

Conflicts in Abstract Argumentation¹

Christof Spanring

Department of Computer Science, University of Liverpool, UK

Institute of Information Systems, TU Wien, Austria

Cardiff Argumentation Forum, July 7, 2016

Der Wissenschaftsfonds.

¹This research has been supported by FWF (projects I1102 and I2854).

Natural Language Example, Is Death Penalty Legit?

- Arguments: *a*, *b*, *c*, *d*
- Attacks: (b, a), (c, b), (d, c), (c, d)

Definition (Abstract Argumentation, Syntax)

Argumentation Framework (AF): F = (A, R)A: set of arguments $R \subseteq A \times A$: set of attacks

Christof Spanring, CAF16

- Arguments: *a*, *b*, *c*, *d*
- Attacks: (b, a), (c, b), (d, c), (c, d)
- Conflicts: [a, b], [b, c], [c, d]

Definition (Syntactic Conflict and Compatibility)

Syntactic Conflict, $[X, Y]_F$: *X* attacks *Y* or *Y* attacks *X* Syntactic Compatibility, $\{X, Y\}_F$: otherwise

- Arguments: *a*, *b*, *c*, *d*
- Attacks: (b, a), (c, b), (d, c), (c, d)
- Extensions: $\{a, c\}, \{b, d\}$

Definition (Argumentation Semantics)

Conflict-freeness, $S \in cf(F)$: $\{S, S\}_F$ Stable Extension, $S \in sb(F) \subseteq cf(F)$: $A \setminus S = \{x \in A \mid S \text{ attacks } x\}$

- Arguments: *a*, *b*, *c*, *d*
- Attacks: (b, a), (c, b), (d, c), (c, d)
- Extensions: {*a*, *c*}, {*b*, *d*}
- Conflicts: [a, b], [b, c], [c, d], [a, d]

Definition (Semantic Conflict and Compatibility)

Semantic Compatibility, $\{X, Y\}_{\mathbb{S}}$: f.a. $x \in X, y \in Y$ ex. $S \in \mathbb{S}, \{x, y\} \subseteq S$ Semantic Conflict, $[X, Y]_{\mathbb{S}}$: otherwise

Framework Modifications

- Arguments: *a*, *b*, *c*, *d*
- Attacks: (b, a), (c, b), (d, c), (c, d)
- Extensions: $\{a, c\}, \{b, d\}$
- Conflicts: [*a*, *b*], [*b*, *c*], [*c*, *d*], [*a*, *d*]

Christof Spanring, CAF16

Framework Modifications

- Arguments: *a*, *b*, *c*, *d*
- Attacks: (*b*,*a*), (*c*,*b*), (*d*,*c*), (*c*,*d*), (*d*,*a*)
- Extensions: $\{a, c\}, \{b, d\}$
- Conflicts: [a, b], [b, c], [c, d], [a, d]

Framework Modifications

- Arguments: *a*, *b*, *c*, *d*
- Attacks: (b, a), (c, b), (d, c), (c, d), (d, a)
- Extensions: $\{a, c\}, \{b, d\}$
- Conflicts: [a, b], [b, c], [c, d], [a, d]

Definition (Realizability)

 \mathbb{S} is σ -realizable if ex. AF *F* with $\sigma(F) = \mathbb{S}$ \mathbb{S} is σ_A -realizable if ex AF F = (A, R) with $\sigma(F) = \mathbb{S}$

Definition (Conflict)

A semantic conflict $[a, b]_{\mathbb{S}}$ is

- *pure* (semantic) if there is no realization F with $[a, b]_F$;
- *necessary* (syntactic) if any realization F has $[a, b]_F$;
- optional otherwise.

Definition (Conditional Conflicts)

Extend pure, necessary and optional to A-realizability

Levels of Conflict

Figure: A Venn-diagram illustrating different levels of conflict.

Arbitrary Modifications

- Arguments: *a*, *b*, *c*, *d*
- Attacks: (b, a), (c, b), (d, c), (c, d)
- Extensions: $\{a, c\}, \{b, d\}$
- Conflicts: [*a*, *b*], [*b*, *c*], [*c*, *d*], [*a*, *d*]

Christof Spanring, CAF16

Arbitrary Modifications

- Arguments: a, b, c, d
- Attacks: (*b*,*a*), (*c*,*b*), (*d*,*c*), (*c*,*d*), (*a*,*b*)
- Extensions: $\{a, c\}, \{b, d\}, \{a, d\}$
- Conflicts: [a, b], [b, c], [c, d], [a, d]

Modifications for Stable Semantics

(a) Original AF, $[a, b]_{\mathbb{S}}$.

(b) Modified AF, $(a, b)_G$.

Figure: Forcing attacks for stable semantics.

(a) Original AF, $(a, b) \in R_F$.

(b) Modified AF, $(a, b) \notin R_G$.

Figure: Purging Attacks for Stable Semantics.

Christof Spanring, CAF16

Conflicts in Abstract Argumentation

Theorem (Stable Conflicts)

 $[a,b]_{\mathbb{S}}$ is necessary attack $(a,b)_F$ for each sb-realization F of \mathbb{S} if and only if there is $S \in \mathbb{S}$, $a \in S$ and $\{b, S \setminus \{a\}\}_{\mathbb{S}}$.

All other conflicts for sb are optional.

Illustration of Stable Modifications

Figure: Original AF.

Other Semantics

- Preferred and Semi-stable semantics have only symmetric necessary attacks [a, b] where there are S, T ∈ S with a ∈ S, b ∈ T and otherwise compatibilities {a, T \ {b}}_S, {b, S \ {a}}_S.
- Stage semantics has the same necessary conflicts as Stable, but without directions.
- Cf2 semantics probably has the same necessary conflicts as Stable, no necessary symmetric attacks but allows general pure conflicts.

(c) Symmetric Attack

(d) Directed Attack

- Conditional Conflicts: exact characterizations for *A*-pure definitions, other conditions (arguments, attacks, extensions)
- Formal definition of attack-minimal AFs
- Other semantics, labellings, ...
- Instantiation-related questions; what does it mean to use such modifications?
- Other directions: Given some AF, which arguments necessarily are jointly acceptable? How can we detect semantic conflicts without computing all extensions?

References

Baroni, P., Caminada, M., and Giacomin, M. (2011). An introduction to argumentation semantics. *Knowledge Eng. Review*, 26(4):365–410.

Nung, P. M. (1995).

On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. *Artif. Intell.*, 77(2):321–358.

Dunne, P. E., Dvořák, W., Linsbichler, T., and Woltran, S. (2015). Characteristics of multiple viewpoints in abstract argumentation. *Artif. Intell.*, 228:153–178.

Linsbichler, T., Spanring, C., and Woltran, S. (2015). The Hidden Power of Abstract Argumentation Semantics. The 2015 International Workshop on Theory and Applications of Formal Argument.

Preferred Modifications

(e) Original AF, $[a, b]_{\mathbb{S}}$.

(f) Modified AF, $(a, b)_G$.

Figure: Forcing Attacks for Preferred Semantics.

Figure: Purging Attacks for Preferred Semantics.

Christof Spanring, CAF16

Conflicts in Abstract Argumentation

Illustration of Preferred Modifications.

(a) Forcing Attack (a, b).

(b) Puring Attack (c, b).

Figure: Analogy to Stable Illustration.

Figure: For an attack-minimal AF.

Conflicts in Abstract Argumentation