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Abstract Shape deformation is a fundamental tool in geometric modeling. Existing methods consider pre-

serving local details by minimizing some energy functional measuring local distortions in the L2 norm. This

strategy distributes distortions quite uniformly to all the vertices and penalizes outliers. However, there is no

unique answer for a natural deformation as it depends on the nature of the objects. Inspired by recent sparse

signal reconstruction work with non L2 norm, we introduce general Lp norms to shape deformation; the positive

parameter p provides the user with a flexible control over the distribution of unavoidable distortions. Compared

with the traditional L2 norm, using smaller p, distortions tend to be distributed to a sparse set of vertices,

typically in feature regions, thus making most areas less distorted and structures better preserved. On the

other hand, using larger p tends to distribute distortions more evenly across the whole model. This flexibility is

often desirable as it mimics objects made up with different materials. By specifying varying p over the shape,

more flexible control can be achieved. We demonstrate the effectiveness of the proposed algorithm with various

examples.
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1 Introduction

The proliferation of digital geometry models nowadays makes digitized 3D objects, often represented
as triangulated meshes, widely available. In addition to direct capture 3D shapes from real objects, a
variety of geometric modeling tools have been developed. Surface deformation is a fundamental tool that
produces altered shapes effectively. This has various applications including editing shapes to suit the
needs, producing sequences of objects for animation and simulating the deformation of objects in VR
systems [1] such as virtual surgery simulation systems [2]. Shape deformation has received a lot of at-
tention in recent years. Since physically modeling geometric objects undergoing deformation is both
difficult and computationally expensive, most algorithms focus on using geometric shape information
alone. There is no single “correct” answer for surface deformation, due to the potential variable mate-
rial natures. Many existing methods produce deformed objects by minimizing some energy functional
measuring the usually unavoidable distortions incurred in the deformation process. To support general,
large-scale deformation, energies need to be defined locally, as these properties tend to be well preserved
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after deformation. The L2 norm is often used to combine local energies, often defined at some element
(e.g. vertex) level. This strategy tends to spread out unavoidable distortions to all the vertices quite
uniformly and penalize outliers. Although working reasonably well for a large set of models, this may
not lead to the most “natural” deformation in practice. Distributions of unavoidable distortions reflect
the material nature and the design intentions of the user, thus giving the user intuitive control is often
desirable. In this work, inspired by recent advances in sparse signal reconstruction [3,4] and surface
reconstruction [5], we introduce Lp norms for surface deformation instead of the traditional L2 norm,
in the energy functional combining local energies. More precisely, assuming the local energy associated
with the ith element (e.g. vertex) is Ei, the overall energy E is defined in a more general manner as
E =

∑
i wi‖Ei‖p, where p is a positive parameter to flexibly control the distributions of unavoidable

distortions after the deformation. For practical use, we assume p � 1. p = 2 leads to the traditional
L2 norm. Using smaller p tends to distribute unavoidable distortions to a sparse set of vertices, often in
feature regions. A typical case is p = 1 which reduces to the L1 norm used in sparse shape reconstruction
[5]. A brief theoretical explanation of the sparsity when p = 1 is given in Appendix. This has some nice
features such as making most areas less distorted and structures better preserved. Using larger p tends
to distribute distortions more evenly as outliers are more significantly penalized. Using our approach, a
wide range of deformation results can be obtained, which gives the user effective and intuitive control
over the deformation process. Results obtained with different p’s may all be natural, mimicking objects
made up with different materials. Our implementation is based on [6], which optimizes an energy func-
tional for locally as-rigid-as-possible deformation. The idea could be used in other surface deformation
framework as well. We show that using our Lp norm, the energy functional is convex and thus can be
effectively optimized to the global minimum with iterative backtracking line search [7]. In Section 2, we
review the most relevant work. The algorithm is described in detail in Section 3. Experimental results
and discussions are presented in Section 4 and finally concluding remarks and future work are given in
Section 5.

2 Related work

Shape deformation is an active research direction in recent decades. A large amount of research work has
been carried out in the field. A complete survey is beyond the scope of this paper. Please refer to [8–10]
for recent surveys of surface deformation techniques. Here we only review the most relevant work to this
research.

