X) & 1 \\ A_2: & \textit{has_protein}(X) \rightarrow \textit{dontcare}(X) & 3 \end{array}$$

Α

How do we reason?

Reasoning

- **Reasoning**: $K \vdash_R \varphi$, with R a sequence from $BO \cup A$
- Successive application of rules R: reasoning path
- wheat(miradoux) \vdash_{R_1} like(miradoux), with $R_1 = \langle B_5, B_6, A_1 \rangle$:
 - ▶ B_5 : wheat(X) → has_protein(X),
 - ▶ B_6 : has_protein(X) → nutrient(X)
 - A_1 : $nutrient(X) \rightarrow like(X)$,
 - \Rightarrow Total effort of R_1 : 21
- wheat(miradoux) \vdash_{R_2} dontcare(miradoux), with $R_2 = \langle B_5, A_2 \rangle$:
 - A_2 : has_protein(X) \rightarrow dontcare(X)
 - \Rightarrow Total effort of R_2 : 13

Cognitive Model

Definition

A cognitive model is a tuple $\kappa = (BO, A, e)$

- BO: beliefs and opinions,
- A: associations,
- e is a function $BO \cup A \rightarrow \mathbb{N} \cup \{+\infty\}$: effort required for each rule,

• Cognitive availability outside of the model

Outline

Computational Model and Reasoning

2 Argument Evaluation

- Argument Definition
- Critical Questions and Answers
- Potential Status

3 Conclusion

What is an argument?

Definition

An argument is a pair (φ, α) stating that having some beliefs and opinions described by φ leads to concluding α .

"Miradoux is a very good wheat variety since it contains proteins"
 (has_protein(miradoux), like(miradoux))

How do we evaluate this argument?

Critical Questions

- CQ_1 : $BO \cup A \cup \{\alpha\} \vdash \bot$? (is it possible to attack the conclusion?)
- CQ_2 : $BO \cup A \cup \{\varphi\} \vdash \bot$? (is it possible to attack the premises?)
- $CQ_3: \varphi \vdash \alpha$? (does the premises allow to infer the conclusion?)

With argument (*has_protein(miradoux*), *like(miradoux*)):

- CQ_1 : $BO \cup A \cup \{like(miradoux)\} \vdash \bot$
- CQ_2 : $BO \cup A \cup \{has_protein(miradoux)\} \vdash \bot$
- CQ₃: has_protein(miradoux) ⊢ like(miradoux)

Positive/Negative Answers

Proofs

Given a $CQ : h \vdash c$, a cognitive value cv and a reasoning path R:

$$proof_{ca}(R, CQ) \stackrel{\text{def}}{=} (eff(R) \le cv \text{ and } h \vdash_R c)$$

where
$$eff(R) = \sum_{r \in R} e(r)$$
.

Positive/Negative Answers

Moreover, we say that:

- CQ is answered positively wrt to cv iff $\exists R$ s.t. $proof_{cv}(R, CQ)$, denoted $positive_{cv}(CQ)$,
- CQ is answered negatively wrt to cv iff ∄R s.t. proof cv (R, CQ), denoted negative cv (CQ).

Positive/Negative Answers – Example

Argument (has_protein(miradoux), like(miradoux)):

- CQ_1 is answered negatively: $\nexists R$ s.t. $BO \cup A \cup \{like(miradoux)\} \vdash_R \bot$
- CQ_3 is answered positively (with $cv \ge 21$): has_protein(miradoux) \vdash_{R_1} like(miradoux) with $R_1 = \langle B_5, B_6, A_1 \rangle$

Potential Status

Potential Status of Arguments

Given ca, we say that an argument is:

 acceptable_{ca} iff there is an allocation c₁ + c₂ + c₃ = ca s.t. negative_{c1}(CQ₁), negative_{c2}(CQ₂), positive_{c3}(CQ₃)

The agent may potentially accept the argument

 rejectable_{ca} iff positive_{ca}(CQ₁) or positive_{ca}(CQ₂) or negative_{ca}(CQ₃).

The agent may potentially reject the argument

- An argument can be both acceptable_{ca} and rejectable_{ca}
- How can we be more precise about the status?

Potential Status

Potential Status of Arguments

Given ca, we say that an argument is:

 acceptable_{ca} iff there is an allocation c₁ + c₂ + c₃ = ca s.t. negative_{c1}(CQ₁), negative_{c2}(CQ₂), positive_{c3}(CQ₃)

The agent may potentially accept the argument

• **rejectable**_{ca} iff positive_{ca}(CQ₁) or positive_{ca}(CQ₂) or negative_{ca}(CQ₃).

