Dynamic logic

AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA

A Dynamic Logic Framework
for Abstract Argumentation

Andreas Herzig
University of Toulouse, IRIT-CNRS, France

joint work with Sylvie Doutre and Laurent Perrussel

Cardiff Argumentation Forum
Cardiff, July 6, 2016

Conclusion

Why is dynamic logic relevant for
argumentation frameworks and their modification?

@ Dung argumentation frameworks usually encoded in
propositional logic
e characterise argumentation semantics by means of
propositional formulas:

Fmi(Stable) = /\ |Inz & = \/(Inp A Atty)
acA beA
@ sometimes also encoded in QBF
o useful to prove complexity results
@ dynamic logic will give us more for the same price:

@ construct extensions = execute a program
e modify an argumentation framework = execute a program
o import complexity results

43

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Outline

ﬂ Dynamic Logic of Propositional Assignments

3/43

Dynamic logic

Assignments and QBF
Which logical language for knowledge representation?
@ boolean formulas: talk about a single valuation (alias a state)

SEPp if pes
skE-e it s

@ Quantified Boolean Formulas (QBF): talk about valuations
and their modification
skEdpe if sUlptiE¢ or s\(p}Ee
sEVpe if sUlplEe and s\{p}kE=¢
@ Dynamic Logic of Propositional Assignments (DL-PA): also
about valuations and their modification, but more fine-grained
than QBF
sE(+p) if sUlplEe
skE(-py if s\iplEg

= assignments of propositional variables to truth values

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA

Assignments and propositional quantification
have same expressivity

o from DL-PA to QBF:

(+tpdp = 3Fp.(pA¢)

(-p)p = 3Ap.(-pAy)
o from QBF to DL-PA:

dp.p = (+pP)eV{(-p)¢

V.o = (+pP)p A{-P)¢
@ ...but DL-PA moreover has complex assignment programs

Conclusion

5/43

Dynamic logic

Assignment programs as relations on valuations
@ atomic
l’
s =5 suip)
-p
s — s\{p}
@ sequential composition
St pilis s3 iff there is s, such that s; I, So N S3
@ nondeterministic composition
T Umo , T , o ’
s — s'iffs— s ors—s
o finite iteration (‘Kleene star’)
s =5 ¢’ iff there is n such that s — s’
@ test
©? .
s —¢siffs=s"ands k¢

@ converse, intersection,. ..

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Capturing standard programming constructions
in dynamic logic

skip =717
fail = 17
if p then 711 else > = (?; 1) U (—¢?; 72)
while ¢ do 7 = (¢?; 7)"; —~¢?

7/43

Dynamic logic

Language of DL-PA

@ grammar of programs 7 and formulas :

moi= A4pl-plmalaun|at x| ¢?
¢ = plTILI-pleVvel{inelre
where p ranges over set of propositional variables P
@ reading:
(my¢ = “pis true after some execution of 7”
[r]l¢ = “pistrue after every execution of 7

= —|<7T>—|(10
@ therefore, more compactly:

dp.p ={+p U —p)y
Vp.p = [+p U -plp

Semantics of DL-PA: (1) formulas

@ valuation = subset of P
@ model of a formula ¢ = set of valuations Mod(y) < 2°

Mod((m)p) = {s - thereis s’ such that s —» s’ & s’ € Mod(go)}

Mod(p) ={s : p € s}
Mod(T) = 2°
Mod(L) =0
Mod(-)
Mod(e V ¢) =
)
)

= {s - foreverys’ :s—»s = s’ € Mod(go)}

Semantics of DL-PA: (1) formulas

@ valuation = subset of P
@ model of a formula ¢ = set of valuations Mod(y) < 2°

Mod((m)p) = {s - thereis s’ such that s —» s’ & s’ € Mod(go)}

Mod(p) ={s : p € s}
Mod(T) = 2°
Mod(L) =0
Mod(—¢)
Mod(e V ¢) =
)
)