The key principle of surface deformation algorithms is to produce visually plausible deformation and
follow the deformation of actual physical objects. Surface based deformation can be modeled as an energy
minimization problem with boundary constraints from user input (such as handle movements or specified
local frames at certain positions). A natural approach is to deform the model according to the physical
rules [11–13]. These physically based methods involve solving partial differential equations which are
complicated and time consuming to achieve accurate deformation results. To improve the computational
efficiency, Barbic et al. [14] proposed a large-scale deformation method by decomposing the deformable
object into components.

Skeletons are used to deform the images/videos (e.g. [15]) and surface models [16–19]. These skeleton
driven deformation methods need extra efforts to construct skeletons. Some works deform the shape
by building the coarse cages encompassing the shape [20–24]. Such deformations may also be achieved
cage-free, as demonstrated in [25] by using umbrella shaped cells constructed automatically. A new
approach [26] has been proposed recently which allows the user to freely combine different types of
handles to deform the object.

Another strategy to make intuitive deformation results is to preserve details and/or volumes after
deformation. Local differential coordinate are used to encode local details and recover them after defor-
mation. These methods include rotation invariant coordinate for better handling rotations [27], Laplacian
coordinates [28], Poisson-based gradient field [29], and iterative dual Laplacian approach for improved
results [30]. Volumetric Laplacian constructed in the interior of the shape is proposed to better preserve
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the volume [31,32]. A subspace technique is used for efficiently optimizing the nonlinear energy first at
the coarser mesh and uses 3D mean value coordinates [20] for interpolation on the original mesh.

Rigidity is an important principle in deformation that is well studied. Terzopoulos et al. [11] formulate
a shell energy to measure the distortions between the input and the deformed models.

E(S, S′) =
∫

Ω

(ks‖I − I ′‖2 + kb‖II − II ′‖2)dudv, (1)

where S and S′ are the surfaces before and after deformation, I, II are the first and second fundamental
forms before deformation, and I ′, II ′ are corresponding fundamental forms after deformation; they are
used to measure the shearing and bending incurred by the deformation. ks and kb are two coefficients to
balance the terms. The energy E(S, S′) reaches zero only for completely rigid transformations. Practical
solutions often involve unavoidable distortions, and thus only achieves the minimizer of E. Preserving
local as-rigid-as-possible is practically useful as this preserves geometric shape and features while allowing
for sufficient flexibility for deformation. Sorkine et al. [6] estimate the rigid transformations of local cells
and collect the transformations to deform the whole model. The principle of as rigid as possible defor-
mation has also been applied to shape interpolation [33] and shape manipulation [34]. Such works based
on the as-rigid-as-possible principle have a similar framework. They all estimate local rigid transforms of
geometric elements (e.g. triangle faces), and then build a global energy formulation based on L2 norm.
L1 norm was recently used to reconstruct point set surfaces, and has achieved sparse optimization with
improved feature and structure preservation [5]. Bougleux et al. [35] recently used similar formulation in
p-Laplacian, and applied this for applications such as mesh denoising.

Differential domain methods and local as-rigid-as-possible methods mentioned above are mainly con-
cerned with surface deformation with uniform material properties. Some previous works consider non-
uniform materials. Popa et al. [36] use a painting-like interface to specify the material properties, which
are then used to guide the propagation of transformations. Our method does not need user interactions
to specify material properties. Instead we use a single parameter to control the distribution of deforma-
tion distortions. Thus our approach provides more flexibility than most traditional deformation methods
while having less burden on user efforts. Some research work explicitly considers man-made models. They
are often self-similar and made up of piecewise quasi-rigid components. Gal et al. [37] extract feature
curves according to the analysis of the models and manipulate the models through editing these curves.
In this paper, we introduce general Lp norm in the energy formulation for surface deformation, leading
to flexible and intuitive control of residual error distributions.

3 Algorithm

In this section, we first describe our Lp surface deformation formulation in the as-rigid-as-possible frame-
work. We then show that the resulting energy functional is convex, leading to an effective optimization
algorithm.

