Dynamic Trust in Dialogues

Gideon Ogunniye
Nir Oren and Timothy J. Norman

Department of Computing Science
University of Aberdeen
Outlines

1. Introduction
 - Multi-agent Dialogues
 - Roles of Argumentation
 - Research Problems

2. The System
 - Modelling Participants
 - The Notion of Trust
 - Dynamic Trust Computing
 - Evidential Reasoning

3. Conclusions and Future Works
Within Multi-agent dialogues, participants exchange information and make decisions aimed at reaching some conclusion.
Roles of Argumentation

- Formal dialogical argumentation proposes dialogical structures to model the connectedness of utterances.

- A dialogical system consists of the following.
 1. A set of possible moves encoded through speech acts e.g (claim(a), retract(a), assert(a), challenge(a), etc).
 2. Commitment stores tracking the different propositions and arguments to which players subscribe.
 3. Protocol rules: regulate the set of legal moves that are permitted at each stage of a dialogue.
 4. Often, a Logical language is used to construct locutions.
 5. Argumentation-based decision model to determine justified arguments.
The Problem

Problems:
- Dialogue participants have partial information and individual preferences
- Available information pervaded with uncertainty

Approaches:
- Paglieri et al (2014) considered how trust and reputation of participants should be updated following the justified conclusions of a dialogue.
- We argue that trust in a participant can change (increase/decrease) during a dialogue. In turn, such trust should affect the conclusion of the dialogue.
- To address this, we need to formalise a dialogue system incorporating trust, and investigate its properties.
We consider a system where:

- Participants are modelled through their *commitment stores* $CS_1 \cup ... \cup CS_n \in A$.
- There is a universal commitment store, $UCS = \bigcup_\alpha CS_\alpha$.
- The dialogue system consist of series of *add* and *retract* moves. (e.g., add (a, α) denotes that α adds an argument a to its commitment store.)
The Process

Argumentation Framework

Agt = \{\alpha, \beta, \ldots, n\}

Tr_{Agt}

CS_{\alpha} \ldots CS_{n}

Conclusion
The Notion of Trust

- Trust is encoded as preference ordering over dialogue participants denoted as \succeq.
- Arguments from more trusted sources cannot be defeated by arguments from less trusted sources.
Some Observations

- **Idea**: What utterances/behaviours of a dialogue participant should be penalised or rewarded?
- **Self Contradiction**: A player\(^1\) cannot contradict or challenge its own *commitments* otherwise it looses some trust rating in a dialogue.
- **Lack of Justification**: A player who is unable to justify arguments in its commitment store should be less trusted.
- **A player who regularly retracts arguments should be less trusted.**

1. Note a player refers to a participant who plays a move.
At any stage of the dialogue, we may compute SC_α, LJ_α and AR_α for every agent.

Where SC_α, LJ_α and AR_α represent number of contradicting, unjustified and retracted arguments in CS_α respectively and,

Trust Function $Tr : \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$.
Example

How can we compute extension in this dialogue?

\[CS_\alpha = \{ d, p, s \} \]
\[CS_\beta = \{ \neg d, x, \neg s \} \]
\[Tr_\alpha = 0. \quad Tr_\beta = 0 \]
\(\alpha \) retracts \(\mathbf{p} \)

\(CS_\alpha = \{ \mathbf{d}, \mathbf{s} \} \)

\(CS_\beta = \{ \neg \mathbf{d}, \mathbf{x}, \neg \mathbf{s} \} \)

\(Tr_\alpha = -1. \quad Tr_\beta = 0 \)

\(\text{defeat} = \text{attack} + \text{preference relation over participating agents.} \)
Evidence

The less trusted participant must supply evidence(s) to back up its claim(s)

\[CS_\alpha = \{ d, s, e_1 \} \]
\[CS_\beta = \{ \neg d, x, \neg s \} \]
\[Tr_\alpha = -1 \]
\[Tr_\beta = 0 \]
Criteria for Good Evidence

Is evidence e relevant in this dialogue?

\[\alpha: \text{Harry is a Scottish (a)} \]

\[\beta: \text{Harry is not a Scottish (\neg a)} \]

\[\alpha: \text{Harry was born in Aberdeen (e)} \]
Criteria for Strong Evidence

We consider two criteria for good evidence:

- Evidence must be credible (i.e., it is (or very likely to be accepted) by all the parties in the dialogue to be true).
- Evidence must be relevant (i.e., it makes the claim it supports probable enough).

Argument schemes as_n are used to reason about relevance of evidence.
A Possible Scenario

We are currently investigating this scenario:

\[CS_\alpha = \{ d, s, e_1 \} \] \hspace{1cm} \[CS_\beta = \{ \neg d, x, \neg s, e_2 \} \]
Conclusions

We have described:

- A system where arguments advanced or retracted by dialogue participants affects the trust placed in them.
- How trust in turn affects participants’ arguments.
- Three factors that modify trust and how extensions can be computed within a dialogue.
Future works

- Investigate under what conditions is the proposed system stable.
- Formalise argument schemes for reasoning about evidence in dialogues.
- Implement a realistic trust model for argumentative dialogues.
- Implement a complete system and evaluate its impact on argumentative dialogues.
