Discontinuity-Free Decision Support with Quantitative Argumentation Debates

A. Rago¹, F. Toni¹, M. Aurisicchio¹ & P. Baroni²

Imperial College London
Universita` degli Studi di Brescia

Cardiff Argumentation Forum

6th July 2016

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

Presentation Overview

1. Background

- IBIS Charts and QuAD Frameworks
- QuAD Algorithm/Semantics

2. Research Summary

- Motivation for DF-QuAD
- DF-QuAD Algorithm
- Comparison of the DF-QuAD and QuAD Algorithms
- Properties Not Held by QuAD
- Properties Shared with QuAD
- Relationship to Abstract Argumentation
- Reverse Engineering Functionality
- Applications of QuAD Frameworks
- 3. Future Work
- 4. Conclusions

2/24

Background – IBIS Charts & QuAD Frameworks

- IBIS (Issue Based Information System) charts [Kunz and Rittel, 1970].
- QuAD (Quantitative Argumentation Debate) frameworks [Baroni et al. 2015].
 - Special types of IBIS trees with base scores for nodes.

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

Background – IBIS Charts & QuAD Frameworks

- IBIS (Issue Based Information System) charts [Kunz and Rittel, 1970].
- QuAD (Quantitative Argumentation Debate) frameworks [Baroni et al. 2015].
 - Special types of IBIS trees with base scores for nodes.
- Correspond to BAFs (Bipolar Argumentation Frameworks) [Cayrol and Lagasquie-Schiex, 2005].

- Base scores are used by the QuAD algorithm to calculate each node's overall *strength*.
- Base scores and strengths are in [0,1].
- Strength is a form of *gradual acceptance* [Cayrol and Lagasquie-Schiex, 2005].

- Base scores are used by the QuAD algorithm to calculate each node's overall *strength*.
- Base scores and strengths are in [0,1].
- Strength is a form of gradual acceptance [Cayrol and Lagasquie-Schiex, 2005].
- Firstly, attacking and supporting components (v_a and v_s) are calculated for each node.

$$v_s = \mathcal{F}_{supp}(\mathcal{BS}(A2), SEQ_{\mathcal{SF}_1}(\mathcal{R}^+(A2))) \qquad v_a = \mathcal{F}_{att}(\mathcal{BS}(A2), SEQ_{\mathcal{SF}_1}(\mathcal{R}^-(A2)))$$

Imperial College

London

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

- Base scores are used by the QuAD algorithm to calculate each node's overall *strength*.
- Base scores and strengths are in [0,1].
- Strength is a form of gradual acceptance [Cayrol and Lagasquie-Schiex, 2005].
- Firstly, attacking and supporting components (v_a and v_s) are calculated for each node.

Imperial College

London

- Base scores are used by the QuAD algorithm to calculate each node's overall *strength*.
- Base scores and strengths are in [0,1].
- Strength is a form of gradual acceptance [Cayrol and Lagasquie-Schiex, 2005].
- Firstly, attacking and supporting components (v_a and v_s) are calculated for each node.

Imperial College

London

• Recursive formulae are used for attacking and supporting components.

	1	
0	v_0	1

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

• Recursive formulae are used for attacking and supporting components.

$$0 \qquad v_a \leftarrow \mathcal{F}_{att} \qquad v_0 \qquad \qquad 1$$

• Recursive formulae are used for attacking and supporting components.

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

• Recursive formulae are used for attacking and supporting components.

• If the set of attacker/supporter strengths is {} or a set of zeros it is considered **ineffective**.