3.1 Lp surface deformation formulation

We denote the input triangle mesh by S which contains n vertices. For each vertex vi, one-ring neighbors
form a set, denoted by Ni. We use pi ∈ R

3 to represent the position of vi. The surface is deformed into
S′ with the same connectivity and positions changed to p′i. To define local rigidity, similar to [6], for each
vertex vi, a cell Ci is formed which covers 1-ring neighbors Ni. This definition is sufficiently local and
involves overlaps between cells which are essential for smoothness of transforms between cells. The local
energy between the cell Ci and its deformation C′

i is defined similarly to [6]

E(Ci, C
′
i) =

√ ∑

j∈Ni

wij‖(p′i − p′j) − Ri(pi − pj)‖2. (2)

Here, Ri represents a 3 × 3 rotation matrix that transforms locally from Ci to C′
i. The weight wij can

be chosen as the cotangent weight wij = 1
2 (cotαij + cotβij) [38] to take mesh discretization into account,
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where αij and βij are angles opposite to the edge vivj . To form the overall energy, we propose to use Lp

norm instead of the traditional L2 norm:

E(S, S′) =
n∑

i=1

E(Ci, C
′
i)

p =
n∑

i=1

{ ∑

j∈Ni

wij‖(p′i − p′j) − Ri(pi − pj)‖2

} p
2

. (3)

To minimize the nonlinear energy E(S, S′), an iterative algorithm is used. From an initial guess which
can take either the input mesh or the mesh obtained from relatively simple deformation algorithms,
rotation matrices Ri and positions p′i are optimized in turn. This process guarantees convergence as the
energy is monotonically decreasing. The optimal rotation matrix Ri for fixed positions p′i can be solved
independently for each vertex vi [5]. Denote by Si the covariance matrix of Ci. Si =

∑
j∈Ni

wij(pi −
pj)(p′i − p′j)

T. Singular decomposition of Si satisfies Si = UiΣiV
T
i , and then Ri can be obtained as

Ri = ViU
T
i , subject to changing the sign of the column of Ui corresponding to the minimal singular

value, to make det(Ri) > 0. We will give the details of finding the optimal positions p′i for given Ri in
the next subsection.

3.2 An effective convex optimization

To find the optimal positions p′i, we first prove that the energy E w.r.t. p′i is convex. The position pi at
each vertex vi is three dimensional, and denoted by pix, piy, piz. We take P to represent a vector collecting
all of these coordinates, i.e. P = [p1x, p1y, p1z, . . . , pnx, pny, pnz]T. Since Ri’s are fixed. Ri(pi − pj) is
constant vector which can be expressed as the difference of two vectors.

Eq. (2) can be rewritten as

E(Ci, C
′
i) =

√ ∑

j∈Ni

wij‖aT
ij(P − d)‖2, (4)

E(Ci, C
′
i) =

√
√
√
√(P − d)T

( ∑

j∈Ni

w2
ija

T
ijaij

)

(P − d), (5)

where aij is a vector of length 3n. aij(k) = 1, for k = 3i − 2, 3i − 1, 3i and aij(k) = −1, for k =
3j − 2, 3j − 1, 3j. For any other k, aij(k) = 0. aT

ijd = Ri(pi − pj). To show that the energy defined
in Eq. (3) is convex, since

∑
j∈Ni

w2
ija

T
ijaij is symmetric semi-positive definite, it suffices to prove that

this holds for a more generalized function, namely for a symmetric semi-positive definite matrix A, and
p � 1, c � 0, the form f = (xTAx + c)

p
2 is convex. The gradient ∇f and Hessian matrix H(f) of f can

be calculated as

∇f = p(Ax)(xTAx + c)
p−2
2 , (6)

H(f) = p(xTAx + c)
p−4
2 · [A(xTAx + c) + (p − 2)AxxTA]. (7)

As p � 1, it suffices to show that for a general vector y,

(yTAy)(xTAx) � (yTAxxTAy) = (yTAx)2. (8)

Since A is symmetric semi-positive definite, there exists a unique symmetric semi-positive definite matrix
B, such that B · B = A. We use

√
A to represent the matrix B, which can be calculated using eigen

decomposition. In this case, Eq. (8) actually holds due to the following inequality

[(
√

Ay)T(
√

Ay)][(
√

Ax)T(
√

Ax)] � [(
√

Ay)T(
√

Ax)]2. (9)

If c = 0, the Hessian matrix H(f) may not exist when Ax = 0. This situation can be verified by
showing that f is convex when restricted to any line. More specifically, assume f = g(t), t ∈ R, then
∃t, g(t) = 0 if and only if g(t) ≡ 0, so either g′′ exists for every t, or g(t) ≡ 0. In both cases, our conclusion
is proved.



