An Overview of
Labelling-Based Justification Status

Martin Caminada
Yining Wu

Preliminaries

* Argumentation framework: graph (Ar, att) in which
— the nodes (Ar) represent a given set of arguments,
— the arrows (att) represent the attack relation.
* A labelling 1s a function Lab: Ar — {in, out, undec}.
* A complete labelling 1s a labelling s.t. For each argument A,
— A 1s labelled in iff all its attackers are labelling out.
— A is labelled out iff it has an attacker that is labelled

eg. in a gun fight
You survive iff al your attackers are killed.

You get killed iff at least one attacker remains alive.

An Example

An Example

N

® -

An Example

N

® -

An Example

N

Oc

O

Justification Status

Justification status: the set of labels that can be assigned to an argument
by the complete labellings.

®
C C lC

@)

D

O 0+«—@

o @

Justification Status

Justification status: the set of labels that can be assigned to an argument
by the complete labellings.

A.'_/.B A._/.B A '\\47) B {in, out, undec} X

N\

{in, out, undec}

C {out, undec}

C

«—@
@!

“«—@
@!

«—0

ol Tommes

{in, undec}

g e
o e
e

JS(A) =

Justification status

{in} iff A is in every complete extension.

{out} iff A is attacked by every complete extension.

{undec} iff A is not in any complete extension and
A is not attacked by any complete extension.

{in,undec} iff A is not in a complete extension and
A is in a complete extension and
no complete extension attacks A.

{out,undec} iff A is not in any complete extension and
A is attacked by a complete extension and
there is a complete extension does not attack A.

{in, out,undec} iff A is in a complete extension and
A is attacked by a complete extension.

{in,out}: impossible

@: impossible

JS(A) =

Justification status

{in} iff A is in the grounded extension.

{out} iff A is attacked by the grounded extension.

{undec} iff A is not in any admissible extension and
A is not attacked by any admissible extension.

{in,undec} iff A is not in the grounded extension and
A is in an admissible extension and
A is not attacked by any admissible extension.

{out,undec} iff A is not in any admissible extension and

A is attacked by an admissible extension and
A is not attacked by the grounded extension.

{in, out,undec} iff A is in an admissible extension and
A is attacked by an admissible extension.

{in,out}: impossible
10
0: impossible

Justification status

in grounded?

e {in}

No

attacked by srounded?

No }{out}

Y
in admissible?

No Yes

attacked by admissible? attacked by admissible?

y
{undec} {out>ec } {in, undec} {in, out, undec}

Degrees of Justification status

-
Lo

strong accept {jﬂ}

acceptance

weak accept {in, undec}

7N

undetermined borderline case {in, out, undec} {undec} determined borderline case

~N 7

weak reject {out, undec}

strong reject {out}

rejection

12

Justification status
Proposition

e A is in the grounded extension iff it is strongly accepted.

o if A is in every preferred extension then A is strongly or weakly

accepted.

e A is in at least one preferred extension iff A is strongly accepted ,
weakly accepted, or undetermined borderline.

e if A is strongly accepted then A is in every semi-stable extension.
if A is weakly accepted then A is in at least one semi-stable exten-

sion.

e A is in an ideal set iff A is member of an admissible set consisting
only of strongly or weakly accepted arguments.

13

Justification Status of Conclusions

* each argument A has a conclusion Conc(A) €/

* a conclusion labelling 1s a function
ConcLab: / — {in, out, undec}

* Given an argument labelling ArglLab, we define
the associated conclusion labelling ConcLab s.t.
ConcLab(c¢) 1s the label of the “best” argument for ¢
(or out, 1f no argument for ¢ exists)

Justification Status of Conclusions

* each argument A has a conclusion Conc(A) €/

* a conclusion labelling 1s a function
ConcLab: / — {in, out, undec}

* Given an argument labelling ArglLab, we define

the associated conclusion labelling ConcLab s.t.
ConcLab(c) = max({ArgLab(A) | Conc(A)=c} U{out})

Justification Status of Conclusions

* each argument A has a conclusion Conc(A) €/

* a conclusion labelling 1s a function
ConcLab: / — {in, out, undec}

* Given a complete argument labelling ArglLab, we define

the associated complete conclusion labelling ConcLab s.t.
ConcLab(c) = max({ArgLab(A) | Conc(A)=c} U{out})
* JS(c) = {ConcLab(c) | ConcLab is a complete conclusion labelling}

Example:Dealing with
Floating Conclusions

Brygt Rykkje 1s Dutch because he was born in Holland
Brygt Rykkje 1s Norwegian because he has a Norwegian name

Brygt Rykkje likes ice skating
because he 1s Norwegian

Brygt Rykkje likes ice skating
because he 1s Dutch

Example:Dealing with
Floating Conclusions

John says the suspect killed the victim by stabbing him
Bob says the suspect killed the victim by shooting him

The suspect killed the victim,
because Bob says the suspect killed the victim by shooting him

The suspect killed the victim,
because John says the suspect killed the victim by stabbing him

Example:Dealing with
Floating Conclusions

Conc(A)=a
Conc(B)=b
Conc(C)=¢
Conc(D) =¢

ArglLab = ({A, D}, {B,C}, 0)
ConcLab = ({a, ¢}, {b}, 0)

ArgLab_ = ({B,C}, {A,D}, 0)
ConcLab_ = ({b, ¢}, {a},)

ArglLab = (4, @, {A,B,C,D})
ConcLab, = (4, 4, {a,b,e})

JS(e) = {1in, undec} (weak accept)

Labelling-Based JS:

provides levels of justification based on standard AFs
(so no probabilities or other numerical add-ons)

provides a more refined status
than the usual extension based approached
(e.g. grounded or credulous preferred)

can easily be computed (based on existing
proof procedures for grounded and preferred)

can be applied to arguments as well as to conclusions
(floating conclusions become weakly accepted)

20

[iterature

* Yining Wu and Martin Caminada
A Labelling-Based Justification Status of Arguments
Studies 1n Logic 3(4):12-29 (2010)

* Wolfgang Dvorak
On the Complexity of Computing

the Justification Status of an Argument
TAFA post proceedings, pages 32-49 (2012)

21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