• Recursive formulae are used for attacking and supporting components.

$$0 \qquad v_a \leftarrow \mathcal{F}_{att} \qquad v_0 \qquad \mathcal{F}_{supp} \qquad v_s \qquad 1$$

- If the set of attacker/supporter strengths is {} or a set of zeros it is considered **ineffective**.
- The aggregating function then determines the strength in the [0,1] range:

V _a	V _s	Strength
Effective	Ineffective	v _a
Ineffective	Effective	v _s
Ineffective	Ineffective	v ₀
Effective	Effective	$(v_{a} + v_{s}) / 2$

Imperial College

London

- Engineering Design setting:
 - Issue Which is the best method for controlling the ventilation of a dining room?
 - Answer 1 Building management control
 - Answer 2 User control

Imperial College London

- Engineering Design setting:
 - Issue Which is the best method for controlling the ventilation of a dining room?
 - Answer 1 Building management control
 - Answer 2 User control
- Pro arguments are added at **Stage 1**:
 - Pro 1 Energy is saved
 - Pro 2 Elderly occupants require more simple settings
 - Pro 3 User satisfaction is increased

- Engineering Design setting:
 - Issue Which is the best method for controlling the ventilation of a dining room?
 - Answer 1 Building management control
 - Answer 2 User control
- Pro arguments are added at **Stage 1**:
 - Pro 1 Energy is saved
 - Pro 2 Elderly occupants require more simple settings
 - Pro 3 User satisfaction is increased
- QuAD Algorithm:

Answer	Strength at Stage 1
A1	0.925
A2	0.950

Imperial College London

Ø

Issue

- At **Stage 2**, a con argument attacking A2 is then added:
 - Con 1 User negligence can lead to losses

Imperial College

London

- At **Stage 2**, a con argument attacking A2 is then added:
 - Con 1 User negligence can lead to losses
- QuAD Algorithm:

- At **Stage 2**, a con argument attacking A2 is then added:
 - Con 1 User negligence can lead to losses
- QuAD Algorithm:

7/24

- Large drop in A2's strength between Stage 1 and 2 is disproportionate in some settings, e.g. Engineering Design.
- In other settings, e.g. E-Democracy, this may not be the case.

• The aggregating function's range in one case is a subset of [0,1]:

• The aggregating function's range in one case is a subset of [0,1]:

Imperial College London

• The aggregating function's range in one case is a subset of [0,1]:

• Discontinuity, leading to counter-intuitive behaviour in some applications.

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

8/24

- A new "discontinuity-free" algorithm for QuAD frameworks (DF-QuAD).
- Incorporates many of the same concepts as the QuAD algorithm.
 - Base score and strength in [0,1].

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

- A new "discontinuity-free" algorithm for QuAD frameworks (DF-QuAD).
- Incorporates many of the same concepts as the QuAD algorithm.
 - Base score and strength in [0,1].
- A single function used for both the attacking and supporting components.

$$v_s = \mathcal{F}(SEQ_{\mathcal{SF}_2}(\mathcal{R}^+(A2))) \qquad v_a = \mathcal{F}(SEQ_{\mathcal{SF}_2}(\mathcal{R}^-(A2)))$$

Imperial College

London

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

- A new "discontinuity-free" algorithm for QuAD frameworks (DF-QuAD).
- Incorporates many of the same concepts as the QuAD algorithm.
 - Base score and strength in [0,1].
- A single function used for both the attacking and supporting components.

Imperial College

London

- A new "discontinuity-free" algorithm for QuAD frameworks (DF-QuAD).
- Incorporates many of the same concepts as the QuAD algorithm.
 - Base score and strength in [0,1].
- A single function used for both the attacking and supporting components.

Imperial College

London

• The function recursively calculates values for attacking and supporting components:

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

1

()

• The function recursively calculates values for attacking and supporting components:

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

- The function recursively calculates values for attacking and supporting components:

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

• The function recursively calculates values for attacking and supporting components:

 The combination function then uses the base score and the difference between the attacking/ supporting components to calculate the strength.

$$c(v_0, v_a, v_s) = v_0 - v_0 \cdot |v_s - v_a| \quad \text{if } v_a \ge v_s$$

$$c(v_0, v_a, v_s) = v_0 + (1 - v_0) \cdot |v_s - v_a| \quad \text{if } v_a < v_s$$

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

10/24

• The function recursively calculates values for attacking and supporting components:

• The combination function then uses the base score and the **difference** between the attacking/ supporting components to calculate the strength.

$$c(v_0, v_a, v_s) = v_0 - v_0 \cdot |v_s - v_a| \quad \text{if } v_a \ge v_s$$

$$c(v_0, v_a, v_s) = v_0 + (1 - v_0) \cdot |v_s - v_a| \quad \text{if } v_a < v_s$$

• The strength is not restricted to a subset of [0,1] when attackers and supporters are effective.