= {s - foreverys’ :s—»s = s’ € Mod(go)}

o write (s, s’) € Mod(r) instead of s — s’

Dynamic logic

Semantics of DL-PA: (2) programs

@ model of a program 7 = relation on the set of valuations 2F

Mod(+p) = {(s, s’
od(—p) = [(s. s
Mod(r; ') = Mod(n od(n')
Mod(nn") = Mod(rr) U Mod(n")

U
Mod(n*) = Mod(n) U Mod
)

S’zsu{p}}
s"=s\{p}}

’

\/\/vv

keNg
Mod(n~") = (Mod(r))

Mod(¢?) = {(s,S) : s € Mod(e)}

10/43

Dynamic logic

Properties of DL-PA

@ compares favourably to PDL:

o PSPACE complete both for model checking and satisfiability
checking [Balbiani, Herzig & Troquard 2014]

o PDL: SAT is EXPTIME complete
@ consequence relation is compact
o PDL: fails
@ interesting generalisation of QBF:

@ same expressivity, same complexity
@ conjecture: more succinct

11/43

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Outline

9 Dung argumentation frameworks in propositional logic

12/43

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Dung argumentation frameworks [Dung, 1995]

@ graph (A, R)
o A=1{ay,...,an} (finite set of abstract arguments)
o RCAXA (attack relation)

@ accepted arguments E C A (‘extensions’)

e which are ‘good’?
e many candidate semantics

13/43

AFs in propositional logic
Argumentation frameworks in propositional logic
@ introduce attack variables:
ATT = {Attap : (a,b) € Ax A}

= describe attack relation by a propositional formula:

FmI(R) = [/\ Attab]/\[/\ "Atta,b)
(

(a.b)er a,b)e(AxA)\R
@ introduce acceptance variables:
IN = {Ing,...,Ing,}
= describe extensions E C A by propositional formula:
Fmi(E) = [A Ina] A [A ﬂlna)
acE acIN\E

© define semantics ...

14/43

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Argumentation frameworks in propositional logic:
defining semantics

@ stable:
Fmi(Stable) = /\ (Ina o= \/(Inp A Attb,a)]
acA beA
@ admissible:
Fmi(Adm) = /\ (Ina - A (Attb,a S (—|Inb A\ (ine /\Attc,b)))]
aeA beA ceA
@ complete:
Fml(Compl) = ...
° .

[Besnard & Doutre, NMR 2004; Baroni & Giacomin, AlJ 2007]
[Baroni & Giacomin, 2009; Besnard, Doutre & H, IPMU 2014]

15/43

AFs in propositional logic

Argumentation frameworks in propositional logic:
two examples

a—>b a—»o
(A, R1) (A, R2)
@ description of attack relation:

FmI(R1) = —Attga A —-Attpp A Attgp A —Attp 4
Fmi(R2) = —Attgq A —Attpp A Attap A Attp g

@ (A, R2) has two stable extensions: E; = {a} and E, = {b}
@ in logic: FmI(R2) A Fml(Stable) has two models

Sa = {Attap, Attp 4, Ing)
Sp = {Attap, Attp 4, Inp}

16/43

AFs in propositional logic

Argumentation frameworks in propositional logic:
general pattern

Dung propositional logic
arg. framework (A, R) Fml(R) = (A Atta,b) /\(A ﬁAtta,b)
(a,b)er (a,b)grR
candidate extension EC A | FmI(E) = (A Ina) A (A —-Ina)
ackE a¢E

semantics o
o-extensions of (A, R)
E is a o-extension of (A, R)

Fml(o) =...
models of FmI(R) A Fml(o)
= (FmI(R) A Fml(E)) > Fmi(c)

E stable extension of (A, R)
E admissible set of (A, R)
E complete extension of (A, R)

iff = (FmI(R) A Fmi(E)) — Fmi(Stable)
iff = (FmI(R) A Fmi(E)) — Fmi(Adm)
iff k= (FmI(R) A Fmi(E)) — Fml(Compl)