Gao L, et al. Sci China Inf Sci May 2012 Vol. 55 No. 5 987

Since the energy is convex, we can find the global minimum effectively by an iterative backtracking
line search [7]. Starting from p̃′i, we compute the descent direction

Δp̃′i = −∂E

∂p′i

∣
∣
∣
∣p

′
i = p̃′i, (10)

as the negative gradient direction. Assume all the p̃′i form p̃′ and all the Δp̃′i form Δp̃′. The step size t

is initialized to 1 and can be obtained by repeatedly multiplying t by a constant β, until E(p̃′ + tΔp̃′) �
E(p̃′) + αt∇E(p′)TΔp̃′. We choose α = 0.3 and β = 0.5 for our experiments. The updated position can
then be obtained as p̃′ + tΔp̃′. This process repeats until convergence happens.

3.3 More efficient solution of the L1 problem

Using L1 norm (the special case with p = 1) has a few advantages. The distortions tend to concentrate
on a sparse set of vertices, leading to generally well preserved shapes after deformation. The problem can
be converted to the dual form of conic programming as follows. Based on Eq. (3), we introduce variables
T1, T2, . . . , Tn, and these variables along with optimized positions p′i are unknown variables to optimize.
We need to maximize

∑n
i=1(−Ti), subject to the constraints

Ti �
√ ∑

j∈Ni

‖√wij((p′i − p′j) − Ri(pi − pj))‖2. (11)

This can be effectively solved using SDPT3 (an open source conic programming solver) [39].

4 Experimental results

We carried out our experiments on a desktop computer with 2× Quad 2.27 GHz CPUs. Our current
implementation has not been optimized for multi-core CPUs. In all the examples, we use blue dots
to indicate the handles used to control the deformation, and use color coding to show the distortion
distributions incurred by the deformation (E(Ci, C

′
i) for each vertex vi), where increasing distortions are

represented using colors from blue to red. We use conic programming described in Subsection 3.3 to
solve L1 problem, the method in [6] to solve L2 problem and backtracking line search described in 3.2
to solve other Lp problems. For all the examples, we initialize the deformed mesh with naive Laplacian
deformation (as in [28] without rotation estimation). Assuming for each vertex vi the position change

after each iteration is Δpi, the average displacement is defined as d̄ =
√∑

n
i=1 ‖Δpi‖2

n . The terminating
condition of convergence is indicated by d̄ < εC (for conic programming) and d̄ < εL (for line search)
respectively. Different thresholds are used because these two optimization methods tend to update the
positions differently. We have found εC = 0.01 and εL = 0.00005 work well in practice and these same
parameters are used for all the examples in the paper. Detailed statistics of iteration numbers and running
times are given in Table 1.

As shown in Figure 1, the energy consistently decreases with more iterations. Although line search
involves much more iterations, each iteration takes less time. From the experiments, using larger p, the
convergence is likely to be much faster. For this example, the L6 norm actually takes less time than the
traditional L2 norm. The typical L2 norm is only a special case. The histograms of the cell energies
using L1 norm and L2 norm are shown in Figure 2. This verifies the deformation results in Figure 3.
The energy of most cells is small for in L1 norm since distortions in most regions are small. On the
contrary the energy of cells distributes much more uniformly when L2 norm is used. Figure 3 shows the
results of translating the handles to fold the sheet, using L1, L1.5, L2 and L6 norms, respectively. All of
these results can be natural, depending on the material of the sheet. It is clear that when smaller p (e.g.
p = 1) is used, the unavoidable distortions are highly concentrated on certain regions. Another extremity
is when large p (e.g. p = 6) is used, the distribution of distortions are rather uniform. With this more
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Table 1 Statistics of running timesa)