Imperial College

London

• Identical results to the QuAD algorithm when attackers or supporters are ineffective.

• Engineering Design setting as used for QuAD.

QuAD Algorithm:

Imperial College London

• Engineering Design setting as used for QuAD.

QuAD Algorithm:

Answer	Strength at Stage 1	Strength at Stage 2
A1	0.925	0.925
A2	0.950	0.675

DF-QuAD Algorithm:

Answer	Strength at Stage 1	Strength at Stage 2
A1	0.925	0.925
A2	0.950	0.850

Imperial College London

• Engineering Design setting as used for QuAD.

QuAD Algorithm:

A1 0.925 0.925	Answer	Strength at Stage 1	Strength at Stage 2
	A1	0.925	0.925
A2 0.950 0.675	A2	0.950	0.675

DF-QuAD Algorithm:

Answer	Strength at Stage 1	Strength at Stage 2
A1	0.925	0.925
A2	0.950	0.850

Imperial College London

When QuAD's strength is plotted for a constant base score (0.5). ٠

When QuAD's strength is plotted for a constant base score (0.5). ٠

When QuAD's strength is plotted for a constant base score (0.5). ٠

When QuAD's strength is plotted for a constant base score (0.5). ٠

DF-QuAD plotted for the same base score shows results without a discontinuity. ٠

- As an attacker's or a supporter's strength approaches 0, the framework becomes equivalent to a framework without that argument:
 - As the strength of the attacker C1 approaches 0:

- As an attacker's or a supporter's strength approaches 0, the framework becomes equivalent to a framework without that argument:
 - As the strength of the attacker C1 approaches 0:

- Similarly for supporters.
- Gives DF-QuAD its discontinuity-free aspect.

Condition	Strength
Argument's attacking component is larger than its supporting component	Less than or equal to the base score

• In DF-QuAD, the following results in a strength of A2 which is less than its base score:

Answer	QuAD Strength	DF-QuAD Strength
A1	0.24	0.16

Imperial College London

Condition	Strength
Argument's attacking component is larger than its supporting component	Less than or equal to the base score
Argument's attacking component is equal to its supporting component	Equal to the base score

• In DF-QuAD, the following results in a strength of A2 which is equal to its base score:

Answer	QuAD Strength	DF-QuAD Strength
A1	0.35	0.2

Imperial College London

Condition	Strength
Argument's attacking component is larger than its supporting component	Less than or equal to the base score
Argument's attacking component is equal to its supporting component	Equal to the base score
Argument's attacking component is smaller than its supporting component	Greater than or equal to the base score

• In DF-QuAD, the following results in a strength of A2 which is greater than its base score:

Answer	QuAD Strength	DF-QuAD Strength
A1	0.675	0.85

• The order of the sequence of attacking or supporting arguments does not affect the strength:

Pro before Con

Con before Pro

• The order of the sequence of attacking or supporting arguments does not affect the strength:

• The order of the sequence of attacking or supporting arguments does not affect the strength:

Imperial College London

• The order of the sequence of attacking or supporting arguments does not affect the strength:

- More intuitive, comprehensive properties also hold, for example:
 - An attacker being added will not increase the strength

18/24

A supporter being added will not decrease the strength

Research Summary – Relationship to Abstract Argumentation

- QuAD and DF-QuAD yield the same results when attackers or supporters are ineffective.
- Abstract Argumentation frameworks ^[Dung, 1995] can be mapped to QuAD frameworks without supporters ^[Baroni et al. 2015].

Research Summary – Relationship to Abstract Argumentation

- QuAD and DF-QuAD yield the same results when attackers or supporters are ineffective.
- Abstract Argumentation frameworks ^[Dung, 1995] can be mapped to QuAD frameworks without supporters ^[Baroni et al. 2015].

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

19/24

Research Summary – Relationship to Abstract Argumentation

- QuAD and DF-QuAD yield the same results when attackers or supporters are ineffective.
- Abstract Argumentation frameworks ^[Dung, 1995] can be mapped to QuAD frameworks without supporters ^[Baroni et al. 2015].