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Outline

e Dung argumentation frameworks in DL-PA

18/43

AFs in DL-PA

Building extensions in DL-PA

’makeExt‘T = vary(IN); Fml(o)? ‘

where vary(IN) = (+Ing, U —=Ing,);---; (+Ing, U —Ing,)

@ vary(IN) does not modify attack variables
= keeps given argumentation framework fixed

e vary(IN) nondeterministically modifies acceptance variables
= visits all candidate extensions

@ Fml(o)? tests whether the valuation is a o-extension
= output of program will be a o-extension

Let o be any semantics that can be described by a propositional
formula. Then

Mod(makeExt”) = {(31,32) : 8o € Mod(Fml(c)) and sy NATT = s, N ATT}

19/43

AFs in DL-PA

Building extensions in DL-PA

o makeExt” follows a simple ‘generate-and-test’ schema

@ more sophisticated algorithms: [Nofal et al., AlJ 2014;...]
@ building blocks:

AttByAcc(a) = v (Decb Alng A Attb,a)
beA

DefendedByAcc(a) = /\ (Attb,a — \/ (DecC Alng A Attc’b))
beA ceA

20/43

AFs in DL-PA

Building extensions in DL-PA: a better algorithm

; —Dec,;
aeA

; (if /\ -Att, o then +In,; +Dec, else skip) ;
aeA beA

while v -Dec, do
a
while \/ ((AttByAcc(a) v DefendedByAcc(a))) do
a

; (if AttByAcc(a) then —In,; +Dec, else skip) :
acA

; (if DefendedByAcc(a) then +In,; +Dec, else skip)
aeA

if /\ Dec, then skip else u (—-Deca?; (+1Ing U =Iny); +Deca)
a

aeA
Fml(o)?

21/43

AFs in DL-PA

Building extensions in DL-PA: verification

@ prove 17 correct:
Mod(n”) = Mod(makeExt”)

= can be done in the logic!

@ so:
a skeptically o-accepted in (A, R) iff F=pr.pa FML(R) — [77]Ing
a credulously o-accepted in (A, R) iff EpL.pa Fml(R) — (77)In,

22/43

AFs in DL-PA

Reasoning about argument influence in DL-PA
(cf. [Murphy et al., this workshop])

@ hypotheses:
o background framework (A, R)
o persuader and persuadee agree on R
o only a subset of A has been put on the table (by persuader)
o effect of putting forward some argument a?
@ in DL-PA:
o introduce new propositional variables:

Pub, = “a is public”

o definition of extension takes only public arguments into
account

Fmi(Stable) = /\ (Puba - (Ina o = \/ (Puby A Iny A Attb,a)]]

acA beA

o persuader puts forward a = assignment ‘+Pub,’
o persuader reasons:

?
EpLpa FM1(R) — (+Pub,)[makeExt7]In,

23/43

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Outline

0 Update and revision operations in DL-PA

24/43

Update and revision in DL-PA

Belief change operations
B o A = modification of belief base B accomodating input A

@ many operations o in the literature; most prominent:
o Winslett’'s possible models approach PMA
[Winslett, AAAI 1988]
o Winslett's standard semantics WSS [Winslett 1995]
o Forbus’s update operation [Forbus, [JCAI 1989]
o Dalal’s revision operation [Dalal, AAAI 1988]

@ concrete operations: different from parametrised operations a
la AGM or KM (that are built from orderings or distances)
@ semantical

@ state = subset of P

@ model of formula = set of states

@ result of update/revision = set of states
B o A subset of 2F

25/43

Update and revision in DL-PA

Forbus’s update operation [Forbus, IJCAI 1989]

@ Hamming distance between states
h({p, g} {q. r}) = card({p,r}) = 2

@ update B by A = “for each B-state, find the closest A-states
w.r.t. h(.,.); then collect the resulting states”

@ soPPus A= {s’ € Mod(A) : thereis no s” s.th. h(s, s”) < h(s, s’)}
o S oforbus A — UseS s oforbus A

—p A =q o™ p v g = Mod(p@q) (exclusive V)
paq oforbus p= Mod(p)

26/43

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Dalal’s revision operation [Dalal, AAAI 1988]

@ revise B by A = “go to the A-states that are closest to B
w.rt. h(.,.)”

