Detecting deceptive reviews using Argument Mining

Oana Cocarascu Imperial College London

Truthful or deceptive?

Their service was amazing, and we absolutely loved the beautiful indoor pool. I would recommend staying here.

 \star

The staff was super friendly and helpful and the location was fantastic. Highly recommended!

Pathetic and rude. Hotel better find some better employees for their guests to truly enjoy their stay.

Approach

- mine Argumentation Frameworks (AFs)
- argumentative features for classifiers from dialectical strength

- Opinion spam (Ott et al. 2011, Shojaee et al. 2013, Fusilier et al. 2015)
- **Opinion spammers** (Lim et al. 2010, Mukherjee et al. 2012)
- Argument Mining (Palau & Moens 2011, Lippi & Torroni 2016)
 - argumentative sentence
 - argument components
 - relations between arguments

Overview

Argumentation Frameworks (AFs)

- Abstract Argumentation Framework (AAF)
- Abstract Bipolar Argumentation Framework (BAF)

Example

r_{1:} 'It had nice rooms but terrible food.'

r_{2:} 'Their service was amazing and we absolutely loved the room. They do not offer free Wi-Fi so they expect you to pay to get Wi-Fi...'

Extracting arguments

r₁:'It had nice rooms but terrible food.'

r_{2:} 'Their service was amazing and we absolutely loved the room. They do not offer free Wi-Fi so they expect you to pay to get Wi-Fi...'

a₁₁: It had nice rooms
a₁₂: (It had) terrible food

a₂₁: service was amazing

a₂₂: absolutely loved the room

*a*₂₃: they do not offer free Wi-Fi so they expect you to pay to get Wi-Fi

- a₁₁: It had nice rooms (+)
 a₁₂: (It had) terrible food (-)
- **a**₂₁: service was amazing (+)
- **a**₂₂: absolutely loved the room (+)
- **a₂₃:** they do not offer free Wi-Fi so they expect you to pay to get Wi-Fi (-)

Determine support/attack relations

sentiment analysis -> AAF

relation-based Argument Mining + sentiment analysis -> BAF

Mining AFs for detecting deception

- topic-independent AAF
 - 2 special arguments: **G** and **B**
- (noun-level) topic-dependent BAF
 - 1 special argument: G
 - 1 special argument per topic: G_t

- arguments extracted from reviews
- 2 special arguments: **G** and **B**
- attack relation determined by argument polarity

AAF from example

- **a**₁₁: It had nice rooms (+)
- a12: (It had) terrible food (-)
- **a**₂₁: service was amazing (+)
- **a**₂₂: absolutely loved the room (+)
- **a₂₃:** they do not offer free Wi-Fi so they expect you to pay to get Wi-Fi (-)

Topic-dependent BAF

- identify topics (and related arguments)
- arguments extracted from reviews
- 1 special argument: G
- 1 special argument per topic: G_t
- relations determined using relation-based AM

Topic-dependent BAF

- **a₁₁:** It had nice **rooms** (+)
- a₁₂: (It had) terrible food (-)
- a₂₁: service was amazing (+)
- **a₂₂:** absolutely loved the **room** (+)
- a₂₃: they do not offer free Wi-Fi so they expect you to pay to get Wi-Fi (-)

Topics

- room
- food
- service
- Wi-Fi

Topic-dependent BAF - Determining relations

Feature	Detail	
number of words	for each sentence	
avg word length	for each sentence	
sentiment polarity	for each sentence	
Jaccard similarity	size of the intersection of words in sentences compared to the size of union of words in sentences	
Levenshtein distance	count of replace and delete operations required to transform one sentence into the other	
word order	normalized difference of word order between the sentences	
Malik	sum of maximum word similarity scores of words in same POS class normalized by sum of sentence's lengths (path and lch)	
combined	linear combination of semantic	
semantic and	vector similarity and	
syntactic	word order similarity (path and lch)	

BAF from example

a₁₁: It had nice **rooms** (+)

a12: (It had) terrible food (-)

- **a₂₁: service** was amazing (+)
- **a₂₂:** absolutely loved the **room** (+)
- a₂₃: they do not offer free Wi-Fi so they expect you to pay to get Wi-Fi (-)

base score of arguments

F - aggregating the argument strength

C - combining base score with the aggregated score of attackers/supporters

Calculating argument strength

base score of arguments: 0.5

1

$$\mathbf{F} = \begin{cases} 0 & n = 0\\ 1 - \log \prod_{i=1}^{n} (|1 - v_i|) & n > 0 \end{cases}$$

$$\mathbf{C} = \begin{cases} v_0 & \text{if } v_a = v_s \\ v_0 - \log(v_0 * |v_s - v_a|) & \text{if } v_a > v_s \\ v_0 + \log((1 - v_0) * |v_s - v_a|) & \text{if } v_a < v_s \end{cases}$$

Argumentative features

impact of review *r* :

strength given **R** - strength given **R\{r}**

Argumentative features in AAF

r₁ - argumentative features

AF given **R**

AF given R\{r₁}

Argumentative features in BAF

r₁ - argumentative features

AF given R\{r₁}

Deceptive reviews - standard NLP features

Category	Features	
Personalization	nr self references	
	nr 2nd person pronouns	
	nr other references	
	nr group pronouns	
Quantity	nr sentences	
	nr words	
	nr nouns	
	nr verbs	
Complexity	avg sentence length	
	avg word length	
Diversity	lexical	
Uncertainty	nr modal verbs	
	nr modifiers	

Results

Random Forests	Hotel	Restaurant
Baseline	76.25%	69%
AAF	77.75%	71.25%
BAF	79.81%	73%

Future work

- other AM techniques
- semi-supervised approach
- compute argument strength

Thank you!