- If all base scores set to 1:
 - Arguments in grounded extension have strength of 1.
 - Other arguments have strength of 0.

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

• Reverse engineering: a user can engineer the framework to give a required ranking or score.

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

20/24

- Reverse engineering: a user can engineer the framework to give a required ranking or score.
- Engineering Design Example:

20/24

Determine the BS(C1) at which the strength of A2 equals the ₽ strength of A1. **A**1 A2 (BS(A1)=0.5) (BS(A2)=0.5) Ø ₽ ₽ P1 (BS(P1)=0.7) C1 P2 (BS P3 Т (BS(P3)=0.9) (BS(C1)=???) (BS(P2)=0.5)

¢

Ø

Issue

- Reverse engineering: a user can engineer the framework to give a required ranking or score.
- Engineering Design Example:

- Reverse engineering: a user can engineer the framework to give a required ranking or score. •
- **Engineering Design Example:** •

¢

- Other alterations include: •
 - Increasing the strength of arguments by increasing base scores, e.g. increasing BS(P3) or BS(A2).
 - Reducing the strength of arguments by adding attackers, e.g. to C1. _
 - Increasing the strength of arguments by adding supporters, e.g. to P3 or A2.
- Not possible in QuAD.
- Not desirable in some applications, e.g. where manipulation could be a problem.

Research Summary – Applications of QuAD Frameworks

• Arg&Dec [www.arganddec.com]

- QuAD framework
- QuAD automatic evaluation
- Unique translation from graph to matrix form

Research Summary – Applications of QuAD Frameworks

- Arg&Dec [www.arganddec.com]
 - QuAD framework
 - QuAD automatic evaluation
 - Unique translation from graph to matrix form

- designVUE [www3.imperial.ac.uk/ designengineering/tools/designvue]
 - Debate mapping using IBIS graphs
 - Engineering design specific
 - Less limitations than Arg&Dec
 - Qualitative weighting measures

Research Summary – Applications of QuAD Frameworks

- Arg&Dec [www.arganddec.com]
 - QuAD framework
 - QuAD automatic evaluation
 - Unique translation from graph to matrix form

- designVUE [www3.imperial.ac.uk/ designengineering/tools/designvue]
 - Debate mapping using IBIS charts
 - Engineering design specific
 - Less limitations than Arg&Dec
 - Qualitative weighting measures
- Other Applications
 - E-Democracy
 - Argument Mining
 - Medical Decision Support
 - Legal Reasoning

Imperial College London

Concept varian

Future Work

- Further development of the QuAD framework:
 - Voting
 - Comparison with other algorithms/semantics for QuAD frameworks
 - Additional properties for algorithms [Amgoud & Ben-Naim, 2016]

Future Work

- Further development of the QuAD framework:
 - Voting
 - Comparison with other algorithms/semantics for QuAD frameworks
 - Additional properties for algorithms [Amgoud & Ben-Naim, 2016]
- Reverse engineering

22/24

Relationships to other alterations techniques, e.g. Enforcement ^[Bisquert & Cayrol, 2013]

Future Work

- Further development of the QuAD framework:
 - Voting
 - Comparison with other algorithms/semantics for QuAD frameworks
 - Additional properties for algorithms [Amgoud & Ben-Naim, 2016]
- Reverse engineering
 - Relationships to other alterations techniques, e.g. Enforcement ^[Bisquert & Cayrol, 2013]
- Relationships with other frameworks:
 - Matrix method ^[Aurisicchio et al. 2015]
 - Bipolar Argumentation Frameworks ^[Baroni et al. 2015; Amgoud et al. 2008]
 - Fuzzy Logic
 - Argumentation Labelling

Conclusions

- We have presented the DF-QuAD Algorithm:
 - Automatic evaluation within QuAD frameworks
 - Discontinuity-free algorithm
 - Shares many important properties with QuAD, and holds some new ones
 - Allows for reverse engineering

Thank You

Any Questions?

Discontinuity-Free Decision Support with Quantitative Argumentation Debates A. Rago, F. Toni, M. Aurisicchio & P. Baroni

24/24