27/43

Update and revision in DL-PA

The embeddings in a nutshell

@ polynomial translations into DL-PA

@ object language operators (vs. metalanguage operations)
e regression = representation of B o A in propositional logic

@ update by atomic formula is ‘built in’:
e +p = “update by p!”
—p = “update by —p!”
@ update by complex formula A = complex assignment 4
e depends on belief change operation:
meyg = —PU—qU(-p;—q)

pma

Mpyag = -+

o to be proved for each change operation o°:
Bo® A = Mod({(z¥)™")B)

@ details in the next slides

28/43

Update and revision in DL-PA

Some useful programs and formulas

@ nondeterministically assign truth values to p1,..., pn:

vary({ps,....pa}) = (+P1 U=p1) ; -+ ; (+Pn U —pp)

@ nondeterministically flip one of py, ..., pn:

£1ip1({p1.....pa}) = (P17, =p1) U (=p17; +p1) U
|
(Pn?:=Pn) U (=pn?; +pn)

@ Hamming distance to closest A-state at least m:

ifm=20
flip1=™(Pa))A ifm> 1

H(A, >m) = {T<

29/43

Update and revision in DL-PA

Expressing Forbus’s operation in DL-PA

[H, KR 2014]
Let n°™US(A) be the DL-PA program

H(A,2m)?; f1ip1™(Pa)|; A?

0<m<card(Pa)

Then
B oforbus o Mod(<(ﬂforbu3(A))—1>B)

@ program length cubic in length of A

30/43

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Expressing Dalal’s operation in DL-PA

(cf. [Herzig, KR 2014])

31/43

Update and revision in DL-PA

Other operations

@ other update/revision operations can be captured as well

o Winslett's standard semantics WSS [H., KR 2014]
o Winslett’'s possible models approach PMA [H., KR 2014]

@ requires copying of variables

32/43

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Outline

e Dung argumentation framework change in DL-PA

33/43

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Argumentation framework modification

modif

(AR) = (A, R)

@ a lot of work recently:
e [Cayrol et al., JAIR 2010; Bisquert et al., SUM 2012, 2013]
[Bisquert, Phd 2014]
e [Baumann, ECAI 2012; Baumann & Brewka, IJCAI 2015]
o [Booth et al., TAFA 2013]
o [Coste-Marquis et al., KR 2014; I[UCAI 2015; Mailly, Phd 2015]
o [Diller et al., IJCAI 2015]
o [Niskanen et al., AAAI 2016; IJCAI 2016]

@ minimal change involved = use AGM belief revision

o ...or KM belief update
(typically: revise a single model only = revision=update)

34/43

AF change in DL-PA

Argumentation framework modification

modif

(AR) = (A, R)

@ add/delete elements of R

© add/delete elements of A
@ enforce some goal property G
o enforce status of some arguments (‘in’ or ‘out’)

o skeptical version: A" subset of every extension of (A, R’) A~
disjoint from every extension of (A, R’)
@ credulous version: ...

e enforce an extension E
@ non-strict version: E subset of some extension of (A, R')

35/43

AF change in DL-PA

Two simple modifications in DL-PA

@ modify the attack relation R
o easy: by atomic assignments +Att, , and —Att,
@ modify the set of arguments A

not all possible arguments currently considered

new propositional variables Cons, = “a is currently considered”
add/remove an argument = perform assignment on Cons,

see [Doutre, H & Perrussel, KR 2014]

