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Abstract

The unstoppable rise of social networks and the web is fac-
ing a serious challenge: identifying the truthfulness of online
opinions and reviews. In this paper we use Argument Mining
to extract Argumentation Frameworks (AFs) from reviews
and explore whether the use of these AFs can improve the
performance of machine learning techniques in detecting de-
ceptive behaviour, resulting from users lying in order to mis-
lead readers. The AFs represent how arguments from reviews
relate to arguments from other reviews as well as to argu-
ments about the goodness of the items being reviewed.

Detecting deceptive reviews

Nowadays the decision of purchasing a specific product
or service is often based on online reviews. However, the
authenticity and truthfulness of these reviews is not guar-
anteed and content communities, review and news web-
sites are susceptible to deceptive content. Different decep-
tion strategies exist: falsification (contradictions/lies), ex-
aggeration (superlative information), omission (hiding in-
formation) and misleading information (irrelevant informa-
tion/topic changes) (Appling, Briscoe, and Hutto 2015). It
is known that deceptive reviews cannot be easily identified
manually (Ott et al. 2011).

Most work on detecting deceptive reviews uses machine
learning techniques and features extracted by Natural Lan-
guage Processing (NLP) (e.g. see (Crawford et al. 2015)).
We propose new features, obtained through (forms of) Ar-
gument Mining, and experiment with their use by several
machine learning techniques in two domains.

Argument Mining is a relatively new research area which
involves, for instance, the automatic detection of argu-
ments in text, of arguments components, as well as of rela-
tions between arguments (e.g. see (Palau and Moens 2011;
Peldszus and Stede 2013; Lippi and Torroni 2015) for
overviews). Our approach to detecting deceptive reviews
mines Argumentation Frameworks (AFs) as understood
in Al, and in particular Abstract Argumentation Frame-
works (AAFs) (Dung 1995) and Bipolar Argumentation
Frameworks (BAFs) (Cayrol and Lagasquie-Schiex 2005).
These AFs represent dialectical (attack for AAFs and at-
tack/support for BAFs) relationships between arguments,
with arguments seen simply as abstract entities, and are

equipped with semantics/algorithms to compute acceptabil-
ity (Dung 1995; Cayrol and Lagasquie-Schiex 2005) or di-
alectical strength (Rago et al. 2016) of arguments, given the
relationships amongst them. In our approach, the strengths
of arguments in the AFs we mine contribute new argumen-
tative features for standard machine learning classifiers.

We use two methods for Argument Mining. The first
method uses sentiment analysis to construct an AAF from
a set of reviews whereas the second method uses relation-
based Argumentation Mining (Carstens and Toni 2015b)
alongside sentiment analysis to mine a BAF from a set of
reviews. The second method associates arguments to (noun-
level) topics in reviews, whereas in the first method argu-
ments are topic-independent.

Our new argumentative features are calculated using the
strength of arguments in AFs to capture the impact of each
review on determining how good/bad the item (product or
service) is with respect to all reviews about that item. Thus,
these argumentation features can be seen as adding a seman-
tic layer to the analysis of deceptive behaviour in reviews on
top of the syntactic analysis given by standard NLP when
using machine learning techniques. Our approach can also
be seen as integrating argumentation and machine learn-
ing, in the spirit, for instance, of (MoZina et al. 2008;
Gao and Toni 2014; Carstens and Toni 2015a; Carstens
2016), but in a different context (deception detection) and
using a novel methodology (argumentative features).

In order to test the usefulness of our novel argumentative
features to determine deceptive reviews, we experiment with
various machine learning classifiers, using the gold stan-
dard consisting of hotel reviews of 20 Chicago hotels (Ott,
Cardie, and Hancock 2013) and restaurant reviews (Li et al.
2014). We show experimentally that, for a number of classi-
fiers, using argumentative features yields no change or better
results in classifier performance. In the case of the AAF-
based argumentative features, we obtain an improvement of
1.5% accuracy for the hotel dataset and 2.25% for the restau-
rant dataset when compared to the baseline. In the case of the
BAF-based argumentative features, we obtain an improve-
ment of 3.5% accuracy for the hotel domain and 4% for
the restaurant domain when compared to the baseline. In the
experiments, to determine both AAF- and BAF-based argu-
mentative features, we use an off-the-shelf sentiment anal-
ysis classifier. To determine BAF-based argumentative fea-



tures, we train a relation-based Argument Mining classifier,
achieving 96.19% F} for determining support/attack/neither
relationships between sentences.
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