The agent may potentially reject the argument

- An argument can be both acceptableca and rejectableca
- How can we be more precise about the status?
 - Work in progress...
 - Reasoning tendency: preference relation over reasoning path

Outline

Conclusion

- Summary
- Perspectives

- Preliminary formalization of dual process theory and its link with human persuasion
- Proposition of a cognitive model acknowledging biases during argument evaluation
- Application on a real use case (Durum wheat knowledge base, implementation of a "GWAP")

Perspectives

- Evaluation strategies
- Rationality properties
- Cognitive model update
- More elaborate logic of "beliefs and preferences"
- Empirical study

References I

Arioua, A., Buche, P., Croitoru, M., and Thomopoulos, R. (2015). Using explanation dialogue for durum wheat knowledge base acquisition. Technical report, UMR IATE, LIRMM, GraphIK, University of Montpellier.

Baumann, R. and Brewka, G. (2010).

Expanding argumentation frameworks: Enforcing and monotonicity results. In Proceeding of the 2010 conference on Computational Models of Argument: Proceedings of COMMA 2010, pages 75–86, Amsterdam, The Netherlands, The Netherlands. IOS Press.

Besnard, P. and Hunter, A. (2001). A logic-based theory of deductive arguments. *Artificial Intelligence*, 128(1-2):203–235.

Bisquert, P., Cayrol, C., Dupin de Saint Cyr Bannay, F., and Lagasquie-Schiex, M.-C. (2013).

Characterizing change in abstract argumentation systems.

In Simari, G. and Fermé, E., editors, *Trends in Belief Revision and Argumentation Dynamics*, pages 1–30. College Publications, http://www.collegepublications.co.uk/.

Burrows, R., Johnson, H., and Johnson, P. (2014).

Developing an online social media system to influence pro-environmental behaviour based on user values.

In 9th International Conference on Persuasive Technology, Extended Abstract.

References II

Clements, C. S. (2013).

Perception and Persuasion in Legal Argumentation: Using Informal Fallacies and Cognitive Biases to Win the War of Words.

BYU Law Review, 319.

Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

Artificial Intelligence, 77(2):321–358.

Hamblin, C. (1970).

Fallacies. University paperback, Methuen,

Lehto, T. and Oinas-Kukkonen, H. (2015).

Explaining and predicting perceived effectiveness and use continuance intention of a behaviour change support system for weight loss. Behaviour & Information Technology, 34(2):176–189.

Oinas-Kukkonen, H. (2013).

A foundation for the study of behavior change support systems. *Personal and Ubiquitous Computing*, 17(6):1223–1235.

References III

Perelman, C. and Olbrechts-Tyteca, L. (1969). *The New Rhetoric: A Treatise on Argumentation*. University of Notre Dame Press.

Prakken, H. (2006).

Formal systems for persuasion dialogue. *Knowledge Engineering Review*, 21(2):163–188.

Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. *Science*, 185(4157):1124–1131.

GWAP	All Participants		Experts		Non-Experts		
	Italy	\oplus	Yellowness	\oplus	Italy	\oplus	
	Cooking time	\odot	Color	\odot	Cooking time	\odot	
	Taste	\odot	Protein Content	\oplus	Price	\odot	
	Protein Content	\oplus	Texture	\oplus	Taste	\odot	
	Yellowness	\oplus	Stickiness	\oplus	Brand	\odot	
	Price	\odot	Cooking loss	\ominus	Slow Sugar	\oplus	
	Gluten	\oplus	Drying Temperature	\oplus	Tomato Sauce	\oplus	
	Brand	\odot	Hydration	\oplus	Panzanni	\oplus	

Knowledge AssociaTions Game	Score: 190pts	Home Do		omains Logou		
A Home	What do you associate 'Cat owner' with?					
U Logout	Cat owner - cats (4/4)					
Domains						
Dashboard Play About	Type in something that you associate with 'Cat owner' then hit 'En	ter'			A	bb
Cats (4/4)	∧ Y Women			64	41	×
Cat See score	∧ ✓ Cat Lover		1 der	é.	9 1	×
Cat Food See score	 ✓ Dog Hater 		ı	te _{sp}	4 1	×
Siamese Cat Breed See score	▲ ✓ House Owner		ı	- 6 4	41	×
	Submit & Save associations for scoring	Play another	concept from	m this don	nain	
B, C, D & H	Persuasion and Biases	CAF 2016		16 2		