®© 6 66 o

36/43

AF change in DL-PA

Enforcement: example

a<—»o

@ has two stable extensions: E; = {a} and Ep = {b}
@ modify such that no stable extension contains a

e minimal modification of attack relation such that a is in none of
its extensions

o several frameworks may result (# standard revision/update)

o several definitions of minimality; here: Forbus update

37/43

AF change in DL-PA

Enforcement: definition

@ attack relation of a valuation s:
R(s) ={(a,b) : Att,p € s}

@ skeptical enforcement with Forbus update:

S 00 G = {s’ . every o-extension of R(s") satisfies G and there is no s”
such that h(sNATT, s”NATT) < h(sNATT, s'NATT)
and every o-extension of R(s”) satisfies G }
(ﬂ R) <>skep U s <>skep G

seMod(FmI(R))

@ credulous enforcement with Forbus update:

s o7

cred

G= {s/ : some o-extension of R(s’) satisfies G and ... }

(A,R) o7

cred

38/43

AF change in DL-PA

Enforcement in DL-PA
@ Hamming distance wrt attack variables only:
H((makeExt")G, ATT, zm) = ...

@ assignment programs minimally modify attack variables such
that some/all extensions satisfy the goal:

credEnf’(G) = U H((makeExt”)G, ATT, 2m)? ; (ﬂipl(ATT))m) ;
m<card(ATT)

(makeExt”)G?

skepEnf’(G) = U H([makeExt"] G, ATT, 2m)? ; (flipl(ATT))m) ;

m<card(ATT)

[makeExt”]|G?

@ update by a counterfactual!

39/43

AF change in DL-PA

Enforcement in DL-PA: results

DL-PA encoding is correct:

(A,R) o7 .. G = Mod({(credEnf’(G))™") FmI(R))

skep
(A,R) o7, G = Mod({(skepEnf’ (G))™ ") FmI(R))

cred

satisfies success postulate:

= [credEnf? (G)] (makeExt”) G
= [skepEnf?(G)| [makeExt”]| G

satisfies vacuity postulate:

= (FmI(R) A (makeExt?)G A C) — [credEnf?(G)| C
= (FmU(R) A [makeExt?1G A C) — [skenEnf?(G) C

40/43

AF change in DL-PA

Extension enforcement in DL-PA:
pushing the envelope

@ replace o™™®Us by other concrete update semantics (e.g. PMA)
@ replace ™Y by concrete revision operations
o Dalal's Hamming distance-based revision
o replace ™Y by prioritised version [Mailly et al., JELIA 2014]
@ up to now: “minimise ATT only” politics

(A, ATT) oforbus ((makeExt“)G)

o replace by “first minimise IN, then ATT”:
@ minimally change IN variables to make (vary(ATT))G true
@ minimally change the ATT variables in order to make Goal true

o in DL-PA: two Forbus updates in sequence:

((A,ATT) o} ((vary(ATT))G)) olsrs G

@ multiple extensions: rather take Dalal revision?

41/43

Dynamic logic AFs in propositional logic AFs in DL-PA Update and revision in DL-PA AF change in DL-PA Conclusion

Outline

@ Conclusion

42/43

Conclusion

Conclusion

@ dynamic logic account of Dung argumentation frameworks
o build extensions = execute DL-PA program
@ program can be more or less deterministic
@ program can be verified in DL-PA
@ dynamic logic account of Dung argumentation framework
modification
e enforcement = update by a counterfactual
o enforce on all extensions: use [77]
o enforce on some extension: use (n7)

@ structured argumentation?

43/43

	Dynamic Logic of Propositional Assignments
	Dung argumentation frameworks in propositional logic
	Dung argumentation frameworks in DL-PA
	Update and revision operations in DL-PA
	Dung argumentation framework change in DL-PA
	Conclusion