Example NV NF N1 T1 N2 T2 N1.5 T1.5 N6 T6

Sheet (Figure 3) 3962 7920 19 187.141 50 28.002 1496 658.848 32 15.974

Bar (Figure 4) 370 736 6 3.770 9 1.133 92 5.739 12 0.760

Block (Figure 5) 2132 4272 21 144.153 17 6.109 – – – –

Dinopet (Figure 6) 2251 4498 3 15.539 2 2.005 – – – –

Rocker arm (Figure 7) 2108 4216 3 18.454 3 2.000 – – – –

a) NV : the number of vertices; NF : the number of faces; N1, N2, N1.5, N6: the number of iterations used before

convergence for L1, L2, L1.5, L6 norms respectively; T1, T2, T1.5, T6: corresponding running times in seconds.

Figure 1 Energy decreases with iterations, using (a) L1 norm; (b) L1.5 norm and (c) L6 norm.

Figure 2 Histograms of cell energies obtained with L1 norm (a) and L2 norm (b).

generalized Lp surface deformation, the user can easily obtain these results by changing only a single
parameter. Figure 4 shows another example involving rotations of handles with different Lp deformations.
The bar is twisted 90 degrees in the middle while keeping both ends fixed. With increasing p, the
distortions distribute more evenly over the whole deformed model.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3 Results of Lp surface deformations. (a) The input surface; (b)(d)(f)(h) the results with L1, L1.5, L2 and L6

norms respectively; (c)(e)(g)(i) color coded distortion distributions of (b)(d)(f)(h). Distortions increase from blue to red.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4 Results of Lp surface deformations. (a) The input surface; (b)(d)(f)(h) the results with L1, L1.5, L2 and L6

norms respectively; (c)(e)(g)(i) color coded distortion distributions of (b)(d)(f)(h). Distortions increase from blue to red.

(a) (b) (c) (d) (e)

Figure 5 Comparison of deformation results of the input model (a) with L1 (b)(c) and L2 (d)(e) norms. Color coded

results represent increasing distortions from blue to red.

(a) (b) (c) (d) (e)

Figure 6 Comparison of deformation results obtained with L1 and L2 norms. (a) Input model; (b)(d) results obtained

with L1 and L2 norms respectively; (c)(e) corresponding color coded distortions of (b)(d). Distortions increase from blue

to red.

L1 norm is a special case of our method which is particularly useful for concentrating distortions to a
sparse set of areas. In Figures 5, 6 and 7, we compare the results with L1 norm and the traditional L2

norm. Since the distortions are concentrated, the deformation will be less likely to affect regions far away
from the handles (as shown e.g. in Figure 6). When objects are stretched in Figures 5 and 7, since most
areas have less distortions, the structures and features can be much better preserved (e.g. circular and
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(a) (b) (c) (d) (e)

Figure 7 Comparison of deformation results obtained with L1 and L2 norms. (a) Input model; (b)(d) results obtained

with L1 and L2 norms respectively; (c)(e) corresponding color coded distortions of (b)(d). Distortions increase from blue

to red.

(a) (b) (c)

Figure 8 Deformation result with mixed L1 and L2 norms. (a) The distribution of L1 norm and L2 norm on the surface

model; (b) deformation result with L1 and L2 norms; (c) corresponding color coded distortions of (b).

(a) (b) (c)

(d) (e)

Figure 9 Deformation results with mixed L1 and L2 norms. (a) The distribution of L1 norm and L2 norm on the surface

model; (b) deformation result with L1 and L2 norms; (d) deformation result with L2 norm; (c)(e) corresponding color

coded distortions of (b)(d).

cubic shapes). Our method can be generalized to distribute different norms over the surface model.
This simulates objects composed of multiple materials. Examples are shown in Figures 8 and 9, where
L2 norm is used in the orange region and L1 norm elsewhere. These models deform differently due to
the variation of norms. The deformation results and the energy distribution within the same region
are consistent with those using L1 norm and L2 norm respectively (e.g. see Figure 3). If the changes
in the surface deformation process are relatively simple, only a small number of iterations are needed
before convergence. This shows the potential application of our approach in interactive editing. Current
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unoptimized implementation takes under 20 seconds (for ‘dinopet’ for example). We expect to explore
potential speed-up in the future, as detailed in the next section.

5 Conclusions and future work

In this paper, we propose a novel surface deformation approach that optimizes energy functional based
on general Lp norms. The extra parameter p provides the user with intuitive and flexible control over
the deformation process. Continuous variations of results can be obtained by simply changing a single
parameter. We have demonstrated that the effects of different p’s can be well anticipated. Using smaller
p (e.g. L1 norm) makes distortions well concentrated on a sparse set of vertices, producing results with
most areas less distorted and structures better preserved. Larger p on the other hand promotes even
distribution of distortions. This flexibility mimics deforming objects with different material natures. A
major limitation is that our method is relatively slow, due to its nonlinear nature. We would like to
explore potential techniques to speed up the computation, including subspace technique and parallelism.
The optimization currently used such as iterative line search can be well parallelized using either multi-
core CPUs or the GPU, which can potentially improve the performance quite significantly. With such
further development, interactive performance is possible to achieve as fewer iterations are often needed
for relatively small changes in interactive editing. In our current approach, we assign different norms
manually to simulate different material properties. In certain cases, where material stiffness is related to
geometric properties (for example, joints are more flexible than rigid components), it is possible to develop
an automatic algorithm to distribute norms over the surface based on the geometry. This approach can
also be extended to other techniques such as content-aware model resizing [40]. Using the Lp norm in
shape deformation is general to be incorporated in other shape deformation frameworks; we expect to
explore this in the future.
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Appendix

Some discussion about the sparsity of Lp optimization when p = 1 is given here. The optimization problem can

be formulated as

min ‖Ax + b‖p, (A1)

where A is a matrix of size m× n, x is a vector of length n to be optimized, b is a vector of length m, ‖ · ‖p is Lp

norm with p = 1. Without loss of generality, we assume ‖b‖ = 1. We define u = Ax + b, so ui =
∑n

j=1 aijxj + bj ,

where ui, xj and bj are elements of u, x and b respectively and aij is an element of matrix A. The optimization

problem (Eq. (A1)) is equivalent to min
∑m

i=1 |ui|. Assume S is the image space of A, so rank(S)=rank(A) = rs.

Given these definitions, we can reformulate the optimization problem in Eq. (A1) as:

min ‖u‖p, (A2)

s.t. u ∈ S + b. (A3)

This is equivalent to

max t, (A4)

s.t. u ∈ S + tb, ‖u‖p = 1. (A5)

Suppose the optimal solution of Eq. (A4) is ū and t̄, with t̄ > 0. It can be easily verified that ũ = ū/t̄ is also the

optimal solution of Eq. (A2). We further define Ck as the set of length m vectors with k non-zero elements. We

have the following lemmas:

Lemma 1. When k < m−1−rs, we have mB{b|∃t � 0, s ∈ S, b ∈ B, s+tb ∈ Ck} = 0. B is the (m−1)-dimension

unit hyper sphere and mB is the measure on B.

Lemma 2. When p = 1, Ck ⊆ convex(Ck−1), where convex(·) is the convex set operator.

We give a constructive proof of Lemma 2. For any u ∈ Ck, without loss of generality we assume u1, u2, . . . ,

uk �= 0. We take k elements si (i = 1, 2, . . . , k) from Ck−1, defined as:

si = {u1(1 − |ui|p)−1/p, u2(1 − |ui|p)−1/p . . . ui−1(1 − |ui|p)−1/p, 0,

ui+1(1 − |ui|p)−1/p . . . uk(1 − |ui|p)−1/p, 0 . . . 0}.
(A6)

The ith element of si is zero. (k−1) non-zero elements of si are given as uj(1−|ui|p)−1/p, for any 1 � j � k, j �= i.

Given weights wi = (1 − |ui|p)1/p/(k − 1), when p = 1, we have
∑k

i=1 wi = 1 and
∑k

i=1 wisi = u.
Based on these two lemmas, we can obtain the following conclusion: the probability of the solution to the

optimization problem in Eq. (A1) with (m − 1 − rs) non-zero elements is